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Abstract
Obesity and the metabolic syndrome (MS) are two of the pressing healthcare problems of our time. The MS is defined as
increased abdominal obesity in concert with elevated fasting glucose levels, insulin resistance, elevated blood pressure, and
plasma lipids. It is a key risk factor for type 2 diabetes mellitus (T2DM) and for cardiovascular complications and mortality. Here,
we review work demonstrating that various aspects of coagulation and hemostasis, as well as vascular reactivity and function,
become impaired progressively during chronic ingestion of a western diet, but also acutely after meals. We outline that both
T2DM and cardiovascular disease should be viewed as inflammatory diseases and describe that chronic overload of free fatty
acids and glucose can trigger inflammatory pathways directly or via increased production of ROS. We propose that since
endothelial stress and increases in platelet activity precede inflammation and overt symptoms of the MS, they are likely the first
hit. This suggests that endothelial activation and insulin resistance are probably causative in the observed chronic low-level
metabolic inflammation, and thus both metabolic and cardiovascular complications linked to consumption of a western diet.
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Introduction

Recent rise in the incidence of obesity has led to a similar
increase in the incidence of type 2 diabetes mellitus
(T2DM), which constitutes a metabolic disorder affecting
more than 10% of the US population [1]. In addition, T2DM
is considered to be the fifth-leading cause of death worldwide,
and due to its associated co-morbidities, which require life-
long chronic treatment, it is one of the most costly diseases for
health care systems. Costs directly related to T2DM range
from 2% up to 20% of total health care costs, which adds up
to approximately $400 billion in the USA, alone [1].

Type 1 diabetes mellitus (T1DM) in contrast to T2DM is
normally not associated with obesity, but rather presents an
early onset autoimmune disorder, which leads to ablation of
beta-cells and loss of insulin secretion. Consequently, T1DM
can be defined as a hypoinsulinemic, hyperglycemic state,
while T2DM can be defined as a hyperinsulinemic, hypergly-
cemic state. Hyperglycemia and the associated co-morbidities,
which arise as a consequence of chronic high glucose levels,
therefore are considered to be common features of both
T2DM and T1DM. Both T1DM and T2DM are important risk
factors for the development of different types of vascular dis-
eases such as myocardial infarction, stroke, and other types of
peripheral vascular diseases (CVDs) [2]. Diabetic patients
thus are much more likely to develop heart disease and stroke
than individuals without diabetes mellitus. Furthermore, car-
diovascular complications are the leading cause of morbidity
and mortality among patients with T1DM and T2DM [3].

The metabolic syndrome (MS) consists of several intercon-
nected physiological, biochemical, clinical, and metabolic fac-
tors which increase the risk for CVD and T2DM as well as all-
cause mortality (reviewed in [4]). Its clinical identification is
based on measures of insulin resistance concomitant with el-
evated plasma insulin levels, visceral adiposity, atherogenic
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dyslipidemia (consisting of elevated triglycerides and LDL-
cholesterol and reduced HDL-cholesterol), endothelial dys-
function, elevated blood pressure, and a hypercoagulable
state. It is nowadays well accepted that a pro-inflammatory
state is one component of the MS. Moreover, recent studies
have shown that an interrelation between inflammation and
metabolic abnormalities in T2DM can be a causative factor for
vascular damage and it has been suggested that one indicator
of these effects might be endothelial dysfunction in conjunc-
tion with a pro-coagulant state [5]. Coagulation is the process
by which blood clots, with the primary goal of achieving
hemostasis. Essential to clot formation is the formation of
fibrin, the protein-mesh that forms the physical base of the
blood clot [6]. Another central component of the blood clot
are platelets, which are small rotund fragments of megakaryo-
cytes that circulate in the blood. They become activated
through a variety of coagulatory signals. Upon activation, they
become star-shaped, adherent to activated endothelium, fibrin/
fibrinogen, and each other, and they release a variety of
coagulatory cytokines and enzymes participating in clot for-
mation [7].

Since inflammation is part of an immune response to infec-
tion or injury, which crucially involves increased vascular
permeability to immune cells, and immune cell invasion of
interstitium to execute clearance of pathogens [8], it is not
surprising that there is considerable functional overlap be-
tween the processes of platelet activation and coagulation,
and inflammation. While it is clear that endothelial cells con-
tribute to inflammatory responses, the role of hemostatic pro-
cesses and in particular platelets in instigating or mediating
immune responses has only begun to be elucidated relatively
recently [9]. Platelets contribute to inflammatory processes by
a variety of small molecule and protein cytokines they release,
but they also play an important physical role, in particular in
facilitating attachment of immune cells such as neutrophils
and in participating in the formation if neutrophil extracellular
traps [10, 11].

Interestingly, both T1DM as well as the MS and T2DM
constitute an increased risk for cardiovascular disease, present
with elevated glucose levels as well as an impaired plasma
lipid profile [12], and are thought to be causally linked to
inflammatory processes [13]. With that in mind, here we ex-
amine reports of increased coagulation and platelet activation,
as well as endothelial stress and inflammation, in diabetic
states, and look at their temporal dynamics during metabolic
disease to infer possible insight into the etiology of metabolic
inflammation and the MS.

Diabetes as a hypercoagulable state

Vascular complications, which are a common feature of
T1DM and T2DM can be due to many factors. On the one

hand passive diffusion of glucose into endothelial cells can
lead to increases in intracellular glucose concentrations, which
in turn can cause increased oxidative stress arising from oxi-
dative degradation of glucose metabolites. Similarly, ad-
vanced glycosylation endproducts (AGEs), which are the re-
sult of intracellular hyperglycemia, have been shown to be
involved in mediating vascular damage. Furthermore, hyper-
glycemia can be the cause for glycation of proteins, which can
promote macro- and microvascular damages. Lastly, it has
been reported that hyperglycemia leads to a hypercoagulable
state [14].

The exact mechanisms which link hyperglycemia and an
increased propensity for coagulation are not completely un-
derstood. Already in 1979, Jones et al. [15] reported that fi-
brinogen survival was reduced in diabetic patients in a hyper-
glycemic state and was improved when euglycemia was
achieved. Furthermore, the authors could show that heparin
infusion could normalize the fibrinogen kinetics of hypergly-
cemic patients suggesting that platelet activation is altered. In
1983, Hughes et al. [16] could show that in 37 type 2 diabetic
patients with no clinical evidence of retinopathy or vascular
disease, approximately half showed hyperactive platelets and
that the effect could be restored when euglycemia was
achieved. The fact that these studies were conducted in pa-
tients who had not shown any presence of overt vascular dis-
ease suggested that hypercoagulationmight actually be a caus-
al factor in the development of vascular complications. Since
then, many studies have reported that hypercoagulation is ob-
served in diabetic patients and often precedes the onset of
symptoms related to vascular damage [17–19]. Nevertheless,
it was shown that in type 1 diabetic patients with established
microvascular angiopathy, an improvement of glycemic con-
trol by a strict regime of insulin infusions did not improve
some features of platelet function [20]. Furthermore, it was
shown that increased platelet activation was observed in dia-
betic patients with microvascular angiopathy, independent of
glycemic control [21], suggesting that other factors besides
hyperglycemia can contribute to the alterations in platelet
functionality. Already in 2001, Assert et al. [18] could show
that short-term hyperglycemia without overt T2DM could
lead to the activation of PKC in platelets, suggesting that
glucose itself drives platelet activation. In 2003, Keating
et al. [22] demonstrated that glucose in healthy subjects was
able to induce platelet aggregation and to potentiate the effect
of ADP, suggesting that not long term but rather acute alter-
ations due to increased glucose concentrations can alter plate-
let functionality. In line with this, it has been recognized that
platelets can also become activated in the postprandial phase
in insulin resistant or diabetic patients but not healthy individ-
uals, which is thought to be related to the extent of hyperemia
[23, 24]. Interestingly though, a recent study in T1DM and
T2DM individuals, which analyzed postprandial platelet acti-
vation, could demonstrate that this effect was only observed in
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T2DM subjects, suggesting that insulin is involved in the
platelet activation events [25]. Another recent study, which
compared platelet properties in T1DM vs T2DM patients
[26], could show a decrease in platelet count and mass in
T2DM vs T1DM patients. Taken together, there seems to be
a correlation between increased plasma glucose and/or high
spikes in plasma glucose, as observed in T1DM and T2DM,
low insulin levels or decreased insulin sensitivity, and a higher
propensity for platelets to become activated and blood clot
formation, suggesting a link between these conditions.

Insulin signaling in endothelial cells

Given that the key defining parameters of the MS are cardio-
vascular impairments in conjunction with insulin resistance,
and since people suffering from theMS often have chronically
elevated plasma insulin levels, it is worthwhile to examine the
role of insulin in healthy endothelium. Besides the well-
described role of insulin in glucose uptake via GLUT4 trans-
location in its target tissues muscle and adipose tissue, insulin
also plays an important role in vascular function, in particular
as a vasodilator [27]. The insulin receptor (IR) is expressed on
endothelial cells, and endothelial-specific knockout of IR
causes impairments in regulation of blood pressure and vas-
cular tone, even though no major effects on glucose homeo-
stasis were reported [28]. Insulin exerts its vasodilatory role
primarily via modulation of nitric oxide (NO) production. NO,
a free radical, which contributes to oxidative stress, is an im-
portant vasodilator released by endothelial cells that can dif-
fuse through the plasma membrane and activates soluble
guanyl cyclase leading to increased cGMP levels, which in
turn promotes vascular smooth muscle relaxation [29].
Fitting with this vasodilatory role, NO also has a pronounced
inhibitory effect on platelet activation [30]. Besides this, it is
involved in immune cell function, where it is utilized as a toxic
radical, and as a neurotransmitter, functions not covered here.
NO is produced by the action of nitric oxide synthases (NOS),
which as dimers catalyze the reaction of L-arginine with O2 to
L-citrulline and NO, by accepting electrons from NADPH via
the cofactor tetrahydrobiopterin (BH4) [31]. In an AKT-
dependent manner, insulin causes the phosphorylation of en-
dothelial nitric oxide synthase (eNOS) at S1177 (1178 in
humans), leading to increased NO synthesis and release [32,
33]. This vasodilatory action of insulin seems to be function-
ally linked to insulin’s ability to reduce blood glucose, since
several groups have shown that rate of muscle perfusion mod-
ulates glucose uptake and that insulin’s vasodilatory action
efficacy correlates with its ability to elicit glucose clearance
[34–36]. From a systemic standpoint, endothelial insulin ac-
tion also plays an important role in delivering insulin to its
target tissues. Originating from the pancreas, in order to reach
its target cells, insulin must pass the endothelium. This trans-

endothelial transport of insulin has been studied primarily in
the context of muscle [37–39], and brain [40–42], and has
been shown to be saturable, dependent on the insulin receptor,
and to involve AKT signaling and insulin receptor
endocytosis.

There is evidence that a variety of impaired endothelial
functions precede the occurrence of pronounced systemic in-
sulin resistance and overt T2DM. Among the reported de-
creased insulin signaling events is endothelial insulin trans-
port, which has been shown to be decreased in the brains of
dogs after 5 weeks of a high-fat diet [43]. In terms of muscle
insulin signaling, there are mixed reports. While some groups
describe reduced insulin transport through the endothelium
contributing to decreased insulin action at the level of muscle
cells [44], others report that trans-endothelial transport is not
limiting in muscle insulin signaling [45]. Nonetheless, while
impaired insulin transport to the muscle might play a role in
insulin resistance, direct impairment at the level of the recep-
tor in the muscle has been unequivocally established [46].

While long-term exposure to obesogenic stimuli and the low
level of inflammation can cause insulin resistance in all insulin
responsive tissues, the question whether endothelial insulin re-
sistance might occur independently or indeed be a driver for
systemic insulin resistance remains unanswered. One key paper
could show that endothelial insulin resistance, as measured by
insulin’s ability to stimulate eNOS phosphorylation, occurs
weeks before detectable systemic and in particular muscle or
adipose tissue insulin resistance [47]. If one considers endothe-
lial insulin resistance as an early event in the development of
theMS, it will remain to be resolved how ingestion of a western
diet can impair endothelial insulin action.

Post-prandial effects
on NO-dependent vasodilation

Platelet reactivity and increased coagulation increase in con-
cert with systemic insulin resistance, but are also observed
acutely after ingestion of a high calorie meal in insulin resis-
tant individuals. Similarly, impairments in vascular reactivity
can be observed immediately after a meal. The most frequent-
ly used readout to assess postprandial vascular impairment is
flow mediated vasodilation (FMD), commonly measured in
the brachial artery. Changes in shear stress cause blood vessels
to acutely release NO, which in turn causes a widening of the
blood vessel. To determine FMD, a cuff is applied to the arm
with increased pressure, which is released, and brachial artery
diameter is continuously measured using ultrasound imaging.
Alternatively, the direct effects of various vasoactive sub-
stances distinct from NO infused into the artery can be mea-
sured, but this technique is used less frequently than the non-
invasive FMD [48, 49]. A large number of studies suggest that
obese or diabetic individuals have stronger decreases in
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postprandial FMD than healthy individuals; however, it
should be noted that overall postprandial effects on FMD are
also observed in healthy people. It remains unclear which
factors induce these postprandial effects and both glucose
and lipids have been suggested as mediators, since circulating
concentrations of both are elevated in the post-prandial state.
Alternatively, hormones released in response to food intake
could lead to altered FMD. Indeed, independent effects of
FMD could be demonstrated for direct intravenous infusion
of both glucose and lipids, suggesting that elevated blood
levels of these nutrients can have direct effects on the endo-
thelium [50, 51]. From a physiological perspective, it seems
likely that lipids are the more important mediators of FMD,
since various studies show that ingestion of high fat, as op-
posed to low-fat meals, causes impaired FMD, postprandially
[52]. Interestingly, there seems to be a relation between the
type of fat ingested and vascular reactivity, as long-chain,
saturated fatty acids, which are thought to be the main medi-
ators of inflammation, show more pronounced effects on vas-
cular reactivity [53].

In agreement with the data on obesity and T2DM, there is
also evidence that ingestion of high-fat meals has a cumulative
effect on vascular function, with impairments becoming more
pronounced and perhaps persisting over time [54, 55].
Conversely, exercise can acutely and persistently improve
postprandial FMD, suggesting that the vasculature can adapt
to metabolic stressors to modulate its responses acutely and in
the long term [56].

Vascular NO availability in obese and diabetic
states

Besides the acute effects observed after ingestion of a HFD
meal on FMD, which are mediated by eNOS activity and NO
release, there is also a clear connection between obese and
diabetic states, and reduced NO signaling [57]. Reduced NO
bioavailability has been reported in both rodent models [47,
58, 59] and humans [60–62], but some groups also report
increased NO production in obese humans [63, 64]. Various
mechanisms are thought to contribute to this reduced NO
availability, such as eNOS substrate availability, eNOS activ-
ity and levels, and NO stability, which is influenced by its high
reactivity and dependent on the level of reactive oxygen spe-
cies (ROS) [65]. In terms of substrate availability, it has been
reported that plasma arginine levels are not acutely changed in
early obesity in humans [66]. However, endothelial uptake of
arginine can be impaired in conditions of inflammation, as
typically observed in the vasculature of obese patients [67].
Moreover, there is a lot of evidence that the enzymatic activity
of eNOS is changed in states of obesity or diabetes [57]. eNOS
forms functional dimers in the presence of both ample L-
arginine and BH4, a state called Bcoupled.^Various conditions

such as lack of BH4 or high levels of arginase can cause eNOS
to become uncoupled, a state in which it generates superoxide
(O2

−), a highly potent ROS, instead of NO. Interestingly,
eNOS uncoupling is frequently observed in the endothelium
of obese animals [68–70]. Another factor influencing eNOS
activity is by competitive inhibition of alternative binding
substrates, the most important of which is asymmetric dimeth-
yl arginine (ADMA) [71]. Plasma levels of ADMA are known
to be increased in obese or diabetic states and have been re-
ported to correlate with impaired endothelial function
[72–74]. In addition, eNOS-mediated NO production is de-
pendent on the amount of eNOS present in the cell, and there
have been reports of reduced eNOS levels in both muscle and
adipose tissue of obese patients [75–77]. A further mechanism
which could influence NO bioavailability, namely increased
oxidative stress in the vascular endothelium, will lead to re-
duced NO levels through chemical reaction. This process is
intricately connected to vascular disease in general, and im-
paired eNOS function, in particular. There are various sources
of ROS in the vascular endothelium, besides the already men-
tioned action of uncoupled eNOS, whichmostly contributes to
ROS production in a state of chronically impaired endothelial
function. These include the specialized ROS-producing
NADPH oxidase (NOX) enzymes, enzymes of the mitochon-
drial respiratory chain, and xanthine oxidoreductase [65, 78,
79]. Endothelial ROS typically are produced as the superoxide
anion O2

−, which is converted to H2O2 by superoxide dismut-
ase (SOD), which can be further degraded by catalases or
peroxidases. Of these, superoxide is the most damaging and
will rapidly react with NO to form peroxynitrite (ONOO−), a
precursor of various reactive nitrogen species [80]. It should
be noted that ROS also fulfill a relevant signaling function in
healthy vasculature, and it is when their production becomes
excessive in various disease states, that impairments and oxi-
dative damage occurs [81, 82].

The fact that endothelial NO availability and vascular NO
signaling are reduced in states of obesity and diabetes has
prompted interest in attempting to correct the disease state by
modulating NO availability or signaling. One popular mode of
increasing NO availability is supplementation with L-arginine
or L-citrulline, which have been consistently shown to have
beneficial effects on overweight and insulin resistance. In rats,
L-arginine supplementation decreased fat mass and insulin
levels in both genetic and dietary obesity models [83, 84]. In
mice, mild metabolic improvements due to L-arginine supple-
mentation were reported in animals on a low-protein diet [85].
In humans, several studies attest to the efficacy of reducing
abdominal fat and increasing insulin sensitivity following argi-
nine supplementation, although effects are usually mild
[86–90]. Modulating NO signaling downstream, which was
achieved by long-term treatment with sildenafil, an inhibitor
of the phosphodiesterase 5, which degrades cGMP and thereby
turns off the vasodilatory signal of NO, attenuated body weight
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gain and improved plasma glucose levels and insulin signaling
in mice on a HFD [91]. In a human trial, it was shown that
3 months of sildenafil treatment increased insulin sensitivity as
assessed by hyperglycemic clamps in prediabetic subjects [92].
On the level of the enzyme eNOS, transgenic overexpression in
mice was shown to increase metabolic health, and protect from
HFD-induced obesity [93], and genetic variations of eNOS are
associated with T2DM and aspects of the MS in humans.
Overall, there is a clear correlation between reduced NO pro-
duction and signaling, and obese and diabetic states, along with
evidence that increasing these signals can have beneficial ef-
fects in both cases.

Temporal dynamics and mediators
of obesity-associated vascular impairments

While the associations of vascular impairments, obesity, and
the MS are very clear, the causality, directionality of the asso-
ciations, and temporal dynamics are far from understood. In
the previous parts of this review, we have focused on platelets,
clotting, and vascular NO-signaling as components of MS-
associated impairments that show disturbances both acutely
after a meal challenge as well as increasingly during the pro-
gression of the disease. There is a large variety of mediators
and cytokines contributing to the progression of vascular dis-
ease in the context of obesity, but the two key plasma param-
eters that seem to be causal, both in the early postprandial
phase, as well as in the long-term progression through persis-
tent reappearance are FFAs and glucose. In prediabetes,
fasting glucose levels as well as postprandial spikes are higher
than in healthy subjects [94], whereas FFA levels are elevated
strongly during fasting and drop less after a meal compared to
healthy individuals [95]. As has been discussed previously,
high peaks of plasma glucose have been shown to be able to
activate platelets, and chronically elevated plasma glucose can
lead to the formation of AGEs, which have been functionally
linked to endothelial dysfunction. One should consider, how-
ever, that chronically elevated plasma glucose levels typically
only occur very late in the context of theMS, whichmakes the
frequency and magnitude of glucose peaks a more likely im-
mediate cause for the described hemostatic and vascular ef-
fects than AGEs. While acute high-glucose loads have an
effect on both platelet activation and endothelial function, it
is typically FFAs which are the predictors of platelet activa-
tion. There is a large consensus that meals high in lipids,
causing elevation of plasma FFA, are causal in the generation
of both vascular disease and T2DM. Along this line, FFA
alone can cause decreased NO production in endothelial cells
[96], and HFD feeding causes insulin resistance in the endo-
thelium of the aorta (an ostensibly other endothelia) several
weeks before the appearance of insulin resistance in adipose
tissue and muscle [47]. Furthermore, several clinical trials

assessing the effects of good glucose control in diabetics on
CVD demonstrate that benefits are modest, reporting decreases
inmicrovascular risk and small decreases of all-cause mortality
over 10 years, suggesting that glucose alone is not sufficient to
explain these effects [97, 98]. One possible link for both glu-
cose and FFA in relation to T2DM development and CVD is
reactive oxygen stress. Both glucose and FFA can elicit an
increase in ROS, in vitro and in vivo, acutely and chronically
[99–102]. Similarly, oxidative stress has also been linked to the
complications occurring in T1DM [103, 104]. Importantly,
there is a very clear causal relation between ROS formation
and the activation of various inflammatory pathways, in par-
ticular of the innate immune system [105]. Besides ROS, it
also has been demonstrated that FFA can directly activate the
inflammatory NFkB-pathway through TLR4, and both of
these pathways have been frequently described to be involved
in the development of the MS [106, 107]. This allows the
establishment of a putative causal chain from endothelial dis-
ruptions and hemostatic events caused by increased ROS due
to excess FFA and glucose, leading to progressive inflamma-
tion, which eventually causes insulin resistance of the main
insulin responsive organs, as well as the vascular damage that
predisposes to cardiovascular complications.

Inflammation as the common denominator
for cardiovascular disease and the metabolic
syndrome

In discussing the connections between the MS and T2DM, it
is important to remember that both of these diseases have a
relevant and causal involvement of inflammation and could
therefore be said to be inflammatory diseases. In the case of
CVD, the key risk factor observed in patients, beside elevation
of blood pressure and elevated plasma lipids, is atherosclero-
sis, a thickening of the blood vessel wall due to invasion of
leukocytes containing lipids [108]. While atherosclerosis was
originally considered a disease caused by impaired lipid stor-
age, it has since been convincingly demonstrated that it is
actually a result of misguided inflammatory processes [109].
At the same time, insulin resistance in the context of T2DM
was originally thought to be due mainly because of metabolic
alterations. Because of the seminal work of Hotamisligil et al.
[110], demonstrating the release of the pro-inflammatory cy-
tokine TNFα from obese adipose tissue, it became clear that
inflammatory cytokines from adipose tissue due to a chronic
low-level inflammation of the tissue are fundamental contrib-
utors to the MS and T2DM. A lot of work exists demonstrat-
ing that preventing or ameliorating inflammation in adipose
tissue prevents insulin resistance and/or weight gain in the
context of diet-induced obesity [111]. However, the root cause
of adipose tissue inflammation is still incompletely under-
stood. One of the original ideas, apoptosis of macrophages
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in adipose tissue due to metabolic stress, did not withhold
scrutiny and current front-runners are endoplasmatic
reticulum- stress or hypoxia [112].

Considering the evidence described in this review, we pro-
pose that a cause of the inflammation of adipose tissue, and
probably also the low-level inflammation in observed in other
tissues in the MS, is the damaged and modified endothelium
in concert with the fact that platelets become hyperactive.
Several papers, besides the already mentioned work demon-
strating that endothelial insulin resistance precedes systemic
insulin resistance [47], illustrate that endothelial activation
precedes inflammation and immune cell invasion of adipose
tissue. For example, Nishimura et al. showed that in obese and
HFD-fed mice, there is increased platelet-leukocyte interac-
tion and tethering, and blocking the endothelial inflammatory
surface marker ICAM1 can normalize these effects [113].
Cleuren et al. showed that HFD feeding leads to a rapid in-
crease of circulating blood clotting factors, and the source of
these is the activated endothelium rather than the liver, which
is the main source of circulating clotting factors [114]. In
addition, studies interfering with basic activators of blood
clotting or platelet ligands have been shown to ameliorate
HFD-induced inflammation and insulin resistance, such as
mice lacking PAR2, a key target of tissue factor/factor VII
mediated coagulation, or mice lacking the PSGL1, a main
ligand for P-selectin, a surface protein exposed on activated
platelets [115, 116]. Moreover, there is strong evidence that
treatment with n-3 fatty acids or the prostaglandin synthase 2
inhibitors aspirin or salsalate, which have been shown to have
both anti-inflammatory, as well as anti-coagulatory effects, is
beneficial in settings of obesity and the metabolic syndrome
[23, 24, 117, 118].

In conclusion, in this review we provide a broad overview
of changes in hemostasis and endothelial function occurring in
obesity, the MS, as well as the acute postprandial phase. These
impairments converge on oxidative stress and pro-
inflammatory signals in the endothelium, which have a causal,
and bidirectional link to insulin resistance, suggesting that en-
dothelial activation and insulin resistance is one driver under-
lying both cardiovascular as well as metabolic impairments,
occurring as a result of chronic ingestion of a western-type diet.
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