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Abstract
The epidermis closely interacts with nerve endings, and both epidermis and nerves produce substances for mutual sustenance.
Neuropeptides, like substance P (SP) and calcitonin gene-related protein (CGRP), are produced by sensory nerves in the dermis; they
induce mast cells to release vasoactive amines that facilitate infiltration of neutrophils and T cells. Some receptors are more important
than others in the generation of itch. TheMas-related G protein-coupled receptors (Mrgpr) family as well as transient receptor potential
ankyrin 1 (TRPA1) and protease activated receptor 2(Par2) have important roles in itch and inflammation. The activation of MrgprX1
degranulates mast cells to communicate with sensory nerve and cutaneous cells for developing neurogenic inflammation. Mrgprs and
transient receptor potential vanilloid 4 (TRPV4) are crucial for the generation of skin diseases like rosacea, while SP, CGRP, somato-
statin, β-endorphin, vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP) can modulate
the immune system during psoriasis development. The increased level of SP, in atopic dermatitis, induces the release of interferon
(IFN)-γ, interleukin (IL)-4, tumor necrosis factor (TNF)-α, and IL-10 from the peripheral blood mononuclear leukocytes. We are
finally starting to understand the intricate connections between the skin neurons and resident skin cells and how their interaction can be
key to controlling inflammation and from there the pathogenesis of diseases like atopic dermatitis, psoriasis, and rosacea.

Introduction

The old term Bneurodermitis,^which indicates atopic eczema or
allergic dermatitis, defines a close relationship between nerves
and skin. It reflects the clinical observation that the development
and the progression of allergic dermatitis is sensitive to emotion-
al stress and environmental stimulation. It has been a
longstanding clinical observation that chronic inflammatory skin
disorders such as atopic dermatitis (AD), psoriasis, and rosacea
are exacerbated by stress [1]. BNeurogenic inflammation^ de-
scribes a mechanism by which sensory nerves contribute to
inflammation [2]. In 1876, Stricker observed the phenomenon
that cutaneous blood flow was increased in innervated areas
when the corresponding dorsal roots were stimulated [3].
Together with similar findings [4], this phenomenon was de-
fined as neurogenic vasodilation [4]. Later, it led to the concept
of neurogenic inflammation, which describes the vasodilation
and protein extravasation caused by inflammatory neuropep-
tides [5].

Both the somatosensory nervous system and the immune
system are essential for the host defense against potential
harmful infection and tissue damage [6]. While the immune
system, which is the traditional host defense system, protects
the host by combacting infective agents and restores tissue
integrity, the somatosensory nervous system helps to avoid
the noxious stimuli by removing the danger. There are abun-
dant nociceptors in the skin which cover and protect the host
from the outer environment. They respond to any noxious
stimuli instantaneously and transduce them to electrical activ-
ity to produce sensation and reflex. Nociceptor neurons can
transmit the action potentials antidromically, from the branch
points to the periphery, as well as orthodromic input from the
periphery to the central nervous system (CNS), which is called
axon reflex [7]. Thus, the neuronal mediators are released
from the depolarized axon terminals to the stimulated area,
enabling a rapid response, well before the immune system is
activated [6].

Skin mechanisms of neurogenic inflammation

Nervous system in skin

One of the major roles of the skin is to sense and respond to
signals from the outer environment as well as protect our
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bodies. Abundant nerve fibers, including autonomic and sen-
sory nerves, are densely distributed over all skin layers. They
can communicate with different cell populations in different
layers of the skin by releasing various types of neuropeptides.
Almost all cutaneous cells express functional receptors for
neuropeptides, through which they receive signals from the
nervous system. In return, skin cells produce neuropeptides
and neurotrophins, which in turn stimulate nerve fibers. This
exchange creates a positive bidirectional feedback loop able to
augment inflammatory response [8–12]. The finding that var-
ious kinds of chronic inflammatory skin disorders, such as AD
and psoriasis, have common features of increased
neurotrophin expression and peptidergic nerve fibers supports
this pathophysiologic phenomenon [8].

In the epidermis, neuropeptides released from the nerve fi-
bers stimulate keratinocytes to produce proinflammatory cyto-
kines such as interleukin (IL)-1α, IL-6, and IL-8 [13–16]. On
langerhans cells (LCs) in the epidermis, neuropeptide sub-
stance P (SP) enhances their migration and antigen presenta-
tion, leading to promotion of allergic sensitization [17–19]. In
the dermis, sensory nerve fibers are intermingled with norad-
renergic and acetylcholinergic nerve fibers containing addition-
al neuropeptides such as neuropeptide Y (NPY) or vasoactive
intestinal peptide (VIP). Sensory nerve fibers are commonly
found in close contact with mast cells, blood vessels, or hair
follicles in the dermis. Dermal mast cells have a particularly
close relationship with the nervous system in terms of neuro-
genic inflammation. Neuropeptide SP released from the senso-
ry nerve endings induces mast cell degranulation and subse-
quent proinflammatory effects of mediators such as histamine
[8, 9, 20]. In turn, histamine, released from mast cells, evokes
the release of neuropeptides acting on the histamine receptors
on the sensory nerve endings, which establish a bidirectional
loop between mast cells and sensory nerves. Moreover, SP
induces vascular endothelial growth factor (VEGF) release
from mast cells, which promotes endothelial cell proliferation
and vascularization, facilitating the inflammatory process.
Fibroblasts in the dermis also express receptors for SP as well
as SP production, both of which are enhanced after exposure to
SP or interferon (IFN)-γ [21, 22]. Thus, neuropeptides and
neurotrophins contribute to the exaggeration of the inflamma-
tory process in acute skin inflammation which overexpresses
SP, nerve growth factor (NGF), and IFN-γ and later contribute
to fibrosis in chronic skin inflammation [5].

Sensory nerve and neuropeptides

Neurogenic inflammation is mediated by the release of neu-
ropeptides such as SP and calcitonin gene-related protein
(CGRP). When sensory nerves are stimulated by certain stim-
uli, they release biologically active neuropeptides to transfer
signals. SP and CGRP are the classic neuropeptides which act
directly on the vascular endothelial cells and smooth muscle

cells, thereby mediating vascular effects [23, 24]. SP increases
vascular permeability with subsequent plasma extravasation
and edema [23, 24]. The release of SP increases intercellular
adhesion molecules (ICAMs) and vascular cell adhesion mol-
ecules (VCAMs) on vascular epithelial cells [25] and induces
VEGF release from mast cells [26, 27], which facilitate
hypervascularization and infiltration of inflammatory cells.
CGRP is a potent microvascular vasodilator which contributes
to the majority of the neurogenic vasodilation and is involved
in recruitment of inflammatory cells [28, 29]. It was shown
that CGRP enhanced LC antigen presentation on Th2 re-
sponses, while inhibiting presentation for the Th1 response,
thereby shifting LCs toward Th2 responses [30]. Both SP and
CGRP act through their subsequent G-protein-coupled recep-
tor (GPCR), neurokinin (NK)-1 receptor for SP, and the
CGRP receptor complex for CGRP [31, 32]. Recently, an
NK-1 antagonist, aprepitant, was demonstrated to inhibit itch
in AD mouse models and showed efficacy in chronic pruritus
in humans [33]. The selective CGRP receptor antagonist as
well as anti-CGRP antibodies have been developed and are
currently under clinical trial showing promising results for
migraine in which CGRP is the critical player in the patho-
genesis [34]. Like CGRP, pituitary adenylate cyclase-
activating polypeptide (PACAP) and VIP also inhibit LC an-
tigen presentation for the generation of Th1 cells while en-
hancing presentation for Th2 responses. Also, PACAP and
VIP enhance presentation for differentiation of Th17 cells,
thereby shifting Th cells toward Th17 as well as Th2 re-
sponses [35] (Fig. 1).

PARs and Mrgprs

The release of neuropeptides from the sensory nerve is trig-
gered by a rise in the cytosolic Ca2+ concentration [36].
Cutaneous sensory nerves express GPCRs in addition to
voltage-gated Ca channels, the activation of which increase
cytosolic Ca2+ concentration. There are five specific GPCRs
that are mainly involved in cutaneous neurogenic inflamma-
tion, which includes protease-activated receptors 2 and 4
(PAR-2 and PAR-4) andMas-related G-coupled protein recep-
tors C11, A3, and X (MrgprC11, MrgprA3, and MrgprX)
[37–41]. Calcium channels such as nociceptive transient re-
ceptor potential vanilloid 1 (TRPV1) and transient receptor
potential ankyrin 1 (TRPA1) co-localize with them [42].
PAR-2 is involved in pruritus and various skin diseases such
as atopic dermatitis [43, 44] while PAR-4 is involved in edema
formation, leukocyte recruitment, and analgesia [45–49].
Mrgprs are shown to be involved in histamine-independent
itch pathways such as chloroquine-induced [50] or bovine
adrenal medulla (BAM) 8–22-induced pruritus [51]. In the
Mrgpr family, there are nine subfamilies including MrgprA
to MrgprH and MrgprX [52]. Among them, MrgprA3, C11,
and X1 are known to be involved in peripheral itch
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transduction and scratch behavior. MrgprX1 is expressed on
mast cells while MrgprA3 and C11 are located on the sensory
nerves. This is the only case discovered until now that Mrgpr
is expressed in non-neuronal cells [53]. Mrgpr activation on
mast cells strongly evokes scratch behavior to itch which sub-
sequently results in skin barrier disruption and loss of immune
homeostasis in skin. MrgprA3 and C11, co-localized with var-
ious neuropeptides, can sensitize TRPV1 and TRPA1 channels
in sensory neurons and induce cellular secretion of neuropep-
tides [50, 51]. The activation of MrgprX1 degranulates mast
cells to communicate with sensory nerve and cutaneous cells
for developing neurogenic inflammation [54].

TRP channels

Cationic channels expressed on the sensory nerve endings in-
clude some TRP channels, which are involved in neuropeptide

release. TRPV1 is a nociceptive cationic channel responsive to
high temperature (> 43 °C), and capsaicin is its natural agonist
[55]. When TRPV1 is activated by these direct activators, Ca2+

influx is initiated and neuropeptides such as SP and CGRP are
released to induce neurogenic inflammation. Like PAR and
Mrgpr, TRPV1-mediated Ca2+ influx in skin can regulate proin-
flammatory gene expression to affect immune cells, in addition
to neuropeptide release. In addition to the sensory nerve, TRPV1
is also found in cutaneous cell functioning as a sensor for pain
and chemical stimuli, including keratinocytes,mast cells, dendrit-
ic cells, sebocytes, dermal blood vessels, hair follicles, and sweat
glands [56]. In endothelial cells and smooth muscle cells,
TRPV1-mediated Ca2+ influx induces vasodilation by releasing
nitric oxide (NO). Meanwhile, TRPA1 is a ligand-gated non-
selective Ca2+ channel which responds to cold thermal sensation
(< 17 °C), contrary to TRPV1. TRPA1 is localized to approxi-
mately 60–75% of sensory C fibers, which are also TRPV1-

Fig. 1 Densely distributed nerve fibers in skin communicate with mast
cells, endothelial cells, keratinocytes, Langerhans cells, and fibroblasts.
By releasing neuropeptides, such as substance P (SP) or calcitonin gene-
related receptor protein (CGRP), neurons activate skin cells that, in return,
release histamine or proinflammatory cytokines—which activate sensory
nerve terminals generating a bidirectional positive feedback loop that

results in increased inflammation. Abbreviations: transient receptor
potential cation channel subfamily V member 1 (TRPV1); transient
receptor potential ankyrin 1 (TRPA1); G protein coupled receptors
(GPCR); protease activated-receptor 2 (PAR-2); protease activated
receptor 4 (PAR4) A13 receptor family (A13, X)
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positive [57]. Topical application of cinnamaldehyde, a TRPA1
agonist, in human skin induces significantly increased itch sen-
sation, which implies a central role for TRPA1 in the itch mech-
anism [58]. TRPA1 has been shown to play a critical role in itch,
including endothelin (ET)-1-mediated itch and chloroquine-
induced itch [51, 58, 59] while TRPV1 has shown a contradic-
tory role in itch [60–62]. TRPA1 has beenwidely investigated on
its role in chronic skin inflammation. In addition to thermal stim-
uli, several inflammatory mediators such as growth factors,
bradykinins, proteases and thymic stromal lymphopoietin
(TSLP) have been found to act on TRPA1 indirectly [63–65].
TSLP, a central cytokine in Th2-mediated inflammation such as
AD, has recently been found to activate TRPA1 by binding a
specific receptor, the TSLP receptor (TSLPR), on the sensory
nerve in the skin of atopic dermatitis patients [66]. In addition,
TRPA1 plays an important role in Th2 cell-dependent itch me-
diated by the IL-31 receptor expressed on sensory nerves. In a
mouse model of AD of transgenic mice overexpressing IL-13,
itching was significantly reduced in TRPA1 antagonist-treated
mice [67]. Therefore, TRP channels, especially TRPA1, are con-
sidered to act like a Bgatekeeper^ which mediates cytokine sig-
naling of cutaneous inflammation into sensory nerve activation
[68–70].

Skin diseases with neurogenic inflammation

Neurogenic inflammation in rosacea

Rosacea is a chronic inflammatory skin disorder which is rep-
resented by facial flushing, telangiectasia, and inflammatory
papules and pustules on the central location of the face. It has
heterogeneous clinical manifestations depending on subtypes:
erythematotelangiectatic rosacea (ETR) which has non-
transient episodes of flushing and persistent central facial ery-
thema, papulopustular rosacea (PPR) which has transient pap-
ules and pustules in addition to the characteristics seen in ETR,
phymatous rosacea which has a thickened skin with irregular
surface nodularity, and lastly, ocular rosacea which accom-
panies characteristic ophthalmic symptoms [71]. Although the
pathogenesis of rosacea is not fully elucidated, dysregulation of
the innate immune system, imbalance of commensal skin mi-
crobiota, and abnormal neurovascular signaling are considered
to be implicated in the development of rosacea. Trigger factors
of rosacea such as exposure to sunlight, heat, or cold; alcohol;
spicy foods; or exercise can activate peripheral sensory nerve
endings, which implies the particular role of neurogenic inflam-
mation in the pathogenesis of rosacea [71].

Affected rosacea skin has a significantly lower threshold for
heat and chemicals compared to non-affected skin, which de-
fines it as sensitive skin [72]. The density of the sensory neuron
is increased in the ETR subtype [73]. In addition, the density of
TRP ion channels is increased on the sensory neurons and blood

vessels as well as immune cells in all subtypes of rosacea [74,
75]. Dermal immunolabeling of TRPV2 and TRPV3 and gene
expression of TRPV1 are significantly increased in ETR. PPR
showed an enhanced immunoreactivity for TRPV2 and
TRPV4, and phymatous rosacea for TRPV3 and TRPV4 [74].
Each subtype of TRPV has different functions, respectively:
TRPV1 has a role in vasoregulation and nociception and acti-
vated by capsaicin, heat, and inflammation; TRPV2 in innate
immunity, nociception, inflammation, vasoregulation, and heat
sensing; and both TRPV3 and TRPV4 in heat sensing [76–78].
Beyond TRPV1–4, TRPA1 has been shown to be related to
pathogenesis of rosacea. TRPA1 is activated by spices such as
cinnamaldehyde and mustard oil as well as thermal stimuli. In
mouse experiments, topical cinnamaldehyde induced vasodila-
tion in a TRPA1-dependent mechanism, which could be in-
volved in the flushing phenomenon in rosacea patients [79].
TRPA1 can also sense oxidants, which could support the role
of reactive oxygen species (ROS) in the development of rosacea
[80]. In rat neurons, TRPA1 is co-localized with PAR-2 which
can be activated by proteases to induce inflammation in the
human skin [63]. Therefore, it is supposed that the increased
amount of serine protease in rosacea might induce TRPA1-
mediated inflammation via upregulation of PAR [63].

Meanwhile, neuropeptides such as PACAP, SP, VIP, and
CGRP are increased in rosacea [81, 82]. VIP and PACAP, as
well as CGRP, play as potent vasodilators, acting on the smooth
muscle cells in arterioles, while SP is critical for edema via the
NK-1 receptor on postcapillary venules in rosacea [83]. PACAP
can also stimulate NO release from endothelial cells which
results in indirect vasodilation [84]. Neuropeptides also activate
mast cells to release histamine which induces vasodilation and
tryptase which is a chemotactic agent for fibroblasts and matrix
metalloproteinases (MMPs), contributing to fibrosis in rosacea
[85, 86]. In addition, neuropeptides stimulate IL-1β production
and activate leukocyte migration via upregulation of VCAMs
in rosacea [25, 87]. There is literature that shows promising
efficacy of intradermal botulinum toxin injection for treating
refractory erythema and flushing in patients with rosacea,
which needs further investigation [88].

Neurogenic inflammation in psoriasis

Psoriasis is one of the common chronic inflammatory skin
disorders with the prevalence ranging from 0.5 to 11.4% in
adu l t s wo r l dw ide [89 ] . I t i s cha r a c t e r i z ed by
hyperproliferation of abnormally differentiated keratinocytes
and cutaneous immune cell infiltration including T cells, den-
dritic cells, and neutrophils. Clinically, psoriasis manifests as
well-demarcated red indurated plaques with silvery thick
scales over any body area, especially on the prominence such
as elbows or knees. The pathogenesis of psoriasis has been
rapidly evolving in recent years, in which the IL-23/Th17 cell
axis plays a major role in close interaction with keratinocytes
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[90]. However, there has been multiple literature reporting on
clinical symptom changes in psoriatic patients after having
acquired central or peripheral nerve damage. The patients
showed spontaneous clearance or improvement of the skin
lesion which was limited to the area affected with nerve dam-
age while the non-affected area did not [91–99]. Similarly, in a
murine model of psoriasis, cutaneous denervation by traumat-
ic nerve injury resulted in reduction of clinical symptoms of
psoriasis [100]. These observations imply that the nervous
system may be critical for the pathogenesis of psoriasis.

Immunohistochemical studies in psoriatic patients display
an altered expression of various neuropeptides and of their
receptors, as well as a marked proliferation of the cutaneous
nerve in the skin [101]. These neuropeptides include SP,
CGRP, somatostatin, β-endorphin, VIP, and PACAP, which
can modulate the immune system during psoriasis develop-
ment [101]. SP initiates the inflammatory process, leading to
proliferation of specific T-lymphocytes and mast cell degran-
ulation, in the early stages of psoriasis [102, 103]. CGRP has a
role as a potent vasodilator in the pathogenesis of cutaneous
inflammation in psoriasis, and synergizes with SP [104]. VIP
modulates mast cell degranulation and the production of pro-
inflammatory cytokines, such as IL-6, IL-8, and RANTES
(regulated upon activation, normal Tcell expressed and secret-
ed, also known as CCL5), in addition to vasodilation, all of
which are involved in the pathogenesis of psoriasis [105].
Aberrant expression of these neuropeptides is especially im-
portant for pruritus in psoriasis, which is present in 60–90% of
patients with psoriasis [106]. There is a significant correlation
between the number of SP-positive nerve fibers and NK-2 re-
ceptor-immunoreactive cells in the psoriatic skin lesion and in-
tensity of pruritus [107]. Psoriasis patients with pruritus also
showed higher expression of receptors for SP and CGRP com-
pared to non-pruritic patients, while the immunoreactivity of SP,
CGRP, VIP, and PACAP did not show significant difference
[108]. In addition, the expression of NGF and its receptors is
upregulated in pruritic lesions of psoriasis skin and correlated
with the intensity of pruritus [108, 109]. NGF plays a role in
modulating nerve innervation and neuropeptide release. It is mi-
togenic to endothelial cells, activates lymphocytes, degranulates
mast cells, and induces keratinocyte hyperproliferation, all of
which constitute the development of psoriasis [110, 111]. On
the contrary, semaphorin-3A, which inhibits neuronal outgrowth
of sensory C fibers, is downregulated in the dermis of pruritic
psoriasis skin lesion and negatively correlatedwith pruritus [112,
113]. Thereby, upregulated NGF with downregulated
semaphorin A might contribute to the hyperinnervation of sen-
sory C fibers in psoriatic lesion which clinically induces pruritus.

The clinical trials of botulinum toxin A administration to
treat psoriasis by inhibiting neuropeptide release has been re-
ported in a few studies. Zanchi et al. reported significant effi-
cacy of botulinum toxin A injection in the patients of inverse
psoriasis, a variant of psoriasis which affects the intertriginous

area [114]. The patients showed favorable clinical improve-
ment although it is possible that the observed improvement is
due to reduced sweating and maceration in the flexural area
due to the anti-hydrotic effect of botulinum toxin and not from
the inhibition of neurogenic inflammation. A study using mu-
rine model of plaque psoriasis showed marked reduction of
acanthosis and lymphocyte infiltration after botulinum toxin
A injection [115]. However, recent clinical trials of botulinum
toxin A injection on the patients with plaque psoriasis did not
show significant efficacy compared with control [116].

Neurogenic inflammation in atopic dermatitis

AD is a chronic relapsing inflammatory skin disease which is
characterized by skin barrier disruption and immunological al-
teration. Clinically, it manifests as eczematous skin eruptions
with severe pruritus with continued flares and remission in
chronic course. AD most frequently occurs in infancy or child-
hood with 10–20% prevalence worldwide, which decreases to
2–3% in adulthood [117]. Although the etiology of AD is not
fully elucidated, it is considered a multifactorial disorder with
genetic and environmental background. However, one of the
key histological findings of AD is the excessive density of cu-
taneous sensory nerve fibers in skin lesion, which implies the
role of innervation and neuropeptides in the pathogenesis of AD
[118, 119]. The skin of AD lesion is hyper-innervated with
increased SP- and CGRP-positive nerve fibers in the epidermis
and papillary dermis with increased mast cell-nerve fiber con-
tacts, compared to the non-lesional skin [120–122]. NGF and its
receptor are highly upregulated in the keratinocytes of AD pa-
tients compared with healthy keratinocytes, which contribute to
neurite overgrowth and the increased proportion of CGRP-
positive neurite length [119, 123]. NGF levels are also increased
in plasma of AD patients and correlate with clinical severity and
eosinophil counts [124]. In the NC/Nga AD mouse model, the
topical high-affinity NGF receptor inhibitors improved clinical
symptoms and decreased the epidermal density of the nerve
fibers [125]. In addition to NGF, neurotrophin-4 production is
increased in the epidermis of AD lesion [126] and the brain-
derived neurotrophic factor (BDNF) level is also elevated in
plasma and eosinophils from AD patients, which is chemotactic
for eosinophils [125]. On the other hand, the production of
semaphorin 3A, the epidermal axon repulsion factor, is de-
creased in atopic keratinocytes, which consequently contributes
to the hyper-innervation in AD skin together with increased
neurotrophins [127]. The alteration of epidermal Sema3A and
NGF levels with the modulation of epidermal innervation was
demonstrated after phototherapy in AD patients [118]. Nerve
fiber sprouting has also been observed in the skin lesions of
patients with nummular eczema and allergic contact eczema
[120, 128]. The plasma levels of neuropeptide SP are increased
in AD patients, and remain elevated even after AD remission
[129]. The increased level of SP, in AD, induces the release of

Semin Immunopathol (2018) 40:249–259 253



IFN-γ, IL-4, TNF-α, and IL-10 from the peripheral blood
mononuclear leukocytes [130, 131].

The plasma levels of CGRP are not elevated in AD pa-
tients although they are significantly higher in AD patients
with intense pruritus compared to the AD patients without
pruritus [129]. CGRP upregulates IL-13 and human leuko-
cyte antigen (HLA)-DR expression in circulating cutaneous
lymphocyte-associated antigen (CLA)-positive T cells in
AD patients, which does not in healthy controls [132].
CGRP also increases the IL-13/IFN-γ ratio after culture,
which supports its immunomodulatory ability in AD [132].

In a mouse model of AD, stress deteriorated AD symptoms
with increased neurogenic inflammation presented by mast
cell degranulation, interstitial neuropeptidergic dense core
granules, mast cell apoptosis, and endothelial gapping [133].
However, in mice lacking the NK-1 SP receptor, AD worsen-
ing was not observed, underlining the importance of NK-1
receptors on the sensorial terminations. Interestingly, the total
CD4+ cell number was not changed by stress but the cytokine
profile shifted toward Th2 in the skin, which is allergy-rele-
vant. Taken together, stress exacerbates AD via SP-dependent
neurogenic inflammation and subsequent shifting of local cy-
tokine milieu toward Th2 [133]. In accordance with these
findings, SP-induced scratch behavior in mice is mediated
by NK-1 receptor activation [134, 135]. The administration
of NK-1 receptor antagonist BIIF 1139 CL decreased
scratching behavior in mouse models [136]. Aprepitant
(Emend™), a selective high-affinity NK-1 receptor antagonist
which was originally developed for the prevention of
chemotherapy-induced emesis, significantly improved pruri-
tus in patients with chronic pruritus including AD [33, 137,
138]. A mouse model of AD showed that systemic aprepitant
administration decreased both the serum IgE levels and the
density of SP-positive nerve fibers in lesional skin [139,
140]. Thus, pharmacologic interference of SP-mediated neu-
rogenic inflammation can be a promising alternative therapeu-
tic target in the treatment of recalcitrant AD.

Neurogenic inflammation in prurigo nodularis

Prurigo nodularis (PN) is a chronic skin condition characterized
by intensely pruritic lichenified or excoriated papules or nod-
ules. It is considered as a localized form of chronic dermatitis
representing a cutaneous reaction pattern to repetitive
scratching or rubbing due to pruritus. Many patients of PN have
a personal or family background of atopic dermatitis and ele-
vated serum immunoglobulin E (IgE) level. Systemic diseases
which potentially cause pruritus such as uremia and other pru-
ritic skin conditions including insect bites and scabies can also
trigger PN [141]. The histology of PN frequently shows neural
hyperplasia in dermal nerves as well as hyperkeratosis, irregular
acanthosis, fibrosis of papillary dermis with vertically arranged
collagen fibers, and non-specific inflammatory cell infiltration

[142]. It is increasingly accepted that such neural proliferation
and neurogenic inflammation play an important role in initiat-
ing and maintaining chronic pruritus possibly leading to PN,
although its exact pathogenesis is not fully elucidated.

Previous studies about PN showed that NGF and CGRP are
main mediators implicated in these processes [143, 144]. An
electron microscopy study demonstrated that CGRP-
immunoreactive nerve fibers were increased in number in the
dermis of PN lesions and were co-localized with mast cells and
eosinophils which were also increased in PN compared to nor-
mal skin. On the contrary, in the area without nerve fibers, there
was neither eosinophil nor mast cells [144]. This indicates the
involvement of a close interaction between the neuropeptide
CGRP and cutaneous immune cells such as mast cells or eosin-
ophils in the pathogenesis of PN. CGRP is an essential mediator
of vasodilation in the skin except for the adrenergic and cholin-
ergic neurotransmitters, which may contribute to vasodilation
observed in PN. CGRP can activate mast cells directly through
CGRP receptors on the mast cell surface, which may lead to the
bidirectional positive feedback loop between nerve fibers and
mast cells [20]. CGRP, together with SP, increases eosinophil
chemotaxis, activation, and survival [43]. Meanwhile, eosino-
phils can produce NGF themselves. NGF, which is primarily a
neurotrophic factor, also has a proinflammatory effect directly
or indirectly, by enhancing neuropeptide release. NGF, in turn,
can activate eosinophils to release proinflammatory mediators.
NGF is also associated with TRK1 activation resulting in in-
creased TRPV1 expression on nerve fibers and subsequent re-
lease of SP and CGRP, thereby establishing a vicious cytokine
Bpro-itch^ cycle [43]. This is supported by a immunohisto-
chemistry study that shows that NGF- and tyrosine kinase A
(trkA)-immunoreactive cells are increased in the dermis of PN
lesion [143]. However, like the CGRP-immunoreactive nerve
fibers, these cells are observed in the dermis, not in the epider-
mis. Although the main source of cutaneous NGF is
keratinocytes, it is assumed that NGF-producing dermal cells,
such as mast cells, eosinophils, and lymphocytes, can be the
source of increased NGF in PN [143].

Future challenges in skin neurogenic
inflammation

Much time has passed since the term Bneurodermatitis^ was
first coined in 1876. Many phenomena have since been de-
scribed in great detail, and the term Bstress,^ when applied to
skin inflammation, has been translated into molecular pathways
and is not anymore just a psychoanalytic definition. Now we
know that the epidermis closely interacts with nerve endings
and that both epidermis and nerves produce substances for mu-
tual sustenance. Neuropeptides, like SP and CGRP, are pro-
duced by sensory nerves in the dermis; they induce mast cells
to release vasoactive amines that facilitate infiltration of
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neutrophils and T cells. We know that some receptors are more
important than others in the generation of itch. Mrgprs as well
as TRPA1 and Par-2 [37–41] have important roles in itch and
inflammation. The activation of MrgprX1 degranulates mast
cells to communicate with sensory nerve and cutaneous cells
for developing neurogenic inflammation [54]. Mostly impor-
tantly, we now know that Mrgprs and TRPV4 are crucial in
rosacea [145], while SP, CGRP, somatostatin, β-endorphin,
VIP, and PACAP can modulate the immune system during
psoriasis development [101] and the increased level of SP, in
AD, induces the release of IFN-γ, IL-4, TNF-α, and IL-10 from
the peripheral blood mononuclear leukocytes [130, 131].

We are finally starting to understand the intricate connections
between the different skin cell types while new challenges are
rising. The borders of our skin are no longer marked by the
limits of the epidermis but extended to communities of bacteria
that live in symbiosis with us. Our microbiome can influence
nerve endings, epidermis reactivity [146], and even the matura-
tion of cells that are essential to pruritus such as mast cells [147,
148].

The essential role that the peripheral nerve system plays in
shaping skin inflammation suggests that many skin diseases re-
flect an imbalance between the function of the epidermis, der-
mis, and the sensory nerves. An abnormal skin microbiome,
along with the presence of pathogens, will likely add an addi-
tional layer of complexity. Continued research studies are re-
quired to better understand these most recent complex clinical
interactions.
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