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Abstract
Regulatory (Treg) cells are key regulators of inflammation and important for immune tolerance and homeostasis. A major
progress has been made in the identification and classification of Treg cells. Due to technological advances, we have gained
deep insights in the epigenetic regulation of Treg cells. The use of fate reporter mice allowed addressing the functional conse-
quences of loss of Foxp3 expression. Depending on the environment Treg cells gain effector functions upon loss of Foxp3
expression. However, the traditional view that Treg cells become necessarily pathogenic by gaining effector functions was
challenged by recent findings and supports the notion of Treg cell lineage plasticity. Treg cell stability is also a major issue for
Treg cell therapies. Clinical trials are designed to use polyclonal Treg cells as therapeutic tools. Here, we summarize the role of
Treg cells in selected autoimmune diseases and recent advances in the field of Treg targeted therapies.
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Development of regulatory T cells—a look
back

More than 50 years ago, it was shown that thymectomy in
mice results in a wasting disease and autoimmune phenomena
[1, 2] suggesting the presence of immune regulatory cells. In
1995, Sakaguchi described a subset of CD4+ T lymphocytes
that express the IL-2Rα (CD25) and suppress autoimmune
disease in thymectomized mice and other models of autoim-
munity [3]. Isolated CD25+ cells were anergic but suppressed
the proliferation of naïve T cells in vitro. Since the 1980s,
numerous laboratories confirmed the existence of CD4+ Tcell
that expresses the IL-2r and is capable of suppressing

autoimmunity upon transfer of CD4+CD25+ cells. Mice lack-
ing the IL2Rα or IL2Rβ chain suffer from systemic autoim-
munity [4, 5]. The key lineage-defining transcription factor
(TF) Forkhead Box P3 (Foxp3), together with other transcrip-
tional regulators, was found to control the expression of gene
programs, which define and maintain Treg cell identity and
function [6, 7]. The importance of Foxp3 is also illustrated by
Foxp3 gene muta t ions . Immune dys regu la t ion ,
polyendocrinopathy, enteropathy, and X-linked (IPEX) syn-
drome in humans and scurfy mutant mice, both bearing
Foxp3 mutations, develop severe autoimmunity [8, 9] such
as inflammatory bowel disease, and allergy accompanying
hyperproduction of IgE [9–11]. Depletion of Treg cells in
adults also leads to similar autoimmune pathology, demon-
strating that Treg cells are needed for lifelong maintenance,
of immune self-tolerance and homeostasis [12]. Ectopic ex-
pression of Foxp3 confers suppressive capacity on conven-
tional T cells [13]. In addition to Foxp3 expression itself, an
increasing amount of publications highlight the role of the
epigenome for the development and identification of the
Treg cell lineage, such as DNA methylation, nucleosome po-
sitioning, or histone modifications. Treg cell development re-
quires the establishment of Treg-specific DNA hypomethyla-
tion pattern [14]. DNA hypomethylation is linked to transcrip-
tionally permissive states, which enable transcription factors
to bind to their target gene loci [15]. Foxp3 has also been
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shown to function as a transcriptional repressor [16] and con-
tributes to Treg function by exploiting a preexisting enhancer
network which is established during Treg cell development
[17].

Regulation of Foxp3

Three main post-translational modifications have been de-
scribed for the Foxp3 protein, namely acetylation, phosphor-
ylation, and ubiquitination, which affects the DNA-binding
capacity of Foxp3 and thus Treg function. The binding of
Foxp3 expression to its targets and stable Foxp3 expression
is promoted by acetylation of lysine residues by lysine acetyl-
transferases, such as TIP60 and p300 [18]. Phosphorylation is
performed at serine and threonine residues by several kinases,
including PIM-1, PIM-2, and CDK2 [19–21].

Transcriptional regulation of Treg cell
development

Foxp3 mainly acts as a transcriptional repressor and thereby
contributes to the characteristics of Treg cells. Foxp3 target
genes are predominantly activated by TCR stimulation such as
Zap70, Ptpn22, and Itk. Foxp3 also represses IL-2 production
and also Satb1 to inhibit the expression of pro-inflammatory
cytokines [22–25]. Foxp3 is also involved in the upregulation
of key genes, such as IL2Rα, CTLA-4, and TNFRSF18 [25,
26]. Similar to other TFs Foxp3 interacts with a number of
other cofactors, which are required for Treg phenotype and
function in physiological and pathological conditions [7,
27–30]. The requirement to interact with cofactors indicates
that they also need to be expressed in Treg cells for Foxp3-
dependent transcription but are also direct targets of Foxp3
itself which indicates that Foxp3 and some cofactors also pos-
itively regulate each other [31–33]. Five TF have been shown
to cooperate with Foxp3 to generate most of the Treg-type
gene expression, namely Eos, Gata1, IRF4, Satb1, and Lef1
[6]. A more global analysis suggests that Foxp3 binding part-
ner build a network of multi-protein complexes that bind to
pre-existing DNA enhancers and regulate gene transcription
[34, 35]. Foxp3 also interacts with genes that mediate epige-
netic modifications, such as TIP60, sirtuins, and HDAC7 and
thereby modulate TF binding and gene transcription [36].

Epigenetic regulation of Treg cells

Stable expression of Foxp3 and its cofactors is linked to cer-
tain epigenetic modifications, which include, for example,
DNA methylation and histone modifications, which are im-
portant for stable Foxp3 expression: While methylation of

CpG residues interferes with TF binding, demethylation in-
creases the accessibility. Treg specific DNA demethylated re-
gions (TSDRs) are present in Foxp3 gene but also in other
Treg signature genes, such as Ikzf2, Ikzf4, Tnfrsf18, and
CTLA4 and correlate with Treg cell stability [37, 38]. The
FOXP3 gene hast three conserved noncoding enhancer re-
gions, CNS1–3 [39]. CNS2 has binding sites for Runx1-
CBF-β TF complexes that are important for Foxp3 stability
and prevention of autoimmunity. In line, CNS2 deficient mice
develop signs of autoimmunity. CNS2 contains a conserved
CpG island (TSDR), which is hypomethylated in Treg cells.
The methylation pattern allows distinguishing Treg cells from
conventional T cells [40–43].

Histone modification is another important regulator of gene
transcription and cell identity [44]. TF binding depends on the
chromatin formation. Determination of histone modifications,
such as monomethylation, dimethylation, and trimethylation
of histone H3 at Lys4 (H3K4me1, H3K4me2, and H3K4me3,
respectively), acetylation, and trimethylation of histone H3 at
Lys27 (H3K27ac, H3K27me3), and acetylation of histone
H3 at Lys9 (H3K9ac), allows to define permissive and repres-
sive chromatin states. Studying these histone modifications
further allows the definition of the status of gene transcription
and enhancer activity [44, 45]. Treg cells have a unique pat-
tern of histone modifications. While permissive histone mod-
ifications are found in upregulated genes in Treg cells, repres-
sive modifications are associated with downregulated genes,
partially controlled in a Foxp3 dependent manner. Foxp3 tar-
get genes are characterized by repressive marks [23]. In con-
trast, promoters of Treg signature genes are marked with per-
missive histone modifications and correlate with gene expres-
sion, such as DNA demethylation at TSDRs, suggesting that
Treg cell-specific DNA demethylation and histone modifica-
tions have similar roles in the maintenance of Treg cells [44].
This epigenetic landscape needs to be established before or
with the expression of lineage-specifying TFs [46]. In addi-
tion, cell type-specific super-enhancers have been identified,
that define cell identity and lineage specification [47–49].
Recent data show that super-enhancers in Treg cells are grad-
ually established and activated in early stages of Treg cell
development before the expression of Treg specific DNA de-
methylation. Treg specific super-enhancers were associated
with Treg signature genes, such as Foxp3, CTLA4, and
IL2Rα [50].

Types of Treg cells

Different types of Treg cells have been described, which can
be classified according to their developmental origin: thymus-
derived or formally called naturally occurring Treg cells de-
velop in the thymus as a separate lineage at the stage of CD4+

single-positive thymocytes and are thought to show
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enrichment for T cell antigen receptors (TCRs) with high af-
finity for self-peptides [51]. Peripherally derived Treg (pTreg)
cells are generated in the periphery upon encounter to antigens
in the presence of additional factors such as IL-2 and TGF-
beta [36] as compared to in vitro generated Treg (iTreg) cells
[52]. One of the most exciting advances in the field of Treg
cells was the understanding of tissue-resident Treg cells,
which will contribute to the resolution of local inflammation.
The most recent findings are reviewed elsewhere [36, 53].

Function of Treg cells

Awide range of Treg cell-mediated suppressive mechanisms
have been discussed as mediators for Treg cell function, in-
cluding CTLA-4, IL-10, TGF-β, ITGb8, IL-35, granzyme,
perforin, CD39, CD73, and TIGIT [54], and the overall view
in the field is that there is no one universal mechanism. Treg
cell can mediate their suppressive function depending on the
particular situation [55]. CTLA-4 has been described as a key
molecule for Treg function. Loss of CTLA-4 in Treg cells
leads to the development of fatal autoimmunity in mice
[56–58]. Similarly, haploinsufficiency of CTLA-4 leads to
severe autoimmune syndrome, similar to the IPEX syndrome
[59, 60]. A variety of possible mechanisms have been shown,
but the exact role of CTLA-4 in Treg function remains not
fully understood. Treg cells may, for example, downregulate
CD80 and CD86 on dendritic cells in a CTLA-4 dependent
manner to inhibit effector cell activation [61]. CTLA-4 liga-
tion may also lead to expression of indoleamine 2,3-
dioxygenase [62]. TGF-β, IL-10, and IL-35 are involved in
the direct suppression of effector signaling and are the main
regulatory cytokines released by Treg cells [55]. Treg cells
may also exert their suppressive function through granzymes
and are thereby able to effector functions through apoptosis
[63].

Another key feature of Treg cells is their inability to pro-
duce IL-2, which is essential for proliferation and differentia-
tion of effector T cells. Binding to the IL-2 receptor of Treg
cells leads to IL-2 deprivation from other T cells and therefore
represents one mechanism of immune-mediated suppression.
Overexpression of CTLA-4 and repression of IL-2 in effector
T cells resembles Treg-mediated suppressive features [64].

Plasticity vs stability of Treg cells

Loss of Foxp3 expression in tTreg cells has been observed
under various conditions in vitro as well as in different settings
in vivo and has been shown to contribute to autoimmunity and
inflammation [65–73]. Treg cells that lost Foxp3 expression
during the development of experimental autoimmune enceph-
alitis (EAE) and diabetes gained effector functions and could

induce EAE and could transfer diabetes similar to effector T
cells [68, 74]. Under arthritic conditions, exFoxp3 cells
transdifferentiate into Th17 cells with an osteoclastogenic po-
tential [75]. However, in order to regulate immune responses,
Treg cells also need to adapt to their local environment which
requires a certain degree of plasticity. Treg cells also need to
upregulate certain TF to control inflammatory responses,
while Foxp3 expression is maintained. Expression of the TF
T-bet is necessary to control Th1-mediated inflammation [76].
Development of Tbet+Treg cells is dependent on the TF
STAT1 and occurred in response to IFN-γ [77]. Loss of
Tbet+Treg cells results in severe Th1 autoimmunity [78]. In
addition to T-bet expression, Th1-like Treg cells upregulate
the chemokine receptor CCR5 and CXCR3. Increased fre-
quencies of IFN-γ producing Treg cells have also been ob-
served in autoimmune diseases such as type 1 diabetes [79],
multiple sclerosis [80], and autoimmune hepatitis [81]. STAT3
expression has been shown to be important for the regulation
for Th17-mediated diseases [82]. RORC expressing Th17-like
Treg cells have also been described in healthy subjects, which
secrete IL-17, express CCR4, and CCR6 and maintain sup-
pressive function [83, 84]. The role in human autoimmune
diseases remains controversial, since beneficial as well as
pathogenic aspects have been described depending on the dis-
ease setting [75, 85–89]. Expression of the TF IRF4 or
GATA3 has been shown to be a key element in Treg-
mediated suppression of Th2-mediated inflammation [90,
91]. Th2 like Treg cells, upregulate IRF-4, and GATA3 and
secrete Th2-associated cytokines such as IL-4 and IL-13 and
have been observed in mice susceptible to allergy and in pa-
tients with food allergy and systemic sclerosis [92, 93]. T
helper cell-like Treg cells have a demethylated TSDR in the
Foxp3 locus, which suggests a reversible phenotype [79].

Identifications of Treg cells in humans

Human Treg cells were identified in the thymus and the pe-
ripheral blood as CD4+ T cells with the highest expression of
CD25. Since CD25 and Foxp3 are also expressed by activated
CD4+ T cells, much research has been focused on the identi-
fication of further markers to precisely distinguish Treg cells
from recently activated T cells. Foxp3 as an intracellular pro-
tein cannot be used for Treg isolation and functional charac-
terization. However, CD127, the IL-7 receptor a-chain, in
combination with CD25 can be used to identify and isolate
Treg cells [94]. Foxp3 expression and suppressive capacity
are enriched in T cells with low expression levels of CD127.
However, also CD127 has its limitation as a marker for Treg
cells. It is also downregulated in activated T cells and a high
percentage of CD127+ cells express Foxp3 and reciprocally
cells with low expression of CD127 did not express Foxp3
[95]. A variety of additional markers were described for the
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identification of Treg cells, including GITR, CTLA-4, and
CD49d [56, 96, 97]. Depletion of CD49d removes effector T
cells fromCD25+ Treg cells and allows purification of Foxp3+

cells in combination with CD127. Miyara et al. divided the
Treg cell compartment into three subpopulations according to
the expression of CD45RA, namely suppressive
CD45RA+Foxp3low (resting Treg cells), CD45RA−Foxp3high

(activated Treg cells), and non-suppressive cytokine secreting
CD45RA−Foxp3low non-Treg cells [98].

Treg cells in human autoimmune diseases

Studies from monogenic conditions reveal the importance of
Treg cells for human immune homeostasis. Patients with
CD25 deficiency suffer from autoimmune phenomena and
immunodeficiency, similar to the already mentioned IPEX
syndrome. Although CD25 deficiency does not affect Treg
numbers, impaired suppressive activity has been observed
due to decreased IL-10 production [99]. Besides CD25, mu-
tations in other crucial genes have been reported, which are
associated with autoimmune phenotypes, such as STAT5B,
CTLA4, or LRBA [60, 100–102]. Human studies on Treg cells
clearly suffer from the limitation of a definition and the clear
identification of Treg cells. In the last decade, an increasing
amount of papers have been published, which address num-
bers and functions of Treg cells in a variety of autoimmune
diseases. Due to the evolving numbers of different Treg
markers and the lack of a clear definition of a human Treg
cells, partly conflicting results in numbers and or function of
Treg cells, isolated from the peripheral blood (ref. Miyara)
have been reported in a variety of autoimmune diseases, in-
cluding type 1 diabetes, multiple sclerosis, systemic lupus
erythematosus (SLE), myasthenia gravis, rheumatoid arthritis
(RA), and others. We will only summarize the more recent
findings of selected systemic and organ-specific autoimmune
diseases. An extensive summary of the publications of sys-
temic autoimmune diseases can be found in Table 1.

Systemic lupus erythematosus

SLE represents a systemic autoimmune disease, which can affect
multiple organs. In patients with SLE quantitative as well as
functional deficiencies of Treg cells have been described. A
more recent publication reports low levels of STAT5 phosphor-
ylation upon IL-2 which suggests an inherent Treg cell defect
[195].Major reasons for the discrepancy of these findings are not
only the lack of a reliable Treg specific marker but also the
heterogeneity of the disease, the small size of the studied cohorts
and different methods used for the isolation of Treg cells. In
addition, a subset of Foxp3+ cells that lack the expression of
CD25, have been described in SLE patients, which was later
on also described in patients with RA [196] and MS [197].
While our own group observed phenotypic and functional char-
acteristics of Treg cells within this newly described cell popula-
tion [103], others report that CD25−Foxp3+ Treg cells in SLE
patients are activated T cells, rather than a distinct Treg cell
population [198]. In addition, we could show that
CD4+CD25−Foxp3+ T cells are elevated in SLE patients with
renal involvement. CD4+CD25−Foxp3+ Tcells were also detect-
ed in urine sediment samples of patients with active glomerulo-
nephritis and correlated with the extent of proteinuria [104]. A
recent study confirmed the regulatory features of this cell popu-
lation, including demethylation of the Foxp3 TSDR and consti-
tutive expression of the TF HELIOS in the majority of the cells
and an inability to produce IL-2 [105]. Interestingly treatment of
SLE patients with low dose IL-2 led to a twofold to threefold
increase in the expression levels of CD25 in Treg cells and a
dramatic expansion of CD25high Treg cells among
Foxp3+CD127low Treg cells [199].

Rheumatoid arthritis

RA is a systemic autoimmune disease which leads to chronic
inflammation and tissue destruction in the joint. Conflicting
results have been reported for numbers of Treg cells in the
peripheral blood and the synovial fluid [161, 165–171,

Table 1 Treg numbers and
function in patients with selected
autoimmune diseases

Numbers of Treg cells

↑ ↓ __

SLE [103–115] [116–141] [120, 142–144]

SS [113, 145–150] [116, 151–158] [159, 160]

RA [113, 161–164] [141, 165–175] [176–181]

AS [180, 182, 183] [164, 184] [165, 185–188]

Function of Treg cells

↑ ↓ __

SLE [103, 123, 128, 140, 189–191] [114, 121, 143]

SS [145, 146, 152, 153, 157] [154, 159]

RA [179] [192–194] [161, 163]

AS [182, 185, 187]
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176–178, 192–194, 200, 201]. In addition to quantitative de-
fects, functional deficiencies have been reported in patients
with RA [192–194]. Treatment with anti-TNF and anti-IL6
restored the balance of Treg and Th17 cells in RA patients
and can affect Treg function [170, 194, 201].

Ankylosis spondylitis

AS represents an inflammatory autoimmune disease, associ-
ated with HLA-B27. Similar to other autoimmune diseases,
data on Treg numbers and function in AS patients remain
controversial [184–186, 202]. Similar to RA, recent data indi-
cate that anti-TNF treatment might affect the Th17/Treg ratio
[203, 204].

Systemic sclerosis (SSc)

SSc is a connective tissue disease, which is characterized by
immune abnormalities, microvascular injury, and fibrosis of
the skin and internal organs [205]. Several reports describe
defects in the number of Treg cells, although conflicting re-
sults exist [116, 145–149, 151–160, 206, 207]. Similarly, im-
paired as well as normal Treg function has been reported in
SSc patients [145, 146, 152–154, 159]. Mathian et al. report
that activated and resting Treg cells are not functionally im-
paired in SSc patients. Numbers of activated Treg cells are
decreased in early and resting Treg cells in late stages of the
disease [154].

Treg-based therapies

The contribution of Tregs in various human autoimmune dis-
eases has opened up a new therapeutic avenue, which includ-
ed Treg-based cellular therapies or therapies which aim to
restore the balance of Treg and Teff cells such as IL-2 thera-
pies. The concept to use Treg cells as a cell-based therapeutic
approach was first demonstrated in murine models, such as
EAE or CIA, in which Treg cells has been shown to be in-
volved in the pathogenesis. Transfer of Treg cells could ame-
liorate the disease [208, 209]. The strategy of Treg cell transfer
cannot simply be translated into humans due to the low num-
ber of Treg cells. Thus, manufacturing protocols were devel-
oped to expand Treg cells in vitro to produce large numbers of
polyclonal Treg cells. Phenotypic and functional characteriza-
tion showed that expanded Treg cells are highly suppressive
with high expression levels of Treg-associated markers such
as CTLA4, CD25, and Foxp3 and demethylation of the TSDR
[210, 211]. Interestingly, Treg cells from RA patients, which
were expanded in the presence of rapamycin, maintained their
suppressive capacity and Foxp3 demethylation and were more
effective in suppressing conventional Tcell proliferation com-
pared with their ex vivo counterparts [212]. Several phase I
and phase II clinical trials were designed which use ex vivo
expanded Treg cells as an approach for the treatment of auto-
immune diseases, such as autoimmune hepatitis, GvHD, type
I diabetes, SLE, kidney, and liver transplantation [213–216].

Beside the development of Treg cell-based therapies, a lot
of existing therapies target Treg cells as well as Teff cells, such
as rapamycin, anti-CD3, CTLA-4Ig, or anti-CD25 [217–219].

Fig. 1 Schematic presentation of
the role of Treg cells in
autoimmune diseases
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Rapamycin, an inhibitor of PI3Kakt-mTORC1 signaling, pro-
motes the expansion and survival of Treg cells, while sup-
pressing the proliferation of Th1 and Th17 cells [220–222].
Treatment with CD3 antibody increased Treg number and
stabilized Treg function in type 1 diabetic mouse model
[223]. Anti-CD3 treatment preserved residual beta-cell func-
tion in patients with type 1 diabetes [224, 225].

One of the most exiting concepts, which evolved during the
last couple of years is based on the expression of the IL-2
receptor in Treg cells, which allows a preferential expansion
of Treg cells with low amounts of IL-2. Since IL-2 is also a
known growth factor for effector cells, the use of IL-2 in
autoimmune diseases was thought to be contraindicated.
However, murine studies, in which IL-2 signaling was im-
paired but not abrogated, showed that IL-2R-signaling pro-
moted only the development of Treg cells but not effector T
cells, which lead to the investigation of low dose IL-2 as a
treatment strategy for autoimmune diseases [226–229].
Treatment with IL-2 was shown to block the differentiation
of naïve CD4+ T cells into effector T cells [230, 231]. Indeed,
promising data were already reported for a variety of diseases
such as type I diabetes, GvHD, alopecia areata, hepatitis C
virus-induced vasculitis, and SLE [199, 226, 232–235]. In
patients with alopecia areata, low dose IL-2 treatment expand-
ed Treg cells in the blood and the hair follicles and led to an
impressive hair regrowth [234]. In SLE patients, a dysbalance
between Treg and effector T cells have been reported, and a
recent paper described Treg defects as hallmarks of IL-2 defi-
ciencies. Lack of IL-2 production by CD4+ T cells thereby
accounts for the loss of CD25 expression which could be
reversed by IL-2 [199]. Treatment with low dose IL-2 was
anticipated as a potentially effective treatment. Indeed, num-
bers of circulating Treg cells were significantly increased
[199] along with a reduction in disease activity [235]. A more
recent study by Klatzmann et al. investigated the potential of
low dose IL-2 therapy as a new therapeutic approach in 11
different autoimmune diseases, including RA, AS, SLE, pso-
riasis, Behcet’s disease, granulomatosis with polyangiitis
(GPA), Takayasu’s disease, Crohn’s disease (CD), ulcerative
colitis, autoimmune hepatitis, and sclerosing cholangitis. In
general, low dose IL-2 was well tolerated and led to a Treg
specific expansion and activation. These data certainly high-
light the potential use of this treatment strategy for various
additional autoimmune and inflammatory diseases [236].

Conclusion

Technological progress in the recent years allowed to define
and characterize murine Treg cells and helped to understand
the balance between Treg plasticity, which is necessary for
proper Treg function but also Treg instability, which can drive
autoimmunity (Fig. 1). On the other hand, data from the

human system, especially in patients with autoimmune or in-
flammatory conditions are still conflicting and misleading due
to a lack of a reliable Treg cell-specific marker. The progress
that has beenmade in the murine system has to be translated in
the human system. It will be important to determine the phys-
iological relevance and the mechanism that drive plasticity
and stability of Treg cells in patients with autoimmune dis-
eases and the contribution of the epigenetic signature to dis-
ease pathology. This is ultimately necessary for the new and
exciting treatment approaches, which target Treg cells as a
direct Treg-based therapy, using polyclonal Treg cells or as a
Treg cell-targeted therapy. Clear identification of patients with
functional or numerical Treg deficiencies will be necessary for
future successful treatment and monitoring of patients with
Treg targeted therapies. A more detailed understanding of
the exact role of Treg cells under various inflammatory con-
ditions will help to develop a personalized treatment approach
within the next years.
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