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Abstract
Low-grade inflammation is recognized as an important factor in the development and progression of a multitude of diseases
including type 2 diabetes mellitus and cardiovascular disease. The potential of using antibody-based therapies that neutralize key
players of low-grade inflammation has gained scientific momentum as a novel therapeutic strategy in metabolic diseases. As
interleukin-6 (IL-6) is traditionally considered a key pro-inflammatory factor, the potential of expanding the use of anti-IL-6
therapies to metabolic diseases is intriguing. However, IL-6 is a molecule of a very pleiotropic nature that regulates many aspects
of not only inflammation but also metabolism. In this review, we give a brief overview of the pro- and anti-inflammatory aspects
of IL-6 and provide an update on its role in metabolic regulation, with a specific focus on glucose homeostasis and adipose tissue
metabolism. Finally, we shall discuss the metabolic implications and clinical potential of blocking IL-6 signaling, focusing on
glucose homeostasis and lipid metabolism.

Introduction

During the past two decades, a growing body of evidence
shows that low-grade inflammation is a crucial factor in the
development and progression of a cluster of diseases, e.g.,
type 2 diabetes mellitus (T2DM) and cardiovascular disease
[1]. In patients with low-grade inflammation, circulating
levels of interleukin-6 (IL-6) are often increased and have
been associated with detrimental metabolic actions [2].
However, a large number of contrasting studies indicate that
chronically elevated IL-6 may have beneficial metabolic ef-
fects [3]. These conflicting opinions highlight the complexity
of the IL-6 molecule, and it is still debated whether IL-6 is “a
bad or a good guy” in the regulation of metabolism.

Moreover, a great deal of our knowledge regarding the
metabolic effects of IL-6 is based on correlational studies,
in vitro cell culture studies of supraphysiological

concentrations of IL-6, and studies performed in rodents.
Bearing in mind that there seem to be important species-
specific differences, particularly of the glucose regulatory ac-
tions of IL-6, caution should be taken when conclusions are
made based on data from rodent studies.

In this review, we will introduce the pleotropic molecule
IL-6 and provide a brief overview of its role in different con-
texts where it is increased (acute and chronic inflammation
and exercise). Moreover, we will discuss the complex role of
IL-6 in the regulation of metabolism, with a specific focus on
glucose homeostasis and adipose tissue metabolism. Finally,
we shall discuss the metabolic implications of blocking IL-6
signaling and the clinical potential of IL-6 receptor blockade,
focusing on glucose homeostasis and lipid metabolism.

Interleukin-6 signaling

IL-6 was identified in 1989 and is part of the IL-6 family of
cytokines that include IL-11, oncostatin M, leukemia inhibi-
tory factor (LIF), ciliary neurotrophic factor (CNTF),
cardiotrophin-1, and cardiotrophin-like cytokine [4]. IL-6 is
produced by immune cells, chondrocytes, osteoblasts, endo-
thelial cells, skeletal muscle cells, smooth muscle cells, pan-
creatic islet β-cells, among several other cell types [4]. Of
note, IL-6 is furthermore a myokine and an adipokine as it is
secreted from skeletal muscle in response to exercise and from
adipose tissue, respectively [5, 6].
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The upstream stimuli for IL-6 secretion differ according to
cell type. In immune cells, tumor necrosis factor-alpha
(TNF-α) induces IL-6 secretion upon activation of the nuclear
factor-κβ signaling pathway. Conversely, in skeletal muscle,
IL-6 secretion is not induced by TNF-α-mediated nuclear
factor-κβ activation, but is suggested to result from increased
cytosolic Ca2+ and activation of P38 mitogen-activated pro-
tein kinase or calcineurin during skeletal muscle contraction
[7]. Moreover, a recent study identified lactate production as a
mediator of IL-6 release from muscle fibers [8].

Upon secretion, IL-6 mediates its biological effects via two
distinct pathways, the classic signaling pathway and the trans-
signaling pathway. The classic signaling occurs when IL-6
binds to its transmembrane IL-6 receptor (IL-6R) on target
cells. The IL-6/IL-6R complex associates with the transmem-
brane signal-transducing glycoprotein 130 (gp130) and there-
by activates downstream signaling cascades [4]. IL-6 can also
signal via an alternative route called “trans-signaling” by bind-
ing to its soluble receptor [9, 10]. When IL-6 binds to the
soluble IL-6 receptor (sIL-6R), a soluble complex is formed.
This soluble complex then binds to gp130, and as gp130 is
ubiquitously expressed on cells in the entire body, the IL-6/
sIL-6 complex is able to signal in most tissues [11, 12]. The
downstream signal transduction of IL-6 involves different in-
tracellular pathways that include the JAK-STAT3, JAK-SHP-
2-MAPK, and the PI3K pathway [11–14].

Taken together, IL-6 is not only secreted by a broad range
of cells but can also target cells universally, and due to its
various upstream and downstream signaling pathways, the
final outcome of IL-6 signaling depends on the interplay of
the type of target cell, its intracellular environment, and con-
comitant external stimuli of the cell [4]. Again, this highlights
the tremendous pleotropic nature of IL-6. Therefore, it is not
surprising that IL-6 is implicated in the regulation of the im-
mune system (having both pro- and anti-inflammatory ef-
fects), bone metabolism, the nervous system, the hemopoietic
system, the endocrine system, energy metabolism, glucose
homeostasis, and lipid metabolism [4].

Interleukin-6 elevation during acute and chronic
inflammation

Due to acute elevations of IL-6 in the initial phase of an in-
fection or in response to noninfectious stimuli such as a burn
or traumatic injuries, early studies identified IL-6 as a pro-
inflammatory cytokine [15]. In these contexts, macrophages
and monocytes secrete IL-6, leading to concentrations that are
up to 1000 times higher than baseline circulating levels [16].
Increased concentrations of pro-inflammatory cytokines such
as interleukin-1 (IL-1) and TNF-α precede and are the main
inducers of the IL-6 elevation [17–20]. IL-6 then stimulates
the secretion of various acute phase proteins, e.g., C-reactive
protein (CRP) [21] that acts as warning signals, supporting the

immune system in eliminating the source of stress from the
system [22]. Thus, in the context of acute inflammation, ele-
vation of IL-6 is a protective and beneficial response.

The role of IL-6 during chronic inflammation is still not
well understood. Chronic low-grade inflammation is charac-
terized by a two- to threefold elevation in systemic concentra-
tions of cytokines (IL-1, TNF-α, and IL-6) and acute phase
proteins, e.g., CRP [23, 24]. Chronic low-grade inflammation
is found in states of the so-called metaflammation, observed in
the metabolic syndrome, obesity, and type 2 diabetes mellitus
(T2DM) [25] . A centra l source of cytokines in
“metaflammation” is the adipose tissue, infiltrated by macro-
phages [5, 25, 26]. The inflamed adipose tissue is believed to
arise due to hypertrophic adipocyte expansion that leads to
compression of capillaries and tissue ischemia. This, in turn,
leads to necrosis of the adipocytes and attraction of macro-
phages, which trigger the secretion of IL-6, TNF-α, IL-1β,
and other pro-inflammatory cytokines [27]. While low-grade
inflammatory factors such as TNF-α and IL-1β are implicated
in insulin resistance and development of T2DM [28], the con-
tributing role of IL-6 in metabolic disease is less established
(reviewed in the subsequent sections).

Interleukin-6 elevation during exercise

Today, it is well known that during exercise muscle contrac-
tions lead to increased systemic concentrations of various pep-
tides and cytokines, including IL-6, interleukin-1 receptor an-
tagonist (IL-1ra), and interleukin-10 (IL-10) [29–31]. In 2003,
it was proposed that a cytokine or a peptide produced,
expressed, and released by muscle fibers in response to exer-
cise, exerting autocrine, paracrine, or endocrine effects, should
be named a “myokine” [32].

Thus, IL-6 was the first myokine to be discovered and has
since been studied most extensively [33, 34]. IL-6 is the first
detectable cytokine in the circulation [7] and it increases ex-
ponentially (up to 100-fold) [35–37], proportional to the du-
ration of exercise and the amount of muscle mass engaged in
the exercise [35]. Exercise-induced IL-6 occurs without a pre-
ceding increase in the pro-inflammatory cytokines TNF-a and
IL-1 [38, 39] and initiates an anti-inflammatory response, as it
inhibits the expression of TNF-α and IL-1 [20, 29, 40] and
stimulates the production of the anti-inflammatory molecule
IL-1ra [41], soluble TNF-α-receptors (sTNF-αR) [42], and
IL-10 [43] among others.

The role of IL-6 in glucose homeostasis

The interest in IL-6 in energy metabolism arose from studies
in IL-6-deficient mice showing that mice lacking IL-6 develop
mature-onset obesity along with glucose intolerance [44, 45].
Today, it is well established that IL-6 regulates glucose
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homeostasis; however, whether its role is beneficial or detri-
mental is debated [46].

The generally accepted view of IL-6 as a “bad guy” with
regard to glucose homeostasis is primarily based on epidemi-
ological studies showing a correlational relationship, in vitro
cell culture studies of supraphysiological concentrations of IL-
6, and some animal studies [47]. Epidemiological studies have
revealed that IL-6 is implicated in the chronic inflammation
that accompanies conditions such as obesity and T2DM [47].

In support of this idea, infusions of IL-6 have been shown
to impair insulin action in mice [48], whereas blocking of IL-6
signaling improves hepatic insulin sensitivity [49]. These
findings suggest that IL-6 may be involved in hepatic insulin
resistance, which may derive from increased phosphorylation
of SOCS3 that binds insulin receptor substrates (IRS) and
targets them for proteasomal degradation, thus impeding
insulin-mediated glucose uptake [50]. However, the negative
effects of IL-6 in the liver appear to arise only when IL-6 is
secreted from the adipose tissue [51].

In contrast to the view of IL-6 as a “bad guy” in the regu-
lation of glucose homeostasis, a growing body of evidence
indicates that chronically elevated IL-6 is beneficial, as in-
creased levels might serve as an adaptive mechanism aiming
at improving glycemic control. In line with this, a study by
Ellingsgaard et al. showed that IL-6 knockout mice on a high-
fat diet were unable to expand the pancreatic alpha-cell mass,
resulting in reduced glucose-stimulated insulin secretion (a
beta-cell defect). In this context, increased IL-6 was seen as
an adaptive response, necessary to maintain proper insulin
secretion and glycemic control in response to a high-fat diet
[52]. Subsequent studies by the same group demonstrated that
IL-6 mediates cross-talk between insulin-sensitive tissues and
pancreatic beta-cells via the incretin hormone glucagon-like
peptide-1 (GLP-1). More specifically, IL-6 was shown to pro-
mote enhancement of GLP-1 production and consequently
increased secretion of insulin [53]. Another study confirmed
that IL-6 regulates the incretin axis, as glucose regulatory
action of the other incretin hormone glucose insulinotropic
polypeptide (GIP) was found to be mediated via IL-6 [54].

the Brüning group recently identified IL-6 as an important
determinant of the alternative activation of macrophages, as
IL-6 counterbalance a shift of macrophage populations toward
a pro-inflammatory phenotype, indicating a role of IL-6 in
limiting systemic inflammation [55]. Later, the same group
showed that IL-6, trans-signaling in the central nervous sys-
tem (CNS), suppresses feeding and improves glycemic con-
trol, an effect that seems to be enhanced in obese mice [56]. In
addition, Mauer et al. showed that IL-6 signaling limits sys-
temic inflammation and improves glycemic control in macro-
phages and hepatocytes of lean and obese mice [55, 57].
Correspondingly, another group proposed that increased IL-6
mRNA in insulin-resistant tissues may be an attempt to over-
come the metabolic dysfunction [58].

Taken together, elevation of IL-6 during low-grade inflam-
mation may serve as an adaptive mechanism in an attempt to
increase insulin production and improve glucose homeostasis
at least in mouse models. However, there seem to be differ-
ences between the actions of IL-6 in mice and in humans, and
some of the effects of IL-6 may be species-specific [59]. In
support of this, mouse IL-6 is only 42% identical to the human
IL-6 molecule [60, 61].

A beneficial role of acutely elevated IL-6 in glucose
homeostasis is suggested from exercise studies, where an
acute bout of exercise with elevations of plasma IL-6 in-
creases glucose uptake in the periphery [62]. It would in-
deed be a counterintuitive physiological response to re-
lease a factor that promotes insulin resistance, in a condi-
tion where increased insulin sensitivity is needed. In cell
culture studies, increased glucose uptake was accompanied
by translocation of the glucose transporter GLUT4 from
intracellular compartments to the plasma membrane in
skeletal myotubes [63]. Moreover, IL-6-induced IL-1ra
during exercise is speculated to result in limited IL-1-
induced pancreas damage and thus improved insulin secre-
tion [62, 64]. However, whether IL-6 plays a role for the
adaptations in glucose homeostasis occurring with exercise
in humans remains to be clarified.

In humans, a huge increase in circulating IL-6 (by means of
an infusion) induces fever, release of catecholamines, and el-
evated plasma glucose levels [65, 66]. In contrast, a modest
elevation of plasma IL-6, comparable to the IL-6 elevation
induced by exercise, seems to induce an anti-inflammatory
and mostly beneficial effect in the maintenance of glucose
homeostasis in humans. Despite the overall positive effects
of short-term IL-6 exposure, the effects seem to be context
dependent [43, 67–69]. An infusion of recombinant IL-6 in
physiological concentrations improves insulin sensitivity dur-
ing a hyperinsulinemic, euglycaemic clamp in healthy indi-
viduals [63], but not in patients with T2DM [70]. In support of
this context dependency, an infusion of IL-6 was found to
increase endogenous hepatic glucose production (revealing a
direct muscle-liver cross-talk) [69]; however, this was ob-
served exclusively during exercise, whereas no effect was
found during resting conditions [43, 67, 68].

In line with the above-described beneficial effects of an
acute increase in IL-6, we recently showed that infusing IL-
6 prior to a meal improves postprandial glucose homeostasis
in humans (Fig. 1). More specifically, we came across a pre-
viously unidentified role of acutely increased IL-6 (by an in-
fusion or an acute bout of exercise) in delaying the rate of
gastric emptying. Our studies demonstrated that an infusion
of IL-6 delay gastric emptying rate, leading to a reduction in
postprandial glucose. Moreover, independent of gastric emp-
tying rate, IL-6 reduces postprandial insulin secretion. The
effects of IL-6 on gastric emptying and insulin secretion were
maintained in patients with T2DM [59].
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In conclusion, IL-6 regulation of glucose homeostasis is
complex and still not fully understood. The conflicting obser-
vations regarding the metabolic role of IL-6 stimulate the on-
going debate as to whether IL-6 is good or bad in the context
of low-grade inflammation in humans.

Given the various glucose regulatory effects of IL-6, we
need to be aware of themetabolic consequences of IL-6 block-
ade in auto-immune/inflammatory disease (reviewed in the
subsequent sections).

Furthermore, it is tempting to pose the question whether the
effects of acute IL-6 administration might be exploited for
therapy to improve glycemia. To be able to answer this, further
studies are needed to address how IL-6 exerts its actions, and
whether the potential beneficial effects of IL-6 are preserved
in different metabolic states (obesity, metabolic syndrome,
and type 2 diabetes).

The role of IL-6 in lipid metabolism

IL-6 is suggested to participate in mediating the obesity-
associated insulin resistance preceding T2DM [71]. The ratio-
nale for this is based on studies showing an association be-
tween elevated circulating levels of IL-6 due to obesity and
insulin resistance in liver and adipose tissue [71].

Conversely, mounting evidence has consolidated a cen-
tral role of IL-6 in the regulation of lipid metabolism. IL-6
has been identified as a lipolytic factor from studies in
mice, where IL-6 knockout mice developed mature-onset
obesity that was partly reversed after repetitive infusions of
IL-6 [44]. A subsequent study showed that chronic admin-
istration of IL-6 results in reductions in rodent mesenteric
and retroperitoneal fat depots [44]. Transgenic mice over-
expressing IL-6 have been shown to stay lean and be
protected from the adverse effects of a high-fat diet [72].
Based on these findings, an anti-obesity effect of IL-6 has
been suggested [73]. Furthermore, we know from studies
in humans that a single infusion of IL-6 stimulates lipolysis
and β oxidation at the whole-body level [74], both when
administered at high and low doses [75]. The lack of a
concomitant increase in plasma adrenaline or insulin indi-
cates that the effect is driven by IL-6 per se. Another study
demonstrated an increased glycerol release from subcuta-
neous adipose tissue in response to an acute IL-6 infusion
[76]. Of note, patients with Castleman’s disease (abnormal
production of IL-6 by germinal center B cells) are charac-
terized by hypolipidemia [77]. These findings of IL-6 as a
critical regulator of lipolysis and β oxidation have been
confirmed by multiple in vitro studies demonstrating that
IL-6 treatment increases lipolysis and β oxidation both in
myotubes and adipocytes [63, 74, 78, 79]. Lipolysis has
been shown to be stimulated by IL-6 in several adipose
tissue depots, including human subcutaneous and visceral
depots [80]; however, the specific molecular mechanism
conveying lipolysis in adipose tissue remains unknown,
but may involve activation of AMP-activated kinase
(AMPK) [63, 79, 81]. In contrast, it is well known that
IL-6 induces β oxidation via AMPK [7, 63, 79, 81].
AMPK phosphorylates and inactivates acetyl CoA carbox-
ylase β (ACCβ), which decreases malonyl-CoA content
and thus relieves its allosteric inhibition of carnitine-
palmitoyl transferase 1 (CPT-1) [82, 83]. CPT-1 catalyzes
the formation of carnitine-acyl and transports into the mi-
tochondrion where β oxidation takes place [84].

Other roles for IL-6 in lipid metabolism include IL-6-
stimulated leptin secretion from human omental and sub-
cutaneous adipose tissues as demonstrated by Trujillo et al.
[80], which may affect appetite and caloric intake. They
also found that IL-6 decreased lipoprotein lipase (LPL)
activity by 56% in omental and by 68% in subcutaneous
adipose tissue. These findings indicate that IL-6 may act to
diminish lipid uptake and deposition in adipose tissue and
suggest the concept of IL-6 as an “adipostat” which con-
trols adipocyte size [80].

Overall, solid evidence exists that IL-6 plays an essen-
tial physiological role in the regulation of adipose tissue
and lipid metabolism. As such, the notion of IL-6 as an
anti-obesity agent should be “weighed” against its

Fig. 1 In a series of human studies performed at the Centre for Physical
Activity Research, an acute increase in IL-6 (by an infusion or an acute
bout of exercise) delayed gastric emptying rate. Following an IL-6
infusion, the deceleration in gastric emptying rate reduced postprandial
glucose. In addition, IL-6 reduced postprandial insulin. Thus, an acute
increase in IL-6 delays gastric emptying with direct effects on glucose
homeostasis in humans. Adapted with permission from Lang Lehrskov
et al. [59]
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importance as a causal driver of the development and pro-
gression of obesity-associated diseases such as T2DM.

The implication of IL-6 receptor blockade
in inflammatory diseases

IL-6 is the major mediator of inflammatory joint destruction in
rheumatoid arthritis (RA) [85] and thus, in 2010, the IL-6
receptor antibody, tocilizumab, the only available medical
treatment targeting IL-6 signaling, was approved for the treat-
ment of moderate to severe rheumatoid arthritis [86]. Today,
tocilizumab is also approved for the treatment of other
inflammation-related diseases such as Castleman’s disease
and systemic juvenile idiopathic arthritis [87]. Moreover, it
is debated whether tocilizumab can be used also in the treat-
ment of other diseases with elevated IL-6 levels (other auto-
immune diseases, malignant diseases, cardiovascular disease,
and T2DM) [86]. Even though the potential of targeting in-
flammation by tocilizumab in the treatment of T2DM is in-
triguing, the recognition of IL-6 as a pleiotropic factor with
important effects on metabolism is paramount and the effects
of IL-6 blockade on metabolism need first to be clarified.

The implication of IL-6 receptor blockade on glucose
homeostasis

Given that IL-6 is speculated to be a co-inducer of the devel-
opment of insulin resistance associated with obesity, the idea
of blocking IL-6 in order to prevent and treat hyperglycemia
has gained attention [88, 89]. Several studies point toward a
beneficial effect of IL-6 receptor blockade on glycemic con-
trol in patients treated with tocilizumab with and without
T2DM [90–93]. In patients with RA, hba1c levels were de-
creased after the initiation of tocilizumab treatment [94], and a
review concluded that tocilizumab improves insulin sensitiv-
ity in inflammatory arthritis [92].

However, as discussed above, the role of IL-6 in the regu-
lation of insulin sensitivity and overall glucose homeostasis is
rather complex. Thus, even though treatment with IL-6 block-
ade to prevent or treat T2DM may seem appealing, it still
remains unexplored and further research is needed.

Along this line, anti-inflammatory treatment with IL-1
blockade and other anti-inflammatory agents have recently
been suggested as potential candidates to treat or prevent dia-
betes [89, 95].

The implication of IL-6 receptor blockade on lipid
metabolism

Based on the solid evidence of IL-6 being a lipolytic
factor, it has been speculated whether IL-6 receptor block-
ade in the treatment of inflammatory disorders may lead
to the unwanted side effects of obesity, i.e., insulin

resistance/T2DM, and cardiometabolic morbidity and
mortality, thus opposing its potential as a treatment for
immunometabolic diseases.

Addressing this concern, studies in humans receiving
tocilizumab have consistently shown increased systemic
levels of cholesterol, low-density lipoproteins (LDL),
high-density lipoproteins (HDL), and triglycerides, which
are well-known adverse effects in patients receiving toci-
lizumab, as reviewed by Choy et al. [96]. Recently, our
research group has performed a randomized placebo-
controlled trial including abdominally obese and physical-
ly inactive, but otherwise healthy, people for a 12-week
exercise intervention with concomitant blockade of IL-6
signaling by tocilizumab [97]. The study demonstrated
that blocking IL-6 signaling during aerobic bike training
completely abolishes the exercise-induced reduction of
visceral adipose tissue (Fig. 2). This finding reveals that
IL-6 is required to obtain the adipose tissue-reducing ef-
fects of exercise and consolidates the role of IL-6 in the
regulation of lipid metabolism. Moreover, LDL and total
cholesterol were increased by tocilizumab, and this in-
crease was not reversed by exercise.

Fig. 2 A recent randomized placebo-controlled trial including
abdominally obese, inactive participants, performed at the Centre for
Physical Activity Research, demonstrated that IL-6 receptor blockade
abolishes the fat-reducing effects of aerobic bike exercise. Thus, IL-6
signaling is a requirement for reduction in visceral adipose tissue
following exercise. Adapted with permission from Wedell-Neergaard
et al. [97]

Semin Immunopathol (2019) 41:491–499 495



Clinical considerations of IL-6 receptor blockade
in immunometabolic diseases

Several studies have confirmed the safety and efficacy of toci-
lizumab in reducing inflammation in patients with pro-
inflammatory diseases [98, 99] and have sparked an interest
to expand the application of tocilizumab for the treatment of
immunometabolic diseases. To this end, emerging evidence,
as reviewed above, suggests that blocking IL-6 signaling may
improve glucose homeostasis in a context where IL-6 is
chronically elevated. However, caution should be taken as
the role of IL-6 in glucose homeostasis is complex and
context-dependent as described above. In contrast to the po-
tentially beneficial role of IL-6 receptor blockade on glucose
homeostasis, IL-6 receptor blockade leads to weight gain and
hyperlipidemia, which may oppose the idea of using IL-6
receptor blockade to treat metabolic disease. Interestingly,
the adverse effects on lipid metabolism may not necessarily
translate into an increased cardiometabolic risk, as implied by
follow-up studies of patients treated with tocilizumab [100].
Therefore, the long-term importance of the beneficial and ad-
verse metabolic consequences of IL-6 receptor antagonism
needs to be further addressed to fully grasp the clinical poten-
tial of this drug in the treatment of metabolic diseases.

Conclusion

In conclusion, the pleotropic molecule IL-6 has both pro- and
anti-inflammatory characteristics and the outcome of IL-6 sig-
naling depends on the context. During acute inflammation, IL-
6 is a key player in orchestrating the acute immune response to
control an infectious stimulus, which involves both IL-6-
mediated induction of anti-inflammatory cytokines (IL-1ra,
IL-8, IL-10, etc.) and acute phase reactants, including CRP.
Chronic low-grade inflammation is a defining feature of met-
abolic diseases, where circulating levels of IL-6, TNF-α, IL-
1β, and other cytokines are increased. Recently, chronic low-
grade inflammation has been recognized as a driver of adverse
metabolic effects. Therefore, it is intriguing to suggest the
low-grade inflammatory cytokines as targets for antibody-
based treatment strategies for metabolic diseases. Yet, while
research shows promising results of antibodies directed at IL-
1β in the treatment of metabolic disease, the potential of anti-
IL-6-based therapies may be more challenging due to the par-
amount role of this myokine in metabolism: IL-6 is an impor-
tant regulator of glucose metabolism; however, its role is com-
plex and context- and species-dependent, so that in some sit-
uations, it improves while in other, it aggravates insulin sen-
sitivity and glucose homeostasis. In regard to lipid metabo-
lism, solid evidence has identified IL-6 as a lipolytic factor.
IL-6 stimulates lipolysis and β oxidation, increases leptin, and
reduces lipoprotein lipase, which has led to the suggestion that

IL-6 is an “adipostat” that attempts to control and prevent
adipocyte hypertrophy. Overall, this complex role of IL-6 in
glucose homeostasis and the anti-obesity effect of IL-6 war-
rant further research and apparently “weigh” against the po-
tential of treatingmetabolic diseaseswith antibody-based ther-
apies that neutralize IL-6.
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