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Abstract
CD8+ Tcells are important for the protective immunity against intracellular pathogens and tumor. In the case of chronic infection
or cancer, CD8+ T cells are exposed to persistent antigen and/or inflammatory signals. This excessive amount of signals often
leads CD8+ T cells to gradual deterioration of T cell function, a state called Bexhaustion.^ Exhausted T cells are characterized by
progressive loss of effector functions (cytokine production and killing function), expression of multiple inhibitory receptors (such
as PD-1 and LAG3), dysregulated metabolism, poor memory recall response, and homeostatic proliferation. These altered
functions are closely related with altered transcriptional program and epigenetic landscape that clearly distinguish exhausted T
cells from normal effector and memory T cells. T cell exhaustion is often associated with inefficient control of persisting
infections and cancers, but re-invigoration of exhausted T cells with inhibitory receptor blockade can promote improved immu-
nity and disease outcome. Accumulating evidences support the therapeutic potential of targeting exhausted T cells. However,
exhausted T cells comprise heterogenous cell population with distinct responsiveness to intervention. Understanding molecular
mechanism of T cell exhaustion is essential to establish rational immunotherapeutic interventions.
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Introduction

Naive Tcells get activated and differentiated into effector cells
in 7~10 days during acute infection or vaccinations. To obtain
appropriate differentiation program, naive T cells integrate
signals from antigen (signal 1), co-stimulation (signal 2),
and inflammation (signal 3) during priming and initial activa-
tion. This effector T cell differentiation from a naïve T cell is
accompanied by robust cell proliferation, transcriptional, epi-
genetic, and metabolic global reprogramming, and the acqui-
sition of cardinal features of effector T cells such as effector
function, altered tissue homing, and a dramatic numerical ex-
pansion [1]. In the subsequent contraction phase, the majority
of expanded effector cells die but a small fraction of effector
cells persists and develops into memory Tcells [1]. Memory T
cells downregulate the activation program of effector cells and

disarm effector molecules but keep the ability to rapidly re-
activate effector functions upon re-encounter with the same
antigen. During this transition, memory T cells also change
homing and distribution capacity. Additionally, memory T
cells develop a key characteristic of antigen-independent
self-renewal, a type of stem cell-like slow proliferation driven
by IL-7 and IL-15. Based on these tissue distribution prefer-
ence and capability of slow proliferation in response to ho-
meostatic cytokines, memory T cells are classified as central
memory (TCM), effector memory (TEM), resident memory
(TRM), and memory stem cells (TSCM) [2]. Overall, a key
aspect of the development of highly functional, persisting
memory T cells is that after the peak of effector expansion,
this memory T cell differentiation program occurs in the ab-
sence of ongoing antigen stimulation and high levels of
persisting inflammation.

On the other hand, during chronic infections or cancer
where antigen and/or inflammation persist, the program of
memory T cell differentiation is dramatically changed [2]. In
normal setting, memory T cells undergo a transition to quies-
cence but still preserve potential effector capacity after effec-
tor phase. However, during chronic infection or cancer,
antigen-specific Tcells show progressive loss of effector func-
tions, altered metabolism, and a unique transcriptional and
epigenetic program that is characterized by an absence of a
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signature of quiescence [2, 3]. One of the major characteristics
of exhaustion is co-expression of high levels of multiple in-
hibitory receptors, including PD-1 (CD279), cytotoxic T lym-
phocyte antigen-4 (CTLA-4, CD152), lymphocyte-activation
gene 3 (LAG3), T cell immunoglobulin domain and mucin
domain 3 (Tim-3) , CD244/2B4, CD160, T ce l l
immunoreceptor with Ig and ITIM domain (TIGIT), and
others [2, 4]. Other changes are lack of antigen-independent
homeostasis; altered transcriptional program including the dis-
tinct use of key transcription factors; and changes in homing
andmigration, signaling and cytokine and chemokine receptor
expression, and metabolism [2, 5–9]. Development of T cell
exhaustion is tightly associated with prolonged exposure to
antigen and inflammation. Altered T cell function, differenti-
ation, and maintenance together prevent optimal control of
chronic infections and cancer. The discovery that blockade
of the PD-1 pathway could partially reverse exhaustion and
lead to reduced viral or tumor load was a significant break-
through in the field [2, 10–14]. These data in animal models
and clinical trials highlighted the idea that exhausted T cells
were not terminally dysfunctional or irreversible, but at least a
subset of exhausted T cells could be re-invigorated, with im-
plications for the treatment of diseases including chronic in-
fections and cancer. In this review, characteristic features of
altered functionality, inhibitory receptors and negative regula-
tory pathways, and altered transcriptional control of exhausted
CD8 T cells will be described.

Overview of T cell exhaustion

CD8 T cells play a pivotal role in clearing intracellular patho-
gens and tumors [1]. However, high and sustained antigen and
inflammatory stimulation during chronic infection and tumors
can lead to altered CD8 T cell differentiation or exhaustion. T
cell exhaustion, first described in chronic virus infection in
mice [15], and was defined as the persistence of antigen-
specific T cells that lacked or possessed poor effector func-
tions. These studies were followed rapidly by the realization
that CD8 T cell exhaustion also occurred in humans during
HIV, HCV, HBV, HTLV-1, and other infections as well as
cancer [2, 16–19]. Although the severity of T cell dysfunction
can differ for specific pathogens, the general principle origi-
nally defined during lymphocytic choriomeningitis virus
(LCMV) infection in mice appears to apply in a wide variety
of infectious and cancer settings. Importantly, this state of T
cell differentiation prevents optimal control of infections and
tumors and a better understanding of the molecular mecha-
nism of exhaustion should lead to new clinical opportunities
[17].

T cell exhaustion usually manifests in progressive and hi-
erarchical loss of effector functions during persistent infection
[2, 17]. Typically, functions such as IL-2 production and

cytokine polyfunctionality, as well as high proliferative capac-
ity are lost early, followed by defects in production of TNF,
IFN-γ, and chemokines as well as degranulation capacity.
Ultimately, virus-specific T cells can be physically deleted.
Exhausted T cells express inhibitory receptors including PD-
1, LAG-3, Tim-3, 2B4/CD244, CD160, TIGIT, and others
that have a major role in regulating T cell function. The dem-
onstration that blocking the PD-1 inhibitory receptor in vivo
revigorated exhausted T cell responses and enhanced viral
control was a critical advance in this field [10]. These studies
demonstrated a novel concept that T cell exhaustion was re-
versible, rather than a, terminal or irreversible differentiation
state. Moreover, these observations have become the founda-
tion for remarkable clinical trials blocking the PD-1 pathway
in human cancer and chronic infections that have resulted in
impressive clinical response rates, sometimes in patients who
have failed other immunotherapies [11, 13]. The immunolog-
ical effects of these human treatments remain to be fully de-
fined, but the emerging results support the notion that reversal
of T cell exhaustion in humans is the causative mechanism for
the profound antitumor effect seen in many patients receiving
PD-1 pathway blocking reagents. In addition to loss of effec-
tor function and negative regulation by inhibitory receptors,
considerable evidence such as comparative transcription anal-
ysis of functional memory versus exhausted CD4 and CD8 T
cells indicates that exhausted CD8 T cells have a unique mo-
lecular signature distinct from naïve, effector, and memory T
cells [3, 20, 21]. Thus, while loss of function is one of the key
defining features of T cell exhaustion, recent work has also
highlighted several other defining aspects of T cell exhaustion
including sustained expression of inhibitory receptors, altered
memory, and a unique pattern of transcriptional control [2].

Persisting antigen signaling drives T cell
exhaustion

While there are clearly contributions from a variety of path-
ways one key feature appears to be the chronic (and likely
continuous rather than intermittent) exposure to antigen.
Additional factors including lack of CD4+ T cell help [22]
and perhaps signals from inhibitory receptors [23] also likely
contribute. Early studies in the chronic LCMVmodel demon-
strated that the severity of exhaustion (and deletion) of
antigen-specific T cells correlated to antigen abundance [24].
The importance of the level of antigen persistence exhaustion
was also confirmed in other murine models and HIV-1 infec-
tion [2, 25]. Thus, the level and duration of chronic antigen
stimulation appears to be a key event leading to exhaustion
and correlating with the severity of dysfunction during chronic
infection.

Indeed, downstream of TCR signaling, NFAT, and
Sprouty-2 (SPRY2) has been implicated in T cell exhaustion.
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Impaired NFAT nuclear translocation results in split exhaus-
tion of virus-specific CD8+ T cell functions during chronic
viral infection [26]. Sprouty-2, a negative regulator of the
MAPK/ERK pathway, is upregulated by strong TCR signals
and regulated T cell polyfunctionality [27]. Inhibition of
Sprouty-2 in HIV-specific T cells increased polyfunctionality
independently of PD-1, suggesting a central role for ongoing
direct attenuation of T cell signaling in exhausted T cells.
However, chronic antigen stimulation also leads to sustained
expression of PD-1 through NFATc1 [28] and it is likely that
PD-1 further modulates the level of TCR signaling [29].
Together, persistent antigen stimulation (signal 1) is key factor
that initiates and leads T cell exhaustion and correlate with the
severity of dysfunction during chronic infection.

Inhibitory signals in T cell exhaustion

Negative regulatory pathways that are responsible for T cell
exhaustion can be classified in three major categories: (1) cell
surface inhibitory receptors, (2) soluble factors and environ-
mental factors, and (3) immunoregulatory cell populations.

Inhibitory receptors and co-stimulatory pathways

Inhibitory and co-stimulatory receptors play critical roles in
adaptive immune cell responses [30]. Inhibitory receptors are
critical negative regulatory pathways that function to control
autoreactivity and immunopathology [4, 31]. Although inhib-
itory receptors are transiently expressed in functional effector
T cells during activation, higher and sustained expression of
inhibitory receptors is a central feature of the T cell exhaus-
tion. The PD-1:PD-L1/L2 inhibitory pathway is the best stud-
ied inhibitory receptor pathway in T cell exhaustion [30, 32,
33]. The observation that blocking the PD-1 pathway re-
invigorates exhausted CD8+ T cell responses during chronic
LCMV infection and enhances viral control indicates that T
cell exhaustion is under active control by inhibitory receptors
such as PD-1 [10]. This observation originally from LCMV
infection was rapidly confirmed in HIV infection [18, 19, 34],
and PD-1 pathway signals are now known have amajor role in
negatively regulating immunity during a wide variety of hu-
man chronic infections and cancer [30, 32, 33]. Indeed, with
the FDA approval of PD-1 pathway inhibitors for treatment of
human cancer, the importance of the PD-1 pathway and rever-
sal of T cell exhaustion for treatment of human disease cannot
be understated.

Despite the promise of clinical targeting of the PD-1 path-
way, the molecular mechanisms by which this inhibitory re-
ceptor controls T cell exhaustion remain poorly understood.
There are several mechanisms by which inhibitory receptors
such as PD-1 might regulate T cell function [32]. (1)
Ectodomain competition: inhibitory receptors sequestrate

target receptors/ligands and/or prevent the optimal formation
of microclusters and lipid rafts (CTLA4 [35]), (2) modulation
of intracellular mediators: local and transient intracellular at-
tenuation of positive signals from activating receptors such as
T cell receptors and co-stimulatory receptors [36], PD-1 [37]
and Tim3 [38], (3) Induction of inhibitory genes: some inhib-
itory receptors upregulate expression of genes that inhibit T
cell function. (4) Alteration in T cell motility [39]: PD-1 de-
creases exhausted T cell motility. The PD-1 intracellular do-
main contains an immunotyrosine inhibitorymotif (ITIM) and
an immunotyrosine switch motif (ITSM) [40]. Current evi-
dence suggests an role for the ITSM in recruiting SHP1 and/
or SHP2 [37, 41] in the ability of PD-1 signals to attenuate
TCR signaling in vitro. The role of the ITIM in PD-1 function
remains poorly understood. Other evidence suggests a role for
PD-1 signals in modulating PI3K, AKT, and Ras pathways
[36, 42] and also link PD-1 to control of cell cycle progression
[43]. Notably, nearly all our information about how PD-1
controls T cell signaling is derived from in vitro studies of
acutely activated T cells. In vivo studies of the role of PD-1
during acute Tcell activation and expansion suggest a possible
role for PD-1 signals in arresting T cell migration [29], which
could have important implications for viral control. Finally,
there is some evidence that signals from PD-1 may, in fact,
induce expression of genes such as the transcription factor
BATF that could negatively regulate gene expression in some
settings [23]. Nevertheless, despite this elegant work, how
these observations relate to exhausted T cells exposed to
chronic stimulation through the TCR remains unclear.

Indeed, PD-1 expression is rapidly upregulated upon T cell
activation and expression of PD-1 may persist at moderate
levels in humans. For example, in healthy adult humans, many
functional effector memory cells express PD-1 [44, 45], indi-
cating that PD-1 expression alone is not a unique feature of
exhausted T cells. However, during chronic infections, PD-1
expression can be substantially higher than observed on func-
tional effector or memory CD8+ T cells [19, 46]. During
chronic infection sustained upregulation of PD-1 and the func-
tional inactivation of virus-specific Tcells during is dependent
upon continued epitope recognition [47], although examples
exist of residual PD-1 expression even after removal of
persisting antigen signaling [48, 49]. This latter observation
may relate to epigenetic changes in the control of expression
of the Pdcd1 gene encoding PD-1 [50].

In addition to PD-1, exhausted T cells express an extensive
suite of other cell surface inhibitory molecules. Exhausted T
cells co-express PD-1 together with LAG-3, CD244 (2B4),
CD160, TIM-3, CTLA-4, and many other inhibitory receptors
[25]. Typically, the higher the number of inhibitory receptors
co-expressed by exhausted Tcells the more severe the exhaus-
tion. Indeed, while individual expression of PD-1 or other
inhibitor receptors is not indicative of exhaustion, co-
expression of multiple inhibitory receptors is a key-defining
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feature of exhaustion. These co-expression patterns are highly
functionally relevant since simultaneous blockade of multiple
inhibitory receptor pathways results in synergistic reversal of
Tcell exhaustion. This concept was first demonstrated for PD-
1 and LAG-3 [25] in LCMVand then other infections [51] or
cancer [52, 53], but also for many other combinations of in-
hibitory receptors including PD-1 and CTLA-4 [54, 55] and
PD-1 and TIM-3 [56–59]. Again, these observations from
mice are translating to humans and making significant clinical
impact in the last decade. PD-1 and CTLA-4 blockade in
human melanoma patients demonstrated impressive tumor
control [60], and other combination inhibitory receptor clini-
cal trials in multiple settings are underway. It is noteworthy
that PD-1 pathway blockade is typically included as one arm
of these combination therapies consistent with the central role
of this inhibitory receptor in T cell exhaustion. Overall, these
data on inhibitory receptor co-regulation of T cell exhaustion
suggest that these pathways are non-redundant in how they
control T cell function and differentiation in chronic infection
and cancer. These molecules come from diverse structural
families, bind ligands with distinct expression patterns and
properties and possess impressively different intracellular sig-
naling domains. Thus, substantial potential may exist to tailor
or tune the type andmagnitude of re-invigoration of exhausted
T cell responses by appropriate co-blockade approaches.
Indeed, an extensive set of additional potential blockade tar-
gets exist and are currently being explored for combination
therapies to reverse T cell exhaustion [32].

Although inhibitory receptors draw considerable attention
in cell-to-cell interaction mechanism of exhaustion, it has be-
come clear that co-stimulatory receptors, which normally play
a positive role in acute infection, are also involved for T cell
exhaustion [4]. For example, desensitization of co-stimulatory
pathway signaling through the loss of adaptor molecules can
serve as a mechanism of T cell dysfunction during chronic
infection. TNFR-associated factor 1 (TRAF1), a signaling
adaptor of TNF superfamily, is downregulated in dysfunction-
al T cells in progressor of HIV and chronic phase of LCMV
Cl-13 infection [61]. Adoptive transfer of TRAF1 expressing,
but not TRAF1 deficiency, CD8+ Tcell enhanced viral control
of Cl-13 infection, indicating the essential role of co-
stimulatory pathway for T cell exhaustion. Co-stimulatory
pathways can also regulate T cell exhaustion in an indirect
fashion. CD27 signaling on CD4+ T cells enhances TNF and
IFN-γ secretion, which can lead to destruction of splenic ar-
chitecture and immunodeficiency [62]. CD40 agonistic anti-
body can rescue PD-1 mediated CD8+ T cell exhaustion per-
haps due to myeloid DC activation [63]. In pancreatic cancer,
such CD40 targeting may overcome a substantial T cell ex-
trinsic barrier leading to enhanced T cell responses and better
tumor control [64]. It has also been possible to exploit this
concept of agonizing a positive co-stimulatory pathway while
blocking an inhibitory pathway. For example, combined

blockade of and PD-1 and treatment with an agonistic anti-
body to 4-1BB dramatically improved exhausted CD8 T cell
function and viral control [65]. In addition, PD-1 pathway
blockade has been combined with other Bpositive^ regulators
of immune responses including therapeutic vaccination [66],
delivery of IL-2 [67], or regulatory T cells (Treg) depletion
[68]. Since combined therapy of blocking antibody to inhibi-
tory receptors and agonistic antibody to co-stimulatory recep-
tor showed synergistic effect, detailed mechanism of co-
stimulatory pathway in T cell exhaustion would be of great
interest.

Soluble pathways and environmental factors

A second class of signals that regulates T cell exhaustion is
from soluble molecules. Broadly, three distinct classes of such
soluble mediators can be discussed including immunosup-
pressive cytokines such as IL-10 and TGF-β, inflammatory
cytokines such as type I IFN and common-γ chain cytokines
(such as IL-2, IL-7, and IL-21).

IL-10 The IL-10/IL-10R pathway has received considerable
attention for its role in T cell exhaustion [17]. Blockade of
IL-10 restores T cell function and improves viral control dur-
ing chronic viral infections, indicating that IL-10 facilitates T
cell exhaustion [69, 70]. Studies of LCMV infection in mice
and HIV in humans demonstrated that during chronic infec-
tion, IL-10 can be secreted from many cell types including
dendritic cells, monocytes, and/or CD4+ T cells [71–73],
though the important or most relevant source of this cytokine
remains a matter of debate. Simultaneous blockade of IL-10
and PD-1 axis significantly enhances T cell response and viral
control when compared with either blockade alone, indicating
that the immunosuppressive mechanism of IL-10 in T cell
exhaustion is mechanistically distinct from PD-1 [74].
Interestingly, however, some evidence suggests a connection
between the PD-1 pathway and IL-10 production through in-
duction of IL-10 bymonocytes following PD-L1 ligation [72].
Despite the clear evidence that IL-10 contributes to exhaus-
tion, the molecular events downstream of IL-10 signaling
(presumably via STAT3) that shape T cell exhaustion remain
to be more precisely defined.

TGF-βAnother suppressive cytokine implicated T cell exhaus-
tion is transforming growth factor-β (TGF-β). Earlier studies
indicated that phosphorylation of Smad2 (indicator of TGF-β
signaling) in CD8+ T cells was increased during chronic in-
fection compared with acute infection, and inhibiting TGF-β
signaling in CD8+ T cells using dominant negative receptor
improved the function of exhausted cells [75]. However, stud-
ies using systemic administration of TGF-β inhibitor/blocking
antibody in mice found little benefit of these treatments [76,
77]. While it is difficult to directly compare the genetic
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approach to antibody- and inhibitor-based strategies, these
observations warrant perhaps further evaluation of this immu-
noregulatory pathway in T cell exhaustion.

IFN-α/β Type I interferons (IFN-α/β) are critical inflammatory
cytokines that have essential antiviral effects in the early stages
of infection. In most cases, in the absence of IFN-α/β signal-
ing, acute viral control is dramatically compromised.
Moreover, IFN-α/β signals can provide a critical Bsignal 3^
for proper activation and differentiation of CD8+ T cells fol-
lowing priming [78]. In addition to these critical innate antiviral
effects, however, recent studies demonstrated a surprising and
crucial role for chronic type I interferon signaling in promoting
immune suppression and lymphoid tissue destruction.
Surprisingly, blockade of this pathway reversed and/or
prevented T cell exhaustion [79, 80]. This effect appeared to
operate via CD4+ T cells, though the precise mechanism re-
mains to be defined. For example, IFN-α/β can induce several
immunoregulatory pathways including IL-10, PD-L1, and
indoleamine dioxygenase (IDO) (ref). It is also interesting that
the signal 3 cytokines IL-12 and type I IFN differentially pro-
gram CD8+ T cells for PD-1 re-expression levels and tumor
control in a cancer re-challenge model [81], suggesting an im-
portant role for inflammatory signals in perhaps modulating the
availability of other immunoregulatory pathways that influence
T cell exhaustion. Indeed, exposure to chronic inflammation in
the absence of TCR signaling can dramatically skew the pattern
of memory CD8+ T cell differentiation, although overt exhaus-
tion does not occur without persisting TCR signaling [82].

In addition to important roles for inflammatory pathways
mentioned above, anatomical factors such as cellular and tissue
tropism, lymphoid architecture integrity could also influence the
severity of exhaustion. Given that exhausted T cells express
altered pattern of trafficking and adhesion molecules [20] and
expression levels of inhibitory receptors are different among
organs [83], spatial and temporal regulation of T cell exhaustion
should be examined in future study. Destruction of tissue archi-
tecture and fibrosis of secondary lymphoid organs have been
reported in both mice and human chronic infection [84–86].
As an orchestrated immune cell trafficking and fine cell-to-cell
interaction is critical for optimal immune response, a major goal
is to determine how these anatomical features influence T cell
exhaustion.

Regulatory subsets

Immune system has multiple subsets, and interactions among
these subsets are essential to maximize immune responses
against infection and cancer. For optimal responses, CD8+ T
cells require optimal antigen presentation from professional
APC, help from CD4+ T cells, and intact tissue trafficking
ability to increase immune cell interaction. These events must
be orchestrated in a setting that prevents excessive immune-

mediated tissue damage and also appropriately shuts off T cell
responses when necessary. Thus, suppressive and/or regulato-
ry cell populations such as Treg and altered APC may contrib-
ute to CD8+ T cell exhaustion. DCs can be direct targets of
viruses, and dysfunction of DCs for cytokine production and
cross-presentation has been reported in some chronic infec-
tions [87]. In addition, persistent inflammation associatedwith
chronic infections and cancer as well as viral targeting of
hematopoietic progenitors can alter DC maturation and differ-
entiation at multiple levels, generating suppressive subsets
such as immunoregulatory APC and myeloid-derived sup-
pressor cells (MDSCs), which can inhibitor T cell function
and/or promote exhaustion [88–90]. Both immunoregulatory
APC and MDSCs have been described in cancer and are
thought to negatively regulate T cell responses. Analogous
populations have recently been shown to promote T cell ex-
haustion in murine LCMV Cl-13 infection [91, 92].

Loss of CD4+ T cell activity in many settings can underlie
or contribute to defective CD8+ T cell responses. In HIV in-
fection, CD4+ T cells are direct targets of infection and loss of
CD4+ T cells is associated with increased exhaustion of CD8+

Tcells. While CD4+ Tcells can clearly become exhausted, the
impact of changes in the CD4+ response for CD8+ T cell
exhaustion may be highly relevant. In the absence of IL-21
signaling, for example, CD8+ Tcell exhaustion is substantially
worse during chronic LCMV infection [93–95] with
supporting observations in HIV infection [96, 97]. Since
CD4+ T cells are the likely source of IL-21 signals, these
observations suggest a key role for CD4 help to CD8+ T cells
to avoid severe exhaustion via IL-21. Furthermore, there is
evidence that activated NK cells have an immunoregulatory
role during chronic viral infection perhaps by directly elimi-
nating CD4+ T cells [98–100]. Foxp3+ CD4+ Treg are well
known to influence immune responses during many infection
and cancer [101, 102]. Although it is relatively clear that Treg
have suppressive roles for T cell response in acute infection
and acute phase of chronic infection (which can enhance Tcell
exhaustion as a result of high pathogen burden) [68], and
frequency of Treg is increased in some human chronic HIV
and HCV infection, it is still unclear whether Treg directly
facilitate T cell exhaustion. As a source of IL-10, TGF-β or
perhaps other suppressive cytokines (e.g., IL-35), one can
envision such a scenario. However, precisely how Treg affect
developing T cell exhaustion remains to be more completely
defined. Nevertheless, Treg are an important therapeutic target
since their deletion or modulation can often unleash effective
antitumor or antipathogen responses [68].

Transcriptional changes in T cell exhaustion

How Tcell exhaustion is transcriptionally programed? Recent
studies have applied genomics approached to investigating the
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transcriptional circuitry that underlies development of T cell
exhaustion. Exhausted CD4+ and CD8+ T cells have a tran-
scriptional profile profoundly different from memory CD4+

and CD8+ T cells, respectively, including major changes in
the expression of inhibitory and co-stimulatory receptors, tran-
scription factors, signaling molecules, cytokine and chemo-
kine receptors, and genes involved in metabolism [20, 21].
In addition, a major feature of CD8 T cell exhaustion is the
absence of key CD8+ T cell memory-associated modules of
gene expression including specific coordinated gene sets as-
sociated quiescence [3]. Thus, in addition to phenotyping,
fate-mapping, and functional analysis, genomic studies also
support the concept that exhausted T cells represent a unique
state of T cell differentiation.

These genomic studies raise questions about how key
genes and molecules identified regulate the development
and differentiation of exhausted T cells. Although consider-
able progress has been made to define centrally important
transcription factors, a lineage-specific transcription factor
for exhausted T cells has not yet been identified. However,
the transcription factors Tbet, Eomes, Blimp1, NFAT,
BATF, IRF4, von Hippel-Lindau disease tumor suppressor
(VHL), FOXO1, FOXP1, and TCF1 have been shown to be
involved in T cell exhaustion [2, 5, 6, 23, 26, 103–106].
Interestingly, despite the absence of an obvious unique tran-
scription factor associated with exhaustion, a key concept
that has emerged is that several of these transcription factors
function in an exhaustion-specific manner in exhausted
CD8 T cells [5, 6, 23, 107]. In other words, while the tran-
scription factors can play roles in other T cell populations,
the expression pattern, genes controlled, and manner in
which key transcription factors operate in exhausted T cells
is, in some cases, highly divergent from the function of
these transcription factors elsewhere. For example, while
T-bet is expressed by, and plays a functional role in the
formation of terminally differentiated CD8 T cell popula-
tions in acute infection [1, 108], T-bet controls the popula-
tion of non-terminal progenitor cells with the exhausted T
cell pool [6]. Similarly, Eomes is involved in central mem-
ory T cells following acute infection including playing a
role in being essential for central memory CD8 T cell qui-
escence and homeostatic turnover [109, 110], but during
chronic infection, Eomes controls the formation of termi-
nally differentiated exhausted T cells highly enriched in pe-
ripheral tissues [6]. This distinct context-specific re-use of
transcription factors was initially revealed using transcrip-
tional network analysis that revealed differential transcrip-
tional connections for specific transcription factors with
genes they control in memory versus exhaustion [3].
Together, these studies suggest that differentiation to T cell
exhaustion is governed by multiple transcription factors and
context-specific combination of these transcription factors
might play a critical role. In addition to transcription factors,

it has recently been shown that microRNA (e.g., miR-150,
miR-155) play as a key regulator of development or main-
tenance of exhausted T cells [111].

Another important mechanism that regulates transcription-
al program is epigenetic modification. As the epigonome can
influence a cell differentiation through modification of tran-
scriptional program, understanding of global epigenetic land-
scape of exhausted T cell appears to be one of the next funda-
mental steps in the field [2]. However, only limited informa-
tion has been established in terms of epigenetic regulation of T
cell exhaustion [8, 9, 112]. An earlier study revealed that DNA
methylation status of Pdcd1 (encoding PD-1) locus in the
antigen-specific T cells is different among acute (effector
and memory) and chronic (exhaustion) infection. During
acute infection, Pdcd1 promotor regions were largely
demethylated in the effector phase and then remethylated as
T cells differentiate into memory cells. On the other hand, the
Pdcd1 locus were demethylated in exhausted T cells, and this
demethylation was not changed even when antigen removed
and PD1 expression on exhausted T cells decreased [50].
Similarly, reinvigorated CD8+ T cells by PD-L1 blockade
have a distinct epigenetic profile when compared with mem-
ory T cells that was minimally remodeled after PD-L1 block-
ade [9]. Thus, these epigenetic analysis also supports the idea
that exhausted Tcells are distinct lineage. Intervention to over-
come this epigenetic fate inflexibility will be the next main
target [8]. Future studies should be directed to context-
dependent molecular interaction among multiple transcription
factors and interaction of transcription factors and epigenetic
DNA modifications, which enable context-dependent regula-
tion of T cell exhaustion.

Conclusion

Although recent studies have provided significant advance in
our understanding of Tcell exhaustion, our understanding of T
cell exhaustion and how to most effectively reverse this state
remains incomplete. In addition, most of the research of T cell
exhaustion has been utilized mouse LCMVand tumor model,
and our understanding of T cell exhaustion in human chronic
infection and cancer is still limited. Future mechanistic and
clinical studies are needed to develop the next generation of
immune based interventions for chronic infection and cancer.
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