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The pathogenicity of Th17 cells in autoimmune diseases
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Abstract
IL-17-producing T helper (Th17) cells have been implicated in the pathogenesis of many inflammatory and autoimmune
diseases. Targeting the effector cytokines IL-17 and GM-CSF secreted by autoimmune Th17 cells has been shown to be effective
for the treatment of the diseases. Understanding a molecular basis of Th17 differentiation and effector functions is therefore
critical for the regulation of the pathogenicity of tissue Th17 cells in chronic inflammation. Here, we discuss the roles of
proinflammatory cytokines and environmental stimuli in the control of Th17 differentiation and chronic tissue inflammation
by pathogenic Th17 cells in humans and in mouse models of autoimmune diseases. We also highlight recent advances in the
regulation of pathogenic Th17 cells by gut microbiota and immunometabolism in autoimmune arthritis.
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Introduction

CD4+ T helper (Th) cells play pivotal roles in the tissue de-
struction of many inflammatory and autoimmune diseases
such as multiple sclerosis (MS), rheumatoid arthritis (RA),
psoriasis, and inflammatory bowel diseases [1]. Among Th
subsets, interleukin-17 (IL-17)-producing Th (Th17) cells are
classified as an inflammatory Th subset, resulting in chronic
tissue inflammation and subsequent organ failure [2, 3].
Indeed, some biologic agents targeting the effector cytokines
of Th17 cells have been approved for the treatment of certain
immune-mediated diseases and we will see the expansion of
diseases, which could be treatable by them. Therefore, under-
standing the differentiation and pathogenic functions of Th17
cells is crucial for the development of a novel immunotherapy

for Th17-associated inflammatory diseases. Here, we focus on
how Th17 cells acquire the terminal effector function, in par-
ticular, the pathogenicity in disease models and how environ-
mental cuesmodulate Th17 cells that orchestrate chronic tissue
inflammation in SKG mice, an animal model of RA. Finally,
we discuss the role of gut microbiota and immunometabolism
in modulating Th17 cells of patients with RA.

Induction of Th17 cells

The differentiation and pathogenic functions of Th17 cells are
regulated by numerous internal and external signals (Fig. 1).
The differentiation of Th17 cells from naïve Th cells is initi-
ated by stimulation with professional antigen-presenting cells
(APCs) and particular cytokines including IL-6, IL-21, and
TGFβ [4–7]. Following the upregulation of the lineage-
defining transcription factors RORγt and RORα mediated
by IL-6-JAK-STAT3 axis [8–12], Th17 cells produce the sig-
nature cytokines IL-17A, IL-17F, and IL-22, which are essen-
tial for mucosal host defense against extracellular bacteria and
fungi by inducing anti-microbial peptides from epithelial cells
and also recruit neutrophils by inducing chemokines under
inflammation [13]. Hence, the deficiency of IL-6, IL-21,
TGFβ, or RORγt impairs the differentiation of Th17 cells
and subsequent Th17-mediated immunity [6, 8, 14].
However, the effect of TGFβ signaling in vitro is complicated
with respects to Th17 effector function and could inhibit the
function of autoimmune Th17 cells [15].
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Among negative regulators of Th17 induction such as Th1-
and Th2-inducing cytokines, IL-2 is a key repressor of Th17
differentiation and IL-2-mediated STAT5 activation specifi-
cally inhibits production of IL-17 [16]. By contrast, phospha-
tase and tensin homolog (PTEN) and Aiolos (encoded by
Ikzf3), which repress IL-2 expression in T cells, have been
identified to promote the development of Th17 cells [17, 18].

Natural Th17 cells are normally present in the gut in a
microbiota-dependent manner, maintain tissue homeostasis,
and fight against pathogenic microbes [19]. This defense
mechanism is mainly mediated by IL-17 and IL-22, which
increase anti-microbial peptides from gut epithelial cells
[20]. Intriguingly, Th17 cells in Peyer’s patches can be con-
verted into T follicular helper cells with high levels of Bcl6
and IL-21 expression, which support the differentiation of
IgA-secreting B cells with antigen-specific properties [21].
These gut-specific Th17 cells are termed as Bnon-pathogenic
Th17 cells^ and are not associated with autoimmune reactions
to self-antigens. However, when self-reactive Th cells are ac-
cidentally primed under Th17 conditions, additional environ-
mental cues are able to modulate the effector profiles of auto-
immune Th17 cells that cause the pathogenic outcome of
targeted organs.

Pro-inflammatory cytokines to modulate
the pathogenic function of Th17 cells

IL-1 and IL-23 are pro-inflammatory cytokines and are well-
characterized as an enhancer and stabilizer of effector Th17

cells in autoimmune models, which predominantly express
their corresponding receptors IL-1R1 and IL-23R, respective-
ly [22–28]. Consistent with the importance of IL-1 and IL-23
in in vivo models, in vitro-polarized Th17 cells by stimulation
with IL-6 and TGFβ are not able to induce Th17 cell-driven
experimental autoimmune encephalomyelitis (EAE), an ani-
mal model ofMS, whereas Th17 cells induced by IL-1β, IL-6,
and IL-23 acquire the pathogenicity and elicit EAE [15]. One
of the possible explanations about the difference between
these in vitro conditions is that the treatment with IL-6 and
TGFβ induces anti-inflammatory cytokine IL-10 in Th17
cells whereas IL-23 is critical for induction of the endogenous
cytokine TGFβ3 by developing Th17 cells in addition to
restraining IL-10 and in turn induces the pathogenicity of
Th17 cells with high levels of T-bet, IL-23R, and GM-CSF
[29, 30]. Furthermore, the single-cell RNA-sequencing anal-
ysis of ex vivo Th17 cells causing chronic inflammation in the
central nervous system (CNS) of EAE mice identified Gpr65,
Toso, and Plzp as novel genes promoting Th17 pathogenicity
and CD5 antigen-like (CD5L) as a repressor of Th17 cell-
mediated disease [31, 32]. IL-1 and IL-23 signaling also mod-
ulate the effector profile of Th17 cells through regulation of
JunB and SOCS family members and induce highly pathogen-
ic IL-17+ IFNγ+ and IL-17+ GM-CSF+ double-positive T
cells, which have been shown to be originated from Th17 cells
using a fate mapping strain [33–36]. It is of note that IL-23 is
not required for the differentiation and maintenance of Bnon-
pathogenic^ Th17 cells in the gut and the functional plasticity
toward T follicular helper cells [21].
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Since naïve T cells do not express IL-1R and IL-23R [23,
37], their expression occurs during the initiation of Th17 dif-
ferentiation in the presence of IL-6 whose signaling
upregulates IL-1R1 and IL-23R expression via RORγt bind-
ing to the Il1r1 locus and STAT3 binding to the Il23r locus,
respectively [15, 24, 38]. STAT3 activation also increases
miR-183-96-182 cluster, which dampens Foxo1 expression,
a negative regulator of IL-1R1 and IL-23R expression [38].
Protein C receptor also represses IL-1R and IL-23R expres-
sion on Th17 cells [39]. On the other hand, RBPJ (down-
stream of Notch signaling) promotes IL-23R expression as a
positive regulator and therefore RBPJ KO Th17 cells fail to
show the pathogenicity [40].

Through integrating these positive/negative regulators and
a positive feed-forward loop by IL-1β and IL-23 stimulation,
Th17 differentiation are finally stabilized along with upregu-
lation of IL-1R and IL-23R [15, 41]. Thus, IL-23R expression
is the hallmark of effector Th17 cells and its signaling pro-
motes Blimp-1 (encoded by Prdm1) expression in vivo and
the pathogenicity of Th17 cells by increasing IL-17 and GM-
CSF production in RORγt-, STAT3-, and p300-dependent
manners [42].

Environmental stimuli to modulate the pathogenic
function of Th17 cells

Environmental factors are implicated in the increased preva-
lence of autoimmune and allergic diseases, some of which are
induced by Th17 cells. External signals such as environmental
toxins, metabolic stress, and osmotic pressure substantially
affect the immune system including the pathogenicity of
Th17 cells.

The aryl hydrocarbon receptor (AhR) is a ligand-dependent
transcription factor and senses many environmental toxins and
endogenous ligands such as tryptophan metabolites. AhR is
specifically induced under Th17 culture conditions and AhR
ligation enhances production of IL-17 and IL-22 by effector
Th17 cells [43, 44].

Metabolic cues regulate the function and differentiation of
innate and adaptive immune cells. Metabolic demands dra-
matically increase during T cell activation and proliferation.
The transcription factor hypoxia-inducible factor 1 (HIF-1), a
key metabolic sensor, controls, in particular, a glycolytic path-
way during Th17 differentiation and the effector function of
Th17 cells through directly activating RORγt and IL-17 [45,
46]. The kinase complex mTORC1 is also known to be a
central regulator of transcriptional pathways mediated by met-
abolic stress and contributes to the differentiation and effector
function of Th subsets. The pathogenic phenotype of Th17
cells expressing T-bet and IFN-γ is partly regulated by
mTORC1 signaling and therefore deletion of mTORC1 after
Th17 differentiation reduces EAE severity [47].

A high salt diet widely spreads over the world and is asso-
ciated with modern diseases. Serum glucocorticoid kinase 1
(SGK1), a serine/threonine kinase, can be induced in a high
salt concentration under Th17 culture conditions and pro-
motes IL-23R expression and stabilization of Th17 cells by
deactivating Foxo1, the antagonist of Th17 cells. Thus, SGK1
activation in Th17 cells promotes autoimmune Th17 re-
sponses by upregulating GM-CSF [48, 49]. Taken together,
environmental factors have a robust impact on accelerating the
pathogenic function of Th17 cells.

GM-CSF, a key pathogenic cytokine in autoimmune
tissue inflammation

GM-CSF is recently highlighted as the pathogenic cytokine of
Th17 cells. The role of GM-CSF in EAE model was first
reported in 2001, in which blockade of GM-CSF showed re-
sistance to the EAE induction, but the critical source of GM-
CSF in immune cells was not investigated in details [50].
There was the first report that among Th subsets infiltrating
into the CNS after EAE induction, some of Th cells showed
IL-17A+ GM-CSF+ double-positive producer [51]. The criti-
cal function of IL-23 signaling directing encephalitogenic
Th17 cells has been reported to drive GM-CSF production,
which causes local tissue inflammation [41, 52]. Because T
cells do not express GM-CSF receptor [41], GM-CSF affects
non-T cells. GM-CSF first acts on CNS-infiltrating myeloid
cells such as dendritic cells (DCs), monocytes, and macro-
phages which in turn secrete pro-inflammatory cytokines such
as IL-6 and IL-23, both of which upregulate IL-23R expres-
sion, amplifying IL-23-mediated pathogenic circuit to directly
cause neurological pathogenicity and establishing local tissue
inflammation by recruiting inflammatory macrophages in the
CNS [51, 53]. GM-CSF also activates CCR2+ monocytes,
monocyte-derived DCs and microglia in the brain to produce
IL-1β [54, 55]. Since microglia have a potential to produce
IL-23, they could participate the IL-23-IL-17 immune axis in
Th17 cell-mediated tissue inflammation [56].

The transcription factor Bhlhe40, whose expression is ini-
tiated by CD28 signaling and enhanced by IL-1R1 signaling
in T cells, has been identified as the direct driver of GM-CSF
expression and Bhlhe40 KO mice were shown to be resistant
to EAE due to impaired production of GM-CSF from patho-
genic T cells [57, 58].

We recently identified special AT-rich binding protein 1
(Satb1), a genome organizer, as a crucial regulator of the path-
ogenic function of encephalitogenic tissue Th17 cells, while
Satb1 was dispensable for the differentiation of Th17 cells
[59]. To elucidate a specific role of Satb1 in Th17 cells, we
generated Il17aCreR26ReYFPSatb1fl/fl conditional knock out
(Th17Satb1CKO) mice, in which Cre-mediated deletion of
Satb1 occurs in Th17 cells upon their differentiation into IL-
17-expressing eYFP+ CD4+ T cells. We found that
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Th17Satb1CKO mice after EAE induction had impaired Th17
cells with low levels of GM-CSF expression and as a result,
Th17Satb1CKO mice were resistant to EAE. Mechanistically,
Satb1 specifically bound to the active promoter region of the
Bhlhe40 locus and upregulated GM-CSF production in en-
cephalitogenic Th17 cells. This machinery was pathogenic
Th17-dependent in inflamed tissue because Satb1-sufficient
gut Th17 cells did not express GM-CSF. We also observed
that in vitro re-stimulation of draining LN eYFP+ Th17 cells
from EAE mice with IL-23, but not IL-1β or IL-6 increased
Satb1 expression, whereas TGF-β restrained its effect, sug-
gesting that IL-23 signaling in chronic inflammation
upregulates Satb1 expression in Th17 cells. In addition,
Satb1 specifically promoted the effector function of Th17
cells in the CNS by inhibiting PD-1 expression. Considering
that IL-1 signaling directly upregulates Bhlhe40, IL-1 and IL-
23 signaling synergistically enhance GM-CSF production and
the encephalitogenicity of Th17 cells by increasing Bhlhe40
and Satb1 expression, respectively.

Human Th17 cells and their role
in neuroinflammation

Similar to mouse Th17 cells, the differentiation of human
Th17 cells in vitro requires IL-1, IL-6, IL-23, and TGFβ.
Several studies initially demonstrated that IL-1β, IL-6, and
IL-23 but not TGFβ were sufficient to induce the differentia-
tion of human Th17 cells [60, 61]. However, careful assess-
ments later reconciled the role of TGFβ in human Th17 dif-
ferentiation, showing that TGFβ, IL-23, and IL-1β (or IL-6)
under serum-free conditions were essential in driving Th17
differentiation because culture medium contained serum-
derived TGFβ or AhR ligands [62, 63]. Consistent with
mouse Th17 cells, IL-23 plays the major role in human
Th17 differentiation as human naïve CD4+ T cells can imme-
diately respond to IL-23 and the IL-23R expression is further
upregulated by IL-23 signals in the presence of additional IL-
1β [62, 64]. Furthermore, dominant-negative mutations in
STAT3, a key transcription factor downstream of IL-6 and
IL-23 signaling, were responsible for disease manifestations
of hyper-immunoglobulin E syndrome and impaired IL-17
production and the differentiation of Th17 cells, supporting
roles of STAT3 in IL-6 and IL-23 signaling pathways and
Th17 differentiation in humans [65, 66].

Before the discovery of Th17 subset, IL-17 was identified
as the highest-ranking gene expressed in the CNS of MS pa-
tients [67]. It is of note that accumulation of Th17 cells were
the first wave of T cells infiltrating the CNS [68], followed by
the infiltration of DCs, macrophages, and other cells, which
further promote and sustain tissue inflammation. In addition, a
number of studies have shown that a single nucleotide poly-
morphism (SNP) in IL-23R is linked to a number of human
autoimmune diseases [1], indicating that IL-23 signaling is

essential for evoking a pathogenic feature in Th17 cells. IL-
23 is also associated with the risk of MS [69, 70]. Since GM-
CSF have a pivotal role in Th17 cells for encephalitogenicity
in mice [41, 52], the findings that there were elevated levels of
GM-CSF in the cerebrospinal fluid and serum of active MS
patients with relapsing-remitting type and increased GM-CSF
production of Tcell from the peripheral blood and brain lesion
of MS suggest a crucial role of GM-CSF in disease manifes-
tations and tissue inflammation [71, 72].

The pathogenicity of Th17 cells in autoimmune
arthritis models

RA is a systemic autoimmune disease that affects about 1% of
general population worldwide, characterized by chronic joint
inflammation and bone destruction [73]. Although the exact
pathogenesis remains to be determined, it has been recognized
that Th subsets play an important role in RA pathogenesis
based on human leukocyte antigen (HLA)-DRB1 identified
as the strongest disease risk gene, abundant T cells and mac-
rophages infiltrating into synovial membrane in RA patients,
and presence of circulating autoantibody such as rheumatoid
factor (RF) and anti-citrullinated peptide antibodies (ACPA)
[73–76]. When the Th1/Th2 paradigm dominated in the path-
ogenesis of autoimmune diseases before the discovery of
Th17 cells, RA as well as MS was previously thought to be
Th1-mediated diseases. However, the levels of Th-1-mediated
cytokines such as IFN-γ in RA synovium were relatively low
compared with those of TNF-α, IL-1, or IL-6 derived from
inflammatory macrophage- and fibroblast-like synoviocytes
(FLS) [77, 78]. The importance of these macrophage- and
FLS-derived proinflammatory cytokines in RA is evident
based on the efficacy of anti-cytokine therapy, such as anti-
TNF or anti-IL-6 therapy, which brought a paradigm shift in
RA treatment.

The discovery of Th17 cells have shed new insights into
how inflammatory Th subsets contribute to the initiation of
RA and form a proinflammatory cytokine network, leading to
chronic inflammation, in particular, in animal models of auto-
immune arthritis. There are several murine models to under-
stand the pathogenesis of RA. Firstly, collagen-induced arthri-
tis (CIA), which is induced by immunizing mice with type II
collagen and whose pathogenicity is totally dependent on the
generation of anti-collagen autoantibodies, is one of the well-
established arthritis models. K/BxN mice, another model of
arthritis, develop spontaneous arthritis mediated by the
arthritogenic anti-glucose-6-phosphate isomerase (GPI) auto-
antibody [79, 80]. It has been demonstrated that IL-17 plays a
pathogenic role to a greater or lesser extent in these murine
models. However, with regard to T cell-dependent, but not
autoantibody-dependent autoimmune arthritis, SKG mice are
a suitable model to focus how T cells mediate autoimmune
arthritis [81–83].
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The SKG strain of mice on a BALB/c background bears a
point mutation in ζ-associated protein-70 (ZAP-70), a key
TCR-proximal signaling molecule, and spontaneously de-
velops Th cell-mediated autoimmune arthritis in a microbially
conventional environment, which immunopathologically re-
sembles human RA [84, 85]. The mutation of the ZAP-70
gene alters the threshold for positive and negative selection
of T cells in the thymus, leading to the production of self-
reactive (arthritogenic) T cells and development of autoim-
mune arthritis [84–86]. SKG mice also frequently develop
extra-articular lesions such as interstitial pneumonitis, rheu-
matoid nodules and vasculitides and show the production of
autoantibodies such as RF and ACPAs, as seen in human RA
[84]. Interestingly, SKG mice do not develop spontaneous
arthritis under a specific-pathogen-free condition, yet can be
induced by stimulation of innate immunity via Toll-like recep-
tors, the Dectin pathway, or complement activation pathways,
for example, by injection of fungal products such as zymosan
and mannan, or, by provoking homeostatic proliferation of
self-reactive T cells under lyphopenic conditions [87, 88].
Synovial inflammation in SKGmice is characterized by abun-
dant infiltration of Th cells, which can adoptively transfer the
disease into lymphopenic mice such as Rag2−/− mice, show-
ing the disease dependency on Th cells. Recently, we
succeeded to newly identify an arthritogenic self-antigen,
60S ribosomal protein L23a (RPL23A), by isolating
arthritogenic effector Th cells from SKG arthritic joints and
screening their TCR repertoires with an arthritogenic potential
in retrogenic mice system. In addition, anti-RPL23A autoan-
tibodywas specifically detected in sera from patients with RA,
which would support a similar molecular basis of the patho-
genicity between SKG arthritis and human RA [89].

We reported that arthritis in SKG mice was highly depen-
dent on Th17 cells since the cell transfer of IL-17-deficient
SKG Th cells into T cell-deficient mice completely failed to
induce arthritis. Supporting this finding, IL-6-deficient SKG
mice were highly resistance to arthritis induction due to im-
paired T cell differentiation into Th17 cells. Although Th1
cells along with Th17 cells are also detected in SKG inflamed
synovium, IFN-γ deficient SKGmice rather exacerbate arthri-
tis, because Th17 differentiation is inhibited by Th1- or Th2-
associated cytokines such as IFN-γ or IL-4 and IFN-γ defi-
cient conditions expand arthritogenic Th17 cells [82].

We have proposed a possible mechanism of how self-
reactive (arthritogenic) Th cells become effector Th17 cells,
migrate to synovium and initiate joint inflammation in SKG
mice. Self-reactive T cells become activated in the periphery
via recognition of class II MHC/self-peptide complexes
expressed by APCs, and stimulate APCs through CD40/
CD40L interaction to upregulate CD80/CD86, which further
activate these T cells to proliferate. Activated APCs secrete a
large amount of IL-6 (also IL-1, IL-23, and TNFα), together
with surrounding tissue-derived TGF-β, that induces the

differentiation of effector Th17 cells. Expanded arthritogenic
Th17 cells predominantly express CCR6 and migrate to joints
in response to CCL20, the ligand of CCR6, which is secreted
by activated FLSs. Indeed, treatment with anti-CCR6
blocking mAb significantly inhibits the infiltration of Th17
cells into joints and reduces the severity of arthritis in SKG
mice. In vitro, CCL20 expression in synoviocytes is promoted
by IL-17, IL-1β, or TNFα, whereas IFN-γ or IL-4 inhibits its
expression. Thus, once arthritogenic Th17 cells are activated
and recruited into joints to initiate inflammation, synoviocytes
further recruit Th17 cells in a feed-forward mechanism by
which CCL20 production is augmented by proinflammatory
cytokines such as IL-17, IL-1β, or TNFα derived from both
activated synoviocytes and Th17 cells (Fig. 2). Expression of
CCR6 in Th17 cells and CCL20 in synoviocytes are also
observed in RA patients with a significant correlation between
the amounts of IL-17 and CCL20 in RA joints [90].
Furthermore, recent genome-wide association study
(GWAS) studies identified CCR6 as a disease susceptibility
gene of RA, which together implies the pathogenicity of Th17
in RA and a shared mechanism of Th17 recruitment in in-
flamed joints [91].

Although Th17 cells are responsible for initiating autoim-
mune arthritis, it remained unclear how Th17 cells participate
in Bchronic^ tissue inflammation. Recently, we demonstrated
that GM-CSF is a crucial mediator in forming chronic joint
inflammation in SKG mice and how Th17 cells orchestrate
this BGM-CSF-cytokine network.^GM-CSF can be produced
by various cell types including endothelial cells, fibroblasts,
and activated T cells upon receiving immune stimuli, and is a
key proinflammatory cytokine for the activation of macro-
phages and dendritic cells [92]. GM-CSF is abundantly seen
in RA synovium, which is a reasonable observation to explain
highly activated macrophages in RA joints, indicating its im-
portance in the pathogenesis of RA [93, 94]. As expected,
GM-CSFwas crucial for arthritis induction in SKGmice since
Csf2−/− SKG mice completely failed to develop arthritis, re-
gardless of the presence of activated Th17 cells [95]. Adoptive
T cell transfer experiment showed that T cell-derived GM-
CSF, although it augmented arthritis, was dispensable for in-
ducing arthritis, while non-T cell-derived GM-CSF was indis-
pensable. Using bone marrow chimeras, the crucial source of
GM-CSF was identified in radio-resistant stromal cells, in-
cluding FLSs, and synovial-resident innate lymphoid cells
(ILCs). Inhibition or loss of GM-CSF production in either
radio-resistant stromal cells or ILCs significantly reduced the
severity of arthritis. In vitro, FLSs upregulate GM-CSF secre-
tion in response to recombinant IL-17 stimulation. In addition,
adoptive transfer of wild type (WT), but not Il17a−/− SKG Th
cells into Rag2−/−mice significantly inducedCsf2 (alsoCcl20
and Il6), in synoviocytes, which together imply that
arthritogenic Th17 cells in joints stimulate FLSs via IL-17
and promote GM-CSF production. ILCs reside in healthy
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joints of SKG (or even other healthy mouse strains), but when
arthritis occurs, GM-CSF-producing ILCs specifically expand
in the joints. Predominant population of GM-CSF-
producing synovial ILCs expresses Gata-3 and/or IL-13,
which are the master transcription factor and signature
cytokine of ILC2s. Indeed, in vitro, when synovial ILCs
are treated with a combination of IL-2 and IL-33, GM-
CSF production is significantly enhanced as well as IL-13
and IL-5 production. Furthermore, these synovial ILCs
highly express Toll-like receptor 9 (TLR9) and synergis-
tically upregulate GM-CSF production in response to
CpG DNA, a ligand of TLR9, in combination with IL-
33, but not CpG DNA alone. Expression of functional
TLR9 in synovial ILCs indicates that they may sense mi-
tochondrial DNA, possibly released as one of endogenous
damage-associated molecular patterns (DAMPs). Taken
together, unlike mechanisms of GM-CSF production in
FLSs, synovial ILCs sense IL-2, IL-33, and self DNA,
which can be produced by arthritogenic Th17 cells and
released from necrotic cells in inflamed joints, leading to
GM-CSF production (Fig. 3) [95].

In the SKG arthritis model, induction of arthritis is
fully dependent on Th17 cells. The key early event to
initiate joint inflammation seems to be stimulating tissue
stromal cells via IL-17 produced by arthritogenic Th17
cells migrating into joints. Expanded Th17 cells then or-
chestrate a GM-CSF-centric cytokine network, which re-
sults in the activation of synovial macrophages, leading to
chronic inflammation and joint destruction.

Human Th17 cells in rheumatoid arthritis

As we have discussed above, there are several observations
that support the pathogenesis of Th cells in RA. The efficacy
of CTLA4-Ig treatment in RA indicates a central role of Th
cells. In addition, recent GWAS study further identified RA
risk loci that are linked to T cell function (e.g., PTPN22,
CD28, CD40), and are even more specific to Th17-
associated molecules such as CCR6 [91, 96–100]. However,
the role of Th17 cells in RA is not as clear as animal models
yet. Many reports agree that levels of IL-17 are increased in
synovial fluid (SF) and synovial tissue (ST) in RA [101–104].
Kirkham et al. reported that the levels of IL-17 expression in
ST are predictive of joint damage in RA patients, which could
be the result of enhanced osteoclasts activation mediated by
IL-17-rich environment [105]. However, it is controversial
whether Th17 cells increase in the peripheral blood, SF, or
ST in RA [106–110]. Furthermore, it was reported in ST that
the vast majority of IL-17-secreting cells were not Th17 cells,
which is one of the major differences from animal models of
arthritis. The exact sources of IL-17 in ST remain unclear
[101, 111]. Hueber et al. reported that the major source of
IL-17 was synovial mast cells, which promote IL-17 produc-
tion in stimuli by TNFα, IgG complexes or C5a, whereas Kan
et al. later reported that the number of IL-17-producing mast
cells and the frequency of IL-17-producing mast cells among
all the IL-17+ cells in ST were comparable between RA and
osteoarthritis (OA) patients, raising a question to the contribu-
tion of synovial mast cells as a source of IL-17 [111, 112].

Fig. 2 A possible mechanism of
self-reactive Th17 differentiation
in SKG mice
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Furthermore, the frequencies of Th1 cells among CD4+ T
cells in SF and ST of RA patients are much larger than those
of Th17 cells [81, 110]. However, the plasticity of Th17 cells
toward Th1-like cells may be able to give a possible explana-
tion for this observation. Nistala et al. showed the presence of
IFN-γ-producing Th17 cells (hereafter Th17/Th1) in SF from
patients with juvenile idiopathic arthritis (JIA), which express
both Th1 and Th17 transcription factors such as T bet and
RORC2 [113]. They also demonstrated in vitro that Th17 cells
can be converted to Th17/Th1-cell phenotype in IL-12high

TGFβlow conditions that resembles the SF environment of
JIA. Furthermore, TCRβ (TRBV) repertoire analysis revealed
that synovial Th17/Th1 cells share TCRβ repertoire
oligoclonality with Th17 cells, indicating that Th17/Th1 cells
may be deviated from Th17 cells. Moreover, CD161, one of
the surface marker of Th17 cells in human as well as CCR6, is
expressed not only in Th17/Th1 cells, but also in a number of
Th1 cells in SF. These findings together suggest that a certain
subpopulation of IFN-γ-producing CD4+ T cells in arthritic
joints may originate from Th17 cells, which shift to Th1-like
phenotype via an intermediate state of Th17/Th1 cells, when
they encounter a IL-12high TGFβlow environmental cue in the
local inflammatory site. In fact, there are accumulating evi-
dence that IFN-γ+ ex-Th17 cells are enriched in SF of JIA and
RA in comparison to peripheral blood [113–115]. In addition,
recent studies revealed that approximately 80% of GM-CSF-
producing CD4+ T cells in joints of JIA and RA co-express
IFN-γ, but rarely express IL-17 [116, 117]. The majority of
these IFN-γ+ GM-CSF+ CD4+ T cells express CD161, indi-
cating that the subpopulation of IFN-γ+ ex-Th17 cells also
actively produce GM-CSF [117].

As Th17 cells have been highlighted in the pathogenesis of
RA, IL-17 inhibitors as a new potential biologic agent were
trialed for RA treatment. In phase II trials, treatment with anti-
IL-17 antibodies, secukinumab or ixekizumab, have demon-
strated preliminary efficacy in RAwith biologic-naïve or who
failed to respond to TNF inhibitors or methotrexate
[118–121]. However, in phase III trials, IL-17 inhibition
showed no incremental benefit over the biologic agents cur-
rently approved to non-responders for TNF inhibitors [122,
123]. Although there is no clinical trial that has focused on
evaluating the efficacy of IL-17 inhibitors in the onset or early
stage of RA, these results indicate that IL-17 inhibitors alone
are not sufficient enough to suppress ongoing chronic inflam-
mation in established RA. Notably, it has been reported that
higher levels of IL-17 in SF exist at the early stage of RA
compared with the established stage and those of IL-17 in sera
rather decreases after the onset of RA [124, 125]. Taking these
findings together, Th17 cells may have different roles at dif-
ferent phases of RA. Th17 cells initiate joint inflammation via
IL-17 by stimulating FLSs, promoting osteoclast differentia-
tion and recruiting abundant neutrophils and more Th17 cells.
However, soon after the onset of inflammation, a number of
Th17 cells may become IFN-γ+ ex-Th17 cells in response to
surrounding cytokine environments in the arthritic joints and
simultaneously begin to actively secrete GM-CSF together
with other GM-CSF-producing cells such as activated FLSs
and synovial ILCs that synergistically provoke synovial mac-
rophages to secrete a large amount of tissue destructive mol-
ecules and proinflammatory cytokines such as TNF-α or IL-6,
leading to chronic inflammation. Thus, the pathogenesis of
Th17 cells in RA may shift from BIL-17-producer,^ as an

Fig. 3 Th17 cells orchestrate
chronic joint inflammation in
SKG mice
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initiator of the disease, into BGM-CSF-producer,^ as an orga-
nizer of chronic inflammation. GM-CSF has been highlighted
as a key mediator in RA based on recent clinical trials using
GM-CSF inhibitors for RA patients [126–129]. From our
point of view, IL-17 inhibitors may show a better clinical
outcome for early onset RA patients, although it is not easy
to identify and test such patients in a clinical trial.

Psoriasis, psoriatic arthritis (PsA), and ankylosing arthritis
(AS) have been implicated in Th17-mediated autoimmune
diseases in humans. Unlike RA, IL-17 inhibition shows
marked clinical efficacies in psoriasis or PsA patients (also
IL-12/23p40 inhibition) and AS patients, indicating the proof
of concept in the pathogenesis of IL-17 in these diseases
[130–134]. Further studies will be required to understand
how IL-17-type/disease-specific tissue inflammation changes
before and after the treatment with IL-17 inhibitors.

Regulation of Th17 cells by gut microbiota
and immunometabolism in arthritis

There are accumulating evidence that the dysbiosis of gut
microbiota is associated with various autoimmune diseases.
Studies have shown that altered intestinal microbiota is ob-
served not only in inflammatory bowel diseases, but also in
organ-specific or systemic autoimmune diseases that affect
internal organs, including type 1 diabetes, MS, and RA
[135–140]. Autoimmune arthritis in murine models is also
dependent on gut microbiota, for example, both K/BxN and
SKG mice spontaneously develop arthritis in conventional
conditions, but arthritis cannot be induced under germ-free
(GF) conditions [87, 141]. Several studies have shown gut
dysbiosis in RA patients. By using 16s rRNA gene sequenc-
ing, two reports revealed that Prevotella copriwas significant-
ly increased in RA patients, while Bacteroides was reduced.
Maeda et al. demonstrated the disease-modifying role of
P. copri in arthritis by generating gnotobiote SKG mice with
P. copri, showing that P. copri induces CD4+ T cells in the
large intestine to differentiate into Th17 cells, leading to pro-
duction of arthritogenic Th17 cells and trigger autoimmune
arthritis [138]. In contrast, another Prevotella species showed
a beneficial role in humans. Marietta et al. demonstrated that
Prevotella histicola, which is one of the commensal bacteria
in the human gut, reduced the severity of arthritis in CIA
model of HLA-DQ8-humanized mice [142]. Mice treated
with P. histicola showed increased regulatory T cells (Treg)
in the gut, suppressed antigen-specific Th17 response, and
reduced the levels of prionflammatory cytokines, including
IL-17 or TNF-α. These findings are intriguing in that thera-
peutic intervention of gut dysbiosis-targeting specific species
may potentially be a new treatment for RA by regulating Th17
or Treg cells.

Immunometabolism plays a key role in the regulation of
autoimmune T cells and T cell-mediated autoimmunity,

including RA. Intriguingly, RA T cells fail to upregulate a
glycolytic activity due to the insufficient induction of the
key glycolytic enzyme PFKFB3, and shunt glucose toward
the pentose-phosphate pathway. Impaired glycolysis induces
a pyruvatelowATPlow intracellular environment and increase
the production of NADPH, resulting in reduction of reactive
oxygen species (ROS) and upregulation of fatty acid synthesis
[143, 144]. Using a chimeric mouse model generated by
implanting human synovium and transferring human T cells
into NOD/Scid/IL2Rγnull mice, Shen et al. reported that these
altered metabolic conditions lead to overexpression of TKS5,
a podosome scaffolding protein, which enables them to form
tissue-invasive membrane structures, resulting in enhance-
ment of T cell invasion into synovium [144]. Expression
levels of TKS5 in activated CD4+ CD45RA+ T cells in RA
patients were correlated with their disease activities. They
demonstrated in the chimericmice that regulating these altered
metabolic conditions by supplementation of pyruvate or
inhibiting fatty acid synthesis successfully rewired the
tissue-invasive behavior of RA T cells. In addition, another
report from the same group showed that reduction of ROS
promotes T cell maldifferentiation into Th17 and Th1 cells
[145]. ROS restoration by menadione treatment in the chime-
ric mice, significantly reduced IFN-γ or IL-17-producing T
cells in the synovium. These observations suggest that regu-
lating T cell metabolic condition may successfully control
proinflammatory differentiation and behavior of RAT cells.

Concluding remark

The discovery of Th17 cells brought us a new insight into
a molecular basis of autoimmune disorders beyond the
Th1/Th2 paradigm and clinical applications for various
immune-mediated diseases. However, it remains elusive
how Th17 cells mediate tissue injuries and orchestrate
chronic tissue inflammation at different target organs. A
comprehensive single-cell atlas that will characterize the
pathogenicity of Th17 cells at different inflamed organs
will open a new avenue for a novel immunotherapy, which
enables us to specifically manipulate the function of path-
ogenic Th17 cells in autoimmune disease, but preserve the
immune homeostasis, for instance, in the gut, mediated by
physiological Th17 cells.
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