
REVIEW

Acquired resistance to cancer immunotherapy

Arianna Draghi1 & Christopher Aled Chamberlain1
& Andrew Furness2 & Marco Donia1,3

Received: 7 June 2018 /Accepted: 11 June 2018 /Published online: 2 July 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In recent times, advances in cancer immunotherapy have yielded impressive, durable clinical responses in patients with varied
subtypes of cancer. However, a significant proportion of patients who initially demonstrate encouraging tumor regression
develop resistance and progress over time. The identification of novel therapeutic approaches to overcome resistance may result
in significantly improved clinical outcomes and remains an area of high scientific priority. This review aims to summarize the
current knowledge regarding the role of both tumor-intrinsic and tumor-extrinsic factors in the development of resistance to
cancer immunotherapy and to discuss current and possible future therapeutic strategies targeting these mechanisms.
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Introduction

Recent advances in cancer immunotherapy, including the in-
troduction of immune checkpoint inhibitors (ICI), have result-
ed in a paradigm shift in the treatment landscape of advanced
cancer [1–3]. To date, these agents have displayed greatest
activity in metastatic melanoma (MM) [4–8], advanced non-
small-cell lung cancer (NSCLC) [9–11], urothelial cancers
[12–14], head and neck squamous carcinoma [15–17], renal
cell carcinoma [18], classical Hodgkin’s lymphoma [19–21],
Merkel cell carcinoma [22, 23], and solid tumors character-
ized bymicrosatellite instability and mismatch repair deficien-
cy [16, 24]. Despite the impressive results of the last decade,
the ever-increasing number of immunotherapy-based clinical

trials has highlighted the emergence of a significant propor-
tion of patients that acquire resistance to immunotherapy
(Fig. 1). Approximately 30% of MM patients treated with
ICI who obtain an initial objective response will progress
within 3 years [1, 2]. The potential mechanisms underlying
acquired resistance are numerous and not completely under-
stood, overlapping at least in part with mechanisms associated
with primary resistance. In this review, we discuss the most
comprehensively described mechanisms associated with ac-
quired resistance and emerging approaches serving to restore
effective immunosurveillance.

Current cancer immunotherapies
and the immune checkpoints

Effective activation of tumor-specific T cells is the re-
sult of a set of complex interactions occurring at the
immunological synapse, consisting of (i) recognition of
a major histocompatibility complex (MHC)-bound tumor
epitope via the T cell receptor (TCR); (ii) effective co-
stimulation, i.e., interaction of receptors/ligands such as
CD28 on T cells and B7 on antigen-presenting cells
[25]; (iii) a relative lack of co-inhibition, i.e., interaction
between negative regulators of T cells (immune check-
points) such as cytotoxic T lymphocyte-associated anti-
gen 4 (CTLA-4) or programmed cell death protein 1
(PD-1) and their ligands [26].

The physiological role of immune checkpoints is to main-
tain self-tolerance and to control inflammation, yet they also
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represent one of the most common mechanisms of cancer-
mediated immune evasion [26, 27]. Indeed, the primary goal
of ICI therapy is to restore and maintain the activity of tumor-
specific T cells by blocking immune checkpoint-mediated
suppression [28]. CTLA-4 is a competitive antagonist of
CD28 and can suppress T cell responses when expressed on
effector T cells [29]. Ipilimumab, an anti-CTLA-4 fully hu-
man monoclonal antibody, was the first checkpoint inhibitor
approved by the US Food and Drug Administration (FDA), as
a monotherapy for the treatment of advanced melanoma in
2011 [8, 30]. Long-term survival data from clinical trials of
ipilimumab has demonstrated durable disease control lasting
over 5 years in approximately 20% of patients [31]. Another
checkpoint inhibitor expressed by activated T cells is PD-1.
The expression of its ligands, PD-L1/PD-L2, varies by tumor
type and can be constitutive or induced by activated T cell-
produced IFN gamma (IFNγ). Clinical targeting of this pro-
tein and its ligands via ICI has further improved the response
rate of patients with metastatic cancer [5–7, 32]. Two anti-PD-
1 human monoclonal ant ibodies , nivolumab and
pembrolizumab, and three new human monoclonal antibodies
directed against PD-L1, durvalumab, atezolizumab, and
avelumab, have received FDA approval for the treatment of
selected tumor types [1, 33, 34].

Other types of immunotherapy, thus far evaluated predom-
inantly in clinical trials, include (i) adoptive transfer of T cells,
either expanded from the tumor-microenvironment (tumor-in-
filtrating lymphocytes, or TILs [35]) or genetically modified
(i.e., chimeric-antigen receptor or CAR-T cells [36, 37] and
TCR-engineered T cells [38, 39]); (ii) therapeutic cancer vac-
cines, including those stimulating the adaptive immune sys-
tem to generate an immune response against patient-specific
tumor neoantigens [40, 41]; and (iii) oncolytic virotherapy, in
particular T-VEC, alone or in combination with ICI [42, 43].

Mechanisms of acquired immune resistance

Most human tumors develop in an immunologically compe-
tent environment; thus, some level of immune escape and
resistance is intrinsic to any established malignancy [3].
Acquired resistance to cancer immunotherapy can develop
via genetic and epigenetic heritable traits that pre-exist in the
tumor prior to treatment and then emerge following immune
selection. However, acquired resistance can also arise from de
novo alterations at a single-cell level [2]. When under attack,
cancer cells and other components of the tumor microenviron-
ment (TME) can alter their transcriptome in response to inter-
actions with immune cells and their products [2, 44]. Genomic
instability can further boost the emergence of immune-
resistant cancer cell clones.

Tumor cells can protect themselves and evade the immune
system through intrinsic resistance mechanisms such as loss/
downregulation of target antigen expression, defective antigen
presentation, insensitivity to immune effector molecules, up-
regulation of alternative immune checkpoints and epigenetic
alterations or through extrinsic resistance mechanisms medi-
ated by non-cancerous cells in the TME, such as tumor-
associated macrophages (TAMs), regulatory T cells (Tregs),
and myeloid-derived suppressor cells (MDSCs) [45–49]. As
described, all such mechanisms can exist prior to cancer im-
munotherapy exposure and overlap with primary immune re-
sistance. It is therefore most likely that the co-existence of
multiple primary and/or acquired immune evasion mecha-
nisms within the same tumor leads to acquired resistance in
the clinical setting. In the next sections, we will discuss the
current knowledge on the major resistance mechanisms asso-
ciated with acquired resistance to cancer immunotherapy
which have been identified to date in solid tumors.

Tumor-intrinsic factors

Defective presentation of tumor-antigens

Tumor cell recognition by the adaptive immune system repre-
sents an essential step in obtaining tumor regression. For an
antigen on tumor cells to be recognized by T cells, it must be
processed and presented in association with MHC molecules
[50]. Therefore, immune evasion can be mediated via defects
in the antigen presentation pathway. These defects can be
categorized into two groups: (i) loss of antigenic molecules
(either at a DNA, RNA, or post-translational level) or (ii)
impaired antigen processing and presentation ability.

Cancer neoantigens, i.e. those arising from somatic tumor
mutations, have been shown to be critical targets for eliciting
immune responses and immune-mediated tumor killing [25].
In a pioneering study, Brown et al. [51] analyzed RNA-
sequencing data to predict potentially immunogenic mutations

Fig. 1 Graphical representation of acquired resistance to cancer
immunotherapy. PD, progressive disease; SD, stable disease; PrlSD,
prolonged stable disease; PR, partial response; CR, complete response;
LtPR, long-term partial response; LtCR, long-term complete response
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in 515 patients from six different cancer types. The predicted
immunogenic mutational counts demonstrated a strong corre-
lation with increased overall survival, providing initial evi-
dence of the importance of neoantigens in human cancer im-
mune recognition. Using large-scale genomic data sets gener-
ated from biopsies of 18 different subtypes of solid tumor,
Rooney et al. [52] demonstrated that the number of predicted
neoantigens was positively associated with in situ immuno-
logical activity (Bcytolytic activity^) across numerous tumor
types. Moreover, neoantigen depletion in certain tumor types
supported the hypothesis of an immune-mediated pressure to
eliminate immunogenic neoantigens. More recently, Rizvi et
al. [53] reported that a higher somatic nonsynonymous muta-
tional burden correlates with improved clinical outcomes fol-
lowing ICI therapy in patients with NSCLC. Similar results
were obtained by Snyder et al. [54] and van Allen et al. [55] in
advanced melanoma. In a recent publication by Riaz et al.
[56], the genomic changes in tumors from 68 patients with
advanced melanoma, who progressed or were naïve to anti-
CTLA-4 therapy, were assessed before and after anti-PD-1
therapy. A reduction in mutation and neoantigen load was
observed in association with a response to anti-PD-1 ther-
apy independent of prior immune therapy exposure, sug-
gesting clonal evolution as result of treatment-dependent
immunoediting. These studies provided clear evidence that
cancer neoantigens represent important targets for the hu-
man immune system and appear to play an important role
in tumor elimination following treatment with ICI.

Loss of antigenic molecules Recently, Anagnostou et al. [57]
demonstrated that loss of expression of 7 to 18 putative
mutation-associated neoantigens can result in acquired resis-
tance to ICI therapy. The analyses were conducted onmatched
pre-treatment and resistant tumors from patients with NSCLC
undergoing ICI therapy and demonstrated that neoantigen loss
occurred via the elimination of tumor subclones and chromo-
somal loss of truncal alterations. This was the first study dem-
onstrating that an evolving landscape of mutations can be
linked to acquired resistance to ICI. Moreover, the majority
of eliminated mutations were typically highly expressed and
encoded for neoantigens that were predicted to have high
MHC binding affinity or to induce stronger TCR mediated
responses. A separate study, conducted by Verdegaal et al.
[58], suggested that the dynamic interactions between T cells
and cancer cells can induce T cell-mediated neoantigen
immunoediting, resulting in partial or total neoantigen loss.
In contrast, in a separate study investigating a single patient
case in which a complete response to adoptive T cell therapy
(ACT) was achieved, acquired resistance occurred without
loss of target neoantigens [4]. However, in a mouse model
of ACT against murine melanoma, tumor progression after
initial regression was associated with a loss of the gene
encoding the target tumor antigen [59]. These data

demonstrate that downregulation/loss of neoantigens may oc-
cur in patients treated with immunotherapy, yet this is not a
universal mechanism of acquired immune resistance.

It is likely that proinflammatory cytokines can contrib-
ute to immune escape by inducing loss of antigen expres-
sion [44]. In a mouse model of ACT [60], melanoma has
been shown to acquire resistance through TNFα-induced
epithelial-to-mesenchymal de-differentiation. This process,
resulting in a loss of melanocytic antigens, causes a switch
to a less immunogenic tumor phenotype that can more
easily evade immune surveillance. Other cytokines pro-
duced by tumor-infiltrating cells, such as IL-6 or TGFβ,
have been shown to induce epithelial-to-mesenchymal
transition in mouse models of several types of cancer, in-
dicating that inflammation may promote acquired resis-
tance in numerous types of histologically varied cancer
[61, 62]. Further work is needed to determine the role of
this process in clinical practice.

Impaired antigen processing and presentation machinery
Clinical evidence of defective antigen presentation induced
by immunotherapy was recently reported by Tran et al. [63].
This group reported the case of a patient with metastatic co-
lorectal cancer treated with an infusion of HLA-C*08:02-re-
stricted TILs targeting mutant KRASG12D. Loss of the chro-
mosome 6 haplotype encoding the HLA-C*08:02 class I
MHC molecule caused the progression of a single lesion
9 months after ACT. Lack of surface expression of class I
MHC molecules can also be induced by alterations in genes
encoding components of the antigen presentation machinery.
Mutations in the β2-microglobulin (B2M) gene have been
shown to mediate acquired resistance to IL-2 or ACT [64].
B2M is associated with MHC class I and is essential for its
folding and transport to the T cell surface [47, 65]. Recently,
Zaretsky et al. [66] reported a case of late acquired resistance
to anti-PD-1 therapy in a patient with MM. In this study, loss
of MHC surface expression was associated with the acquisi-
tion of a new homozygous truncating mutation in the B2M
gene. Further studies [67, 68] have supported the role of B2M
loss in the development of anti-PD-1 therapy resistance in
melanoma and lung cancer. Chang et al. [69] demonstrated a
combination of structural and epigenetic defects inMHC class
I antigen processing and presentation machinery in MM after
immunotherapy. These defects included loss of tapasin (a
MHC class I antigen processing molecule) due to a germline
frameshift in TAPBP exon 3 in association with somatic loss
of the other allele, selective epigenetic silencing of the HLA-
A3 antigen, and loss of one HLA haplotype. An additional
case, documented by our group [70], provided further evi-
dence of alterations to the MHC class I antigen processing
and presentation machinery as a mechanism of acquired resis-
tance after T cell-based immunotherapy in MM. To summa-
rize, these mechanisms allow previously antigenic mutations
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to become effectively invisible to the immune system, due to
the loss of antigen presentation ability.

Insensitivity to immune effector molecules

It has been demonstrated that immunotherapy can induce re-
sistance to T cell-mediated tumor regression by altering the
normally vulnerable pathways targeted by T cells [65]; the
IFNγ pathway is emerging as a key mediator of this process
[71, 72]. After secretion by activated T cells, IFNγ binds to its
receptor (IFNGR) on cancer cells and recruits both Janus ki-
nase 1 and 2 (JAK1/JAK2). This recruitment can subsequent-
ly induce phosphorylation, dimerization, and activation of the
transcription factor STAT1, whose translocation to the nucleus
activates the transcription of IFNγ-inducible genes [72]. The
process culminates in tumor cell growth inhibition, induction
of apoptosis, further T cell infiltration, and upregulation of
MHC class I and PD-L1 [66, 71–73]. In the previously de-
scribed study by Zaretsky et al. [66], whole-exome sequenc-
ing was used to compare the DNA of paired baseline and
relapsing lesions from four MM patients who exhibited dis-
ease progression after an initial response to anti-PD-1. The
core aim of the analyses was to identify the genetic basis of
this change in phenotype, and it resulted in the detection of
truncating loss-of-function mutations in both JAK1 and
JAK2, with an accompanying loss of heterozygosity, in two
of the patients. This inactivation of JAK1 and JAK2 presum-
ably caused the acquired insensitivity to IFNγ and impacted
upon class I expression, immune surveillance and tumor cell
proliferation. It has been previously suggested that a lack of T
cell infiltrate may be caused by JAK1/JAK2 mutations, as the
IFNγ pathway regulates the expression of chemokines, such
as CXCL9, CXCL10, and CXCL11, with potent
chemoattractant effects on Tcells [72]. To further support this,
both CD8+ T cell infiltration and PD-L1 expression were
present in the baseline biopsies, whereas relapses were asso-
ciated with the restriction of CD8+ T cells and PD-L1 expres-
sion to the tumor margin. In the context of anti–PD-1 therapy,
a lack of effective interferon signaling becomes a highly ad-
vantageous immune escape strategy, as the potential protec-
tion afforded to tumors via PD-L1 is nullified by the treatment.
Interferon insensitivity through other mechanisms, such as the
expression of negative regulators or epigenetic silencing of
JAKs, may have a similar impact and has already been docu-
mented in other forms of cancer [74–76].

Further studies are required in order to identify additional
IFNγ-resistance mechanisms. Genomic alterations affecting
IFNγ-pathway genes, such as the loss of IFNGR1, IFNGR2,
IRF1, IFIT1, IFIT2, IFIT3, MTAP, miR31 or amplification of
the suppressor genes SOCS1 and PIAS4, have already been
reported as potential mechanisms of primary resistance to
multiple ICI therapies [77]. Discerning the role of these de-
fects as drivers of acquired resistance to immunotherapy is

immensely important for developing strategies to overcome
such obstacles.

Upregulation of immune-suppressive pathways

Activation of alternative immunosuppressive pathways in the
TME may promote resistance to immunotherapy through im-
pact upon T cell function [45, 65]. Numerous alternative im-
mune checkpoints, such as Tcell immunoglobulin and mucin-
3 (TIM-3), lymphocyte activation gene 3 (LAG-3), V-domain
Ig-containing suppressor of T cell activation (VISTA), and
indoleamine-2,3-dioxygenase (IDO), have been characterized
in recent years. These are often upregulated during ICI therapy
with anti-PD1/PD-L1 or anti-CTLA-4 antibodies due to either
the activation of the IFNγ-pathway or miscellaneous cellular
signals [78, 79]. Thommen et al. [80] reported that acquired
resistance to anti-PD1 therapy in patients affected by NSCLC
was associated with the co-expression of PD-1, TIM-3,
CTLA-4, LAG-3, and B and T lymphocyte attenuator
(BTLA). Their research demonstrated that expression of these
fivemolecules on the surface of effector Tcells was associated
with reduced proliferation, migration, and cytokine produc-
tion. Upregulation of these, as well as multiple other inhibitory
checkpoints, has been documented in response to ICI therapy
in a diverse range of pre-clinical cancer models [79, 81–84].
Recently, TIM-3 upregulation was observed in lung adenocar-
cinoma patients who developed acquired resistance to anti-
PD1 treatment [83]. In addition, a recent study from Balko
et al. [85] illustrated that LAG-3 upregulation post-relapse in
anti-PD1 treated tumors was associated with MHC II expres-
sion, indicating that MHC II+ tumors might derive increased
benefit from anti-LAG3 therapy. Combinational therapy uti-
lizing anti-PD-1 antibodies in association with LAG-3 inhib-
itors [86] or TIM-3 inhibitors [87] has already demonstrated
notable efficacy in pre-clinical models and a phase I clinical
trial. Indeed a study evaluating the combination of PD-1
blockade with LAG-3 blockade in patients with melanoma
previously treated with anti-PD1/anti-PD-L1 monotherapy,
reported an objective response rate of 16% [88]. Currently,
there are numerous ongoing clinical trials evaluating the pos-
sibility of incorporating novel agents targeting alternative im-
mune checkpoints, both as a monotherapy and in
combination.

A recent pre-clinical study by Bertrand et al. [89] suggested
that TNFα expression in an inflamed TME correlates positive-
ly with PD-L1 and TIM-3 expression upon anti-PD1 therapy
in melanoma mouse models. Indeed, this study provides the
first evidence that the TNFR1-dependent TNFα signaling
pathway may be an immune evasion mechanism conferring
resistance to anti-PD1 therapy. In addition, it was demonstrat-
ed that TNFα impairs the accumulation of CD8+ TILs and
triggers activation-induced cell death of CD8+ T cells in
mouse melanoma. Accordingly, TNFα blockade prevented
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PD-L1 and TIM3 expression, and anti-PD1-induced TIL
death. Consequently, this study provides a rationale for the
combination of anti-PD1 and anti-TNFα antibodies as a novel
potential combinational therapy for the treatment of melano-
ma and other cancers. A phase 1 clinical trial testing this
association is ongoing (NCT03293784).

Preliminary studies have identified a potential role of spe-
cific oncogenic signaling pathways in the acquisition of resis-
tance to immunotherapy. Activation of theβ-catenin signaling
pathway has been shown to correlate with an absence of
CD103+ dendritic cells and T cell exclusion from the TME.
This pathway appears to be activated in at least 10% of human
cancers [90]. The activation of another pathway, the PI3-
kinase pathway, can inhibit T cell infiltration through loss of
the tumor suppressor PTEN and may represent an additional
mechanism of immune escape [64].

Epigenetic alterations

Emerging evidence indicates that epigenetic modificationmay
play an important role in antigen processing and presentation;
in the proliferation, differentiation and function of T cells; and
in the acquisition of a memory T cell phenotype [45, 91].
Additionally, epigenetic silencing of the genes encoding
CXCL9 and CXCL10 has been proposed to interfere with T
cell migration into tumors [92]. Changes in the chromatin
landscape could therefore be at the basis of T cell exhaustion,
mediating primary resistance or contributing to relapse during
ICI therapy. Epigenetic targeting drugs, such as those
targeting DNA methylation, histone deacetylation, or histone
methylation; have demonstrated promising activity in the pre-
clinical setting [91]. Ongoing clinical trials are testing various
combinations of demethylating agents, hypomethylating
agents, and histone deacetylase inhibitors; in association with
ICI in patients with acquired resistance to immunotherapy [47,
91]. Further results are needed to assess the role of these epi-
genetic modulators in clinical practice.

Tumor-extrinsic factors

Aside from tumor cell-mediated mechanisms of immune sup-
pression, there are numerous factors operating in the TME that
can impact upon the efficacy of immunotherapy agents. A
subset of T cells that is commonly associated with cancer
progression is Tregs [93]. Tregs are known to suppress effec-
tor T cell function via the secretion of inhibitory cytokines
such as IL-10 and TGFβ, or by direct cell-to-cell contact
[45]. IL-10 can affect antigen presentation by reducing the
expression of MHC class II and co-stimulatory molecules on
dendritic cells, thereby preventing the activation of effector T
cells [94]. Pre-clinical studies conducted in mouse models of
cancer demonstrate that in addition to expanding effector T

cells in secondary lymphoid organs, anti-CTLA-4 antibodies
also act to deplete intra-tumoral Tregs via antibody-dependent
cell-mediated cytotoxicity (ADCC) [95–97]. This differential
activity results from higher expression of CTLA-4 on Tregs
relative to effector T cell subsets and enrichment of Fc gamma
receptor (FcγR)-expressing cell subsets within capacity for
ADCC in the TME.

Despite its potentially depleting isotype, the contribution of
ADCC and role of FcγRs in the activity of anti-CTLA-4 has
remained unclear until recently. Two clinical studies have pre-
viously identified a reduction in tumor-infiltrating Tregs post
anti-CTLA-4 therapy [98, 99]. Moreover, in vitro studies
demonstrate that ipilimumab depletes CTLA-4-expressing
Tregs in the presence of FcγR-expressing monocytes and
NK cells, consistent with the predicted binding affinity for
activatory FcγRs [98, 100]. Most recently, a role for Fc effec-
tor function in the activity of human anti-CTLA-4 antibodies
has been confirmed [101]. Importantly, this study suggested
that Treg depletion only appears relevant in the context of an
inflamed TME, explaining the relatively modest response
rates to anti-CTLA-4 compared to the pre-clinical setting.
Further clinical studies targeting Tregs in combination with
ICI are already ongoing [93]. Additionally, there is some in-
dication that epigenetic modulation can be responsible for the
accumulation of Tregs in cancers [91].

The presence of other suppressive cells, such as MDSCs
and TAMs, in the TME has been associated with resistance to
multiple facets of immunotherapy, including ACT, ICI, and
dendritic cell vaccines. Furthermore, MDSCs have been
shown to play a role in promoting angiogenesis, metastasis,
and immune cell suppression. Combinational strategies
targeting this cell subset in association with other immuno-
therapy agents may enhance the clinical benefits derived by
cancer patients [45]. In a recent study, M2-polarized TAMs
were shown to directly interfere with anti-PD1 therapy by
removing anti-PD1 antibodies from the surface of PD-1+ T
cells [102]. Previous clinical studies documented a connection
between high TAM infiltration and poor prognosis [103].
Studies testing the blockade of macrophage colony-
stimulating factor receptor (CSF-1R) in combination with ei-
ther ICI or ACT reported improved tumor regression, indicat-
ing that a reduction of TAMs may restore immunotherapy
efficacy. Clinical trials evaluating the efficacy and safety of
CSF-1R blockade in association with ICI across various solid
tumor types are currently ongoing [45].

Future directions and conclusions

Acquired resistance to cancer immunotherapy is often the re-
sult of multiple immune escape mechanisms. Efforts to iden-
tify universal mechanisms of acquired resistance are unlikely
to be successful. Future efforts should focus upon developing
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biomarker-guided strategies to counteract immune resistance
mechanisms on an individual patient basis, or alternatively,
combination therapies targeting multiple pathways simulta-
neously to prevent the development of acquired resistance.
Potential strategies may include the introduction of drugs
inhibiting immune-suppressive cells or proteins, blockade of
pathways downregulating anti-tumor immunity, modulation
of epigenetic mechanisms, and combination of checkpoint
inhibition [5, 7, 88] with immune pathway stimulators, such
as the stimulator of interferon gene (STING) which promotes
STAT activation in a JAK2-independent manner [66].

In conclusion, although patients treated with cancer im-
munotherapy have the potential to derive substantial ben-
efit, the emergence of acquired resistance poses a signifi-
cant challenge for a considerable proportion of patients. An
improved understanding of the mechanisms underlying ac-
quired resistance and the identification of relevant bio-
markers in each individual is required for the development
of novel therapeutic strategies and improved personalized
cancer immunotherapies [44]. Further studies in larger co-
horts will help elucidate alternative escape pathways.
Current efforts aim to promote long-lasting disease control
for the majority, rather than a select few.
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