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Abstract Dendritic cells (DCs) determine the outcome of
the immune response based on signals they receive from
the environment. Presentation of antigen under various
contexts can lead to activation and differentiation of T
cells for immunity or dampening of immune responses
by establishing tolerance, primarily through the priming
of regulatory T cells. Infections, inflammation and normal
cellular interactions shape DC responses through direct
contact or via cytokine signaling. Although it is widely
accepted that DCs sense microbial components through
pattern recognition receptors (PRRs), increasing evidence
advocates for the existence of a set of signals that can
profoundly shape DC function via PRR-independent
pathways. This diverse group of host- or commensal-
derived metabolites represents a newly appreciated code
from which DCs can interpret environmental cues. In this
review, we discuss the existing information on the effect
of some of the most studied metabolites on DC function,
together with the implications this may have in immune-
mediated diseases.
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Introduction

Dendritic cells (DCs) constitute a bridge between innate and
adaptive immunity. They are able to receive and interpret sig-
nals either from invading pathogens or dying cells, and to
respond to them through the acquisition of a mature pheno-
type. Mature DCs gain the ability to migrate to the lymph
nodes (LNs) where they initiate and shape adaptive responses
via antigen presentation, the expression of costimulatory mol-
ecules and cytokine secretion. These properties enable them to
interact with and activate naïve T cells, inducing protective
immune responses against non-self-antigens. In addition,
DCs participate in a series of processes that act at different
levels to ensure the maintenance of immunological tolerance
(reviewed in [1]).

One of the major tolerogenic mechanisms accomplished by
DCs involves their interaction with regulatory T cells (Tregs),
which are crucial in controlling excessive immune responses
and preventing autoimmunity [2–4]. These two cell popula-
tions are in close contact and regulate one another. DCs partic-
ipate in maintaining Treg homeostasis [5, 6]. Moreover, DCs
can produce soluble factors, such as TGF-β, that are essential
for the generation of induced Tregs [7, 8]. Therefore, it has
been hypothesized that disruption of DC homeostasis may re-
sult in Treg imbalance and autoimmunity. This view is sup-
ported by studies evaluating the consequences of DC deple-
tion, in which ablation of CD11c-expressing cells using vari-
ous genetic mouse models led to increased Th1 and Th17
responses and concomitant lower Treg frequencies [9, 10].
DC deficiency in humans is also related to lower Treg numbers
[11, 12] and mice constitutively lacking DCs spontaneously
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develop severe autoimmunity, characterized by autoantibody
production and tissue infiltration of autoreactive CD4+ T cells
[10]. Newer studies using transgenic mice with improved DC
targeting specificity show that defined DC subsets are required
for the generation of peripheral Tregs and oral tolerance,
confirming the idea that DCs are essential for establishing
and maintaining immune homeostasis [13]. Still, the precise
contribution of DCs to immune-mediated diseases remains un-
clear, though it is conceivable that changes in their phenotype,
including their activation state, migratory capacity and produc-
tion of immunomodulatory factors, could affect the state of
tolerance. Indeed, studies from patients with different autoim-
mune diseases, including Rheumatoid Arthritis (RA), Multiple
Sclerosis (MS), Systemic Lupus Erythematosus (SLE),
Psoriasis, and Inflammatory Bowel Disease (IBD) have re-
vealed several abnormalities in DC activation or function as
factors mediating inflammatory sequelae (reviewed in [14]).

The microenvironment where DCs reside and become
activated can dramatically modulate their function.
Several small metabolites have been shown to exert pro-
found changes on DCs [15]; some have even proved to be
essential for DC homeostasis and function. This diverse
group includes diet-derived and endogenously produced
compounds, the latter being synthesized by neighboring
cells or the host microflora. In the human gastrointestinal
tract, 1013–1014 commensal microorganisms contribute to
the breakdown, absorption and synthesis of nutrients and
metabolites [16]. Diet can further influence the concentra-
tion of these products by direct and indirect mechanisms.
For instance, the amount of daily fiber intake can promote
colonization by specific bacterial families [17], suggesting
that the composition of the microbiota and their products
heavily relies on diet [18]. In addition, the intestinal flora
produces a vast array of diet-independent metabolites.
These products can alter the homeostasis and develop-
ment of the mucosal immune system. Therefore, metabo-
lites are emerging as a new type of signal shaping the
immune system. Interestingly, increasing evidence sug-
gests that the drastic changes in Western diet over the past
few decades could account for the rise in autoimmune
diseases observed in industrialized countries [19]. It
would therefore be intriguing to speculate that changes
in diet impairing the tolerogenic capacity of DCs may
enhance predisposition to immune-mediated disorders.

Further supporting this view, it is now clear that autoim-
munity is not only caused by genetic factors; studies of iden-
tical twins have shown that the environment has a major in-
fluence on development of autoimmune diseases [20]. Under-
developed countries present lower a incidence of autoimmune
diseases, arguing in favor of a link between lifestyle and im-
mune status. The widely accepted hygiene hypothesis con-
tends that increased exposure to certain pathogens, particular-
ly helminths, reprograms the immune system rendering it less

prone to autoimmunity [21]. Recent reports from experiments
in mice demonstrate that helminths can alter the composition
of the gut microbiota, promoting the expansion of particular
bacterial families [22–26]. In addition, human studies also
showed a correlation between helminth infection and altered
microbiota composition [27, 28].

In this review, we will focus on some of the most studied
metabolites, their effect on DCs, and their implication for
immune-mediated diseases. Finally, we will also discuss their
potential use in immune therapy.

Different regions, different folks: DC subsets and their
localization

Because of their functional specialization and broad tissue
localization, DCs comprise a highly heterogeneous cell popu-
lation whose classification and study have been challenging
and controversial. Another confounding factor is that some of
the markers historically used for identifying DCs, such as
CD11c [29] are also expressed by other cell types [30–35].
Recent advances have allowed for the identification of DC
precursors and crucial transcription factors required for initi-
ating the DC differentiation programs [36, 37]. This key in-
formation has made it possible to pinpoint which of the pre-
viously described subpopulations truly classify as DCs, and to
determine defined lineages within the total DC population.

In human and mouse, DCs can be broadly subdivided into
classical DCs (cDCs) and plasmacytoid DCs (pDCs) [38]. In
this review we will focus on murine cDCs unless stated other-
wise. cDCs can be found in most lymphoid and non-lymphoid
tissues. Lymphoid tissue-resident cDCs remain in the lymphoid
organ where they originated for their entire life, whereas non-
lymphoid tissue cDCs usually have the ability to migrate to the
draining LNs to present the antigens they acquired at their site
of origin [39]. Within the cDC subtype, two distinct lineages
have been identified, cDC1 and cDC2 [38]. cDC1 DCs in
lymphoid tissues express CD8α and represent around 20% of
splenic DCs and 70% of thymic DCs. In humans, this DC
subset is characterized by the expression of BDCA-3
(CD141) [40–45]. Splenic CD8α+ DCs are more efficient at
cross-presenting cell-bound and soluble antigens on MHC
class I than other DC subsets [46, 47]. They also express re-
ceptors such as CD36 and Clec9A that enable them to carry out
phagocytosis of dead cells [48, 49]. These unique characteris-
tics make them essential to prime CD8+ Tcell responses against
tumors and intracellular pathogens [50–52], but may also per-
mit the attenuation or exacerbation of autoimmune reactions
(reviewed in [53]). In addition, cDC1 DCs are good inducers
of Th1 responses due to their ability to secrete considerable
amounts of IL-12 upon stimulation [52, 54]. In non-lymphoid
tissues the CD103+CD11b− cDC1 subset is the counterpart to
the CD8α+ cDC1 population and their ontogeny and functional
characteristics are closely related [55].
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The cDC2 subset, characterized by CD11b expression, is
the most abundant in lymphoid organs excluding the thymus.
The human counterpart of this subset is defined by the expres-
sion of BDCA-1 (CD1c) [56, 43]. In contrast to cDC1 DCs,
this subset is poorly characterized, partly because of its het-
erogeneity. DCs belonging to this subtype are thought to be
specialized in driving CD4+ T cell responses through antigen
presentation via MHC class II [57, 58]. Non-lymphoid tissue
CD11b+ DCs, historically considered as bona fide DCs, are
now described as a heterogeneous subpopulation including
DCs but also macrophages. This generalization has hindered
our understanding of the contribution of the CD11b+ compart-
ment to tissue immunity [56]. The latest identification of new
markers for DCs and macrophages has enabled an efficient
discrimination between these different subsets [59, 60].
Therefore, while the precise study of cDC2 DCs is still in
progress, current evidence suggests they may play a role in
the induction of Th2 and Th17 responses [56, 60].

Peripheral lymphoid organs also comprise a non-lymphoid
tissue DC population that has arrived to the lymph node through
the afferent lymphatics. Known as migratory cDCs, they are
characterized by higher MHC class II and lower CD11c expres-
sion than resident DCs in the steady state. This subset is respon-
sible for delivering tissue-derived antigens in order to reinforce
tolerance or initiate adaptive responses [61, 62].

DCs are also localized in most non-lymphoid tissues, espe-
cially in those which are in close contact with the environ-
ment. In the intestine, cDCs are present in the lamina propria
(LP), gut-associated lymphoid tissue (i.e. Peyer’s Patches) and
mesenteric lymph nodes (mLNs). cDCs in these locations
have a dual role, eliciting robust immune responses to patho-
gens and at the same time, inducing tolerance to food antigens
and the commensal flora. In the LP, which constitutes the main
mucosal immune effector site, most cDCs express CD103 and
can be classified according to their expression of CD11b into
CD11b− (cDC1) and CD11b+ (cDC2). There is also a CD103−

CD11b+ population which expresses intermediate levels of
CX3CR1. These subsets can also be found in the mLNs,
where DCs migrate to prime naïve T cells in a CCR7-
dependent manner (reviewed in [63]). Lung DC populations
share similarities with LP DCs, though cDC1 are generally
CD103+CD11b− and cDC2 are CD103−CD11b+ in this organ
(reviewed in [64]). In the skin, cDCs are found in the dermis
and can also be categorized by their expression of CD11b.
CD11b− DCs are developmentally related to the splenic
CD8α+ subpopulation, whereas CD11b+ DCs belong to the
cDC2 subset and can be distinguished from CD11b+ mono-
cytes by their lack of CD64 expression [65]. The epidermis is
colonized by Langerhans Cells (LCs); this subset cannot be
classified as bona fide DCs, since they do not arise from
blood-circulating DC precursors but from hematopoietic pro-
genitors that populate the skin before birth and are not depen-
dent on FLT3L [66, 67]. These characteristics strongly

resemble those of tissue resident macrophages. However, un-
like this cell subset, LCs have the ability to migrate to LNs and
present antigen, thus functionally resembling DCs [68].
Overall, this broad tropism suggests that DCs are exposed to
different environments based on their tissues; consequently,
various sets of cues may impart distinct functions to DCs in
specific sites.

In contrast to other immune cells, which can be easily
obtained ex vivo in large numbers, DCs are very rare (1–
5% in non-lymphoid organs) [64]. This renders assays that
require high cell numbers and purity, labor intensive and
expensive. As a result, researchers commonly employ
in vitro culture systems to yield high numbers of DCs for
functional studies. The GM-CSF-based protocol for the
generation of bone marrow-derived DCs is the most widely
used [69, 70]. This culture is predominantly composed by
CD11c+ cells with different levels of MHC II expression;
traditionally it has been assumed that this was due to dif-
ferent degrees of maturation but careful investigation has
revealed that it might not consist of a single population. A
recent study showed that the GM-CSF method gives rise to
a CD11c+ MHCII+ heterogeneous population of myeloid
cells that comprises both macrophages and DCs [71].
Although clustering analysis indicates that the DC fraction
is not closely related to the cDC1 or cDC2 subsets found
in vivo, it shares some signatures with migratory DCs.
Worth mentioning, this subpopulation represents only
around 30% of the CD11c+ MHCII+ cells present in the
culture. Conversely, bone marrow culture with FLT3L al-
lows for the differentiation of different DC subsets (pDCs,
cDC1 and cDC2) equivalent to the populations present in
the spleen under steady-state conditions [72]. Therefore,
this culture system closely resembles DC differentiation
from bone marrow precursors in vivo. However, due to its
high complexity, if the study of a single population is
intended, FACS sorting may be required. Furthermore, a
new method for the generation of large numbers of cDC1
DCs with high purity is now available [73]. This protocol
requires the addition of GM-CSF and FLT3L and yields a
90% pure population of CD103+ DCs, thus eliminating the
need for further purification steps for certain applications.
Human cDC1 can be obtained following a similar proce-
dure [45, 74]. DC subsets obtained from these cultures are
functionally and phenotypically similar to those found
in vivo, making them particularly useful for studying pop-
ulations that exist in very low numbers in the body, such as
CD103+ DCs. Furthermore, this may be potentially rele-
vant for new immunotherapeutic approaches since these
DCs display improved migratory capacity which results
in enhanced antigen delivery to the LNs [73]. Advances
in methods to isolate DCs ex vivo and genetic models to
conditionally target genes in DC subsets will be instrumen-
tal in helping understand DC mechanisms.
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Endogenous metabolites and metabolic processes in DCs

In the past few years, the idea of a link between immune cell
function andmetabolism has gainedmomentum, giving rise to
the field of immunometabolism. Immune cells can respond to
changes in the environment, such as oxygen and nutrient
availability, by changing their core metabolic program.
Interestingly, it seems that this metabolic reprogramming can
be accompanied by or even required for changes in DC cellu-
lar function.

Under resting conditions, DCs mainly rely on oxidative
phosphorylation (OXPHOS) for energy [75, 76]. This process
occurs within mitochondria, whereby cells utilize NADH gen-
erated from the catabolism of nutrients (e.g. glucose, amino
acids and fatty acids) to produce ATP through a series of
reduction-oxidation reactions. Engagement of Toll-like receptor
(TLR) on GM-CSF derived DCs leads to upregulation of aero-
bic glycolysis. This process – known as the “Warburg effect” –
involves the conversion of glucose into lactate [76–78] and is
dependent on the PI3K/Akt pathway. In cancer cells, the
Warburg effect accompanies rapid proliferation, whereas DCs
are generally non-proliferative and do not divide further upon
TLR ligation. Notably, the rise in aerobic glycolysis observed in
GM-CSF derived DCs is accompanied by a decrease in mito-
chondrial oxygen consumption and ATP levels [76, 78].
Expression of Hypoxia-inducible factor 1-alpha (HIF-1α) is al-
so required to trigger these metabolic changes; TLR ligands can
induce the expression of this transcription factor through an as
yet unknown mechanism [79]. Analysis of Hif1a−/− DCs re-
vealed that these cells do not upregulate glycolysis in response
to TLR ligation and are unable to induce T cells responses,
highlighting the importance of this signaling pathway for DC
immunogenicity [79, 80, 75].

Initial reports on DC metabolism argued that DCs induce
glycolysis in order to counteract the inhibition of mitochon-
drial respiration caused by nitric oxide (NO), a product of
nitric oxide synthase (iNOS) [78]. Thus, DCs would upregu-
late their glycolytic rate to maintain the ATP levels needed for
their function and survival. However, this observation is re-
stricted to GM-CSF-derived cells, since bona fide DCs do not
express iNOS in response to TLR stimulation [71, 75]. In fact,
according to Helft et al., not even the DC subset within GM-
CSF cultures expresses iNOS upon LPS activation, indicating
that the NO produced in this system likely comes from the
accompanying macrophage subpopulation [71]. Thus, it
would be interesting to determine if in vivo, NO generated
by other cells during the inflammatory response could indi-
rectly induce changes in the metabolic program of adjacent
DCs. More recent studies claim that TLR-driven activation
triggers an early induction of glycolysis required for providing
biosynthetic precursors for fatty acid synthesis (FAS) [77].
Glycolysis-derived pyruvate can enter the tricarboxylic acid
(TCA) cycle in the mitochondria and yield citrate which can

be transported back to the cytosol where it serves as a precur-
sor for FAS. This process sustains the expansion of the ER and
Golgi membranes, thus promoting the translation and trans-
port of new proteins involved in DC activation [77].
Nevertheless, since these studies were performed using phar-
macological inhibitors which often have unwanted off-target
effects, it will be crucial to make use of genetic models to
study the contribution of these metabolic pathways to DC
function.

The high cell numbers and purity required to conduct most
metabolic analyses render it difficult, if not impossible, to
study the metabolic features of DCs in vivo. The only infor-
mation available comes from ex vivo-isolated DCs. Pantel
et al. showed that in vivo activation of splenic cDCs via
polyinosinic:polycytidylic acid (poly I:C) administration re-
sults in type I interferon-dependent upregulation of glycolysis
and decreased mitochondrial respiration. [75]. A new study
argues that upon activation, both pDCs and cDCs upregulate
OXPHOS via an induction of fatty acid oxidation in a type I
interferon-dependent manner [81, 82]. Since these findings
contradict previous reports [82] this process needs to be stud-
ied in further detail. It is possible that interaction of DCs with
neighboring cells via the production of metabolites (e.g. NO)
could influence their metabolic program, thus accounting for
the differences observed.

Interestingly, products of metabolic processes can act as
environmental cues on DCs, triggering changes in their core
metabolic program and/or their functional characteristics. For
instance, DCs can sense the presence of succinate (reviewed
in [83]) through the receptor GPR91, which acts as an activat-
ing stimulus [84]. Moreover, reactive oxygen species (ROS)
which are constitutively produced by the mitochondrial respi-
ratory chain can exert signaling functions by inducing post-
translational modifications on proteins [85]. By-products of
microbial metabolism also induce changes in DC function;
these signals can come either from invading pathogens or
the commensal microflora [86, 87]. We are only beginning
to understand the metabolic processes that follow DC activa-
tion and their importance for DC function. Nonetheless, the
information available suggests that modulation of metabolic
core pathways could become the next generation therapy for
the treatment of immune-mediated diseases. In the following
sections we will discuss some of the best studied metabolites
influencing DC metabolism and function.

ATP and adenosine

Because of its central role in driving virtually every cellular
process, ATP is often referred to as the energy currency of the
cell. However, ATP can also be released to the extracellular
environment by necrotic and apoptotic cells and in response to
different types of stress, or even as part of physiological pro-
cesses [88–90]. Once in the extracellular space, ATP can be
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degraded to ADP, AMP and adenosine by ectonucleotidases
such as CD39 and CD73 (reviewed in [91]). Adenosine can be
further metabolized by adenosine deaminase (ADA), yielding
inosine, which comparatively has no activity [92]. Adenosine
can also be taken back into cells through nucleoside trans-
porters (reviewed in [93, 94]).

Released ATP, as well as its degradation products, can be
sensed by purinergic receptors. These can be classified into two
families:P1, composedofGprotein-coupledadenosine receptors
(ARs), and P2, which includes receptors that bind to ATP, ADP
andother nucleotides.TheP2 family canbe further subdivided in
P2Y,which comprisesmetabotropicGprotein-coupled receptors
and P2X, formed by oligomeric ion channels [95].

Adenosine receptor signaling

Early reports show that human immature DCs express the
ARs A1R, A2AR and A3R, whereas LPS-stimulated DCs
downregulate the expression of A1R and A3R, displaying only
detectable mRNA levels of A2AR [96]. Activation of A2AR
inhibits IL-12 and TNF-α production and enhances IL-10
secretion on mature DCs but has no influence on basal levels
of secretion of these cytokines [97]. In this way adenosine
treatment of mature DCs renders them less efficient at priming
Th1 responses [97]. In line with these results, activation of
ARs in human DCs also inhibited their capacity to induce
CD8+ T cell responses [98]. Similar effects of adenosine re-
ceptor activation were observed in murine DCs, although they
seem to be dependent on A2BR rather than A2AR [99, 100].

Adenosine also has chemotactic properties on DCs [96,
101]; a recent study showed that Tregs can degrade extracel-
lular ATP to generate adenosine through their expression of
CD39 and CD73 [101]. Adenosine then attracts DCs to re-
move apoptotic cells and promotes their interaction with Tregs
to ensure tolerance. This process may be relevant for clearance
of dying cells under physiological conditions.

DCs can also express CD39, which allows them to directly
dampen immune responses (reviewed in [102]). CD39 expres-
sion is dependent on IL-27, a cytokine belonging to the IL-12
family secreted by DCs upon TLR ligation [103] that can act
directly on T cells, preventing Th17 responses while promoting
the development of IL-10-producing Tregs [104–107]. IL-27
acts in an autocrine or paracrine manner, inhibiting the matura-
tion of DCs [108, 109]. CD39 upregulation leads to a decrease
in extracellular ATP levels, which results in lower ATP-
dependent activation of the NLRP3 inflammasome. This pro-
cess may be important in the context of the experimental auto-
immune encephalitis model (EAE), the murine model for MS,
since treatment of mice with IL-27-conditioned DCs reverses
the chronic status after the disease is already established [110].

Conversely, growing evidence supports the notion that
DCs may also have mechanisms to deplete adenosine from
their microenvironment, implying they could release

themselves and other cells in their vicinity from the immuno-
modulatory effects of this nucleoside [111–113]. DCs express
surface ADA, capable of eliminating the signaling actions of
adenosine [113]. In line with these findings, blockade of ADA
led to a more pronounced effect of adenosine and synthetic
AR agonists on DC maturation [113]. Direct in vitro addition
of ADA to human immature DCs resulted in upregulation of
costimulatory molecules (CD80, CD83, CD86) and higher
secretion of Th1-polarizing cytokines, further supporting the
concept of a negative regulatory mechanism of adenosine sig-
naling in DCs [114]. This mechanism is likely to be relevant
during inflammation, where a significant rise in adenosine
levels is expected; in this context, expression of ADA by
DCs would enhance their maturation status, thus boosting
their immunogenicity. However, it could have a detrimental
effect in immune-mediated diseases. For instance, non-obese
diabetic (NOD) mice DCs display elevated levels of ADA in
comparison to other mouse strains [111]. Furthermore, DCs
from NOD mice lacking ADA expression fail to trigger auto-
immunity when adoptively transferred, confirming the impor-
tance of ADA expression on DCs in the T cell priming phase,
as well as in the regulation of the magnitude of the T cell
response [111].

In the intestine, ARs are essential for keeping inflammation
in check. In a chemically-induced colitis model, genetic abla-
tion or pharmacological inhibition of A2BR resulted in higher
severity [115]. In the context of the same model, CD39-
deficient mice showed more severe symptoms than wildtype
mice, further underscoring the immunomodulatory role of
adenosine in the gut [116].

Another setting where immunomodulation by adenosine
seems to play a relevant role is cancer. The tumor microenvi-
ronment displays high concentrations of adenosine [117, 118],
which promotes secretion of VEGF by DCs and inhibits their
maturation, leading to increased angiogenesis, inefficient an-
tigen presentation and lower activation of effector T cells
[119]. Transfer of AR-stimulated DCs into tumor-bearing
mice promoted tumor growth [119]. In addition, treatment
with AR antagonists inhibited tumor growth and metastasis
formation, due to improved T cell activation and recruitment
to the tumor site [120]. This seems to be a consequence of
adenosine signaling blockade in the DC compartment, more
specifically in the CD8+CD11b− subset, which showed higher
activation levels after treatment. The use of adenosine receptor
antagonists, particularly for A2AR, has been put forward as a
next-generation checkpoint blockade therapy [121].

P2XR and P2YR signaling

ATP and other nucleotides can be released into the extracellu-
lar space by apoptotic cells through different types of chan-
nels, e.g. pannexins, or they can also be released by cell dam-
age or lysis [122–124]. These molecules have chemoattractant
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properties and have been described to act as a “find me” signal
that recruits phagocytes in a P2XR/P2YR-dependent manner
in order to ensure clearance of dying cells [88]. DCs express
both types of receptors; interestingly, ATP has chemotactic
activity on immature DCs but not on mature DCs [125, 126].

Regarding the effect ofATPonDCmaturation, there seems to
be inconsistencies on what has been reported so far, but that is
likely due to different ATP concentrations being used. HighATP
concentrations (mMrange) inducesecretionofTNF-αandIL-1β
byLPS-stimulatedDCs, but are also highly cytotoxic [127–129].
This is connected to the ability of ATP to activate the NLRP3
inflammasome in a P2X7R-dependent fashion [130–132].
These effects require high ATP concentrations since, compared
to othermembers of theP2XRfamily, P2X7Rhas lowaffinity for
ATP [133]. In DCs, this process may be important for inducing
anti-tumor immunity: ATP released by dying tumor cells follow-
ingchemotherapycan trigger inflammasomeactivation, resulting
in proteolytic processing and secretionof IL-1β,whichpromotes
the generation of IFNγ-producing tumor antigen-specific CD8+

T cells [134]. On the other hand, μM concentrations of ATP in-
duce the expression of costimulatory molecules but at the same
time inhibit theproductionof IL-1β,TNF-α, IL-6andIL-12.The
reduced IL-12 production by ATP-treated DCs results in their
impaired ability to prime Th1 responses [135]. However, since
these effects are very similar to the ones observed for adenosine,
and as DCs can express CD39, it would be important to rule out
the contribution of ATP degradation.

Commensal intestinal bacteria release large amounts of
ATP into the extracellular space [136–138]. Germ-free mice
have considerably lower ATP content in their feces, and anti-
biotic treatment of specific pathogen-free mice reduces fecal
concentration of ATP [139]. ATP levels in the intestinal lumen
strongly correlate with the frequency of LP Th17 cells, imply-
ing an association between bacterial ATP and Th17 cell dif-
ferentiation. A subpopulation of antigen-presenting cells in
the LP (CD70highCD11clowCD11b+CD103−CX3CR1+) ex-
presses higher levels of P2XR/P2YR than other DC subsets
and is able to drive Th17 differentiation of naïve CD4+ T cells
through the production of IL-6, IL-23 and TGF-β [139]. In
addition, their ability to induce the Th17 subset is significantly
enhanced by ATP supplementation, indicating a role for ATP
in the generation of naturally occurring Th17 cells in the LP.
This could have important implications in the context of IBD,
where variations in the composition of the microbiota might
lead to altered extraluminal ATP concentrations and thus in-
fluence disease severity. Indeed, in the context of a T cell-
mediated colitis model, ATP administration resulted in higher
Th17 cell numbers and worsening of clinical symptoms [139].
Furthermore, intestinal biopsies from patients suffering from
Crohn’s disease displayed higher expression of the P2X7R,
which mainly co-localized with DCs and macrophages
[140]. In summary, ATP levels can directly and indirectly
influence inflammation.

Short-chain fatty acids

Although for many years it was unclear how gut-colonizing
bacteria modulate cell function, current studies indicate a role
for bacterial-derived metabolites as emissaries linking the gut
flora and the host (reviewed in [141]). Short-chain fatty acids
(SCFAs), defined as C1–6 organic fatty acids, represent the
main metabolic product of anaerobic bacterial fermentation in
the gut [142]. They are produced through the breakdown of
dietary fiber, carbohydrates and proteins and serve as an energy
source for both commensal bacteria and the colonic epithelium
[143]. Acetate is the most abundant SCFA found in the colon,
followed by propionate and butyrate in an approximate constant
ratio of 60:20:20 [144, 145]. Their concentration is highest in
the caecum and decreases towards the distal colon, reflecting the
availability of substrate for fermentation throughout the gut
[146]. The majority of SCFAs is taken up by colonic epithelial
cells through passive diffusion or active transport by solute car-
riers [147], where they can regulate different cellular processes
such as epithelial cell proliferation and differentiation [148].
While butyrate is mostly metabolized by colonocytes, acetate
and propionate can enter the circulation, serving as a substrate
for gluconeogenesis or de novo lipid synthesis [149]. SCFAs
influence a wide range of physiological functions including
electrolyte and water absorption, regulation of gut motility, as
well as leptin and peptide YY secretion (reviewed in [150]).
These actions occur by directly acting on target cells or indirect-
ly through a gut-brain neuronal circuit [151].

Accumulating evidence suggests that SCFAs also have
profound effects on the immune system where they act via
two major pathways. The best characterized effect is the mod-
ulation of gene expression through inhibition of class I and IIa
histone deacetylases (HDACs) [152]. More recently, SCFAs
were found to be the natural ligands for the orphan G-protein
coupled receptors GPR41 (free fatty acid receptor 3 – FFAR3)
and GPR43 (free fatty acid receptor 2 – FFAR2) [153].
Butyrate also acts on the niacin receptor GPR109a (also
known as hydroxycarboxylic acid receptor 2) [154]. FFARs
for SCFAs are coupled to pertussis toxin-sensitive Gαi/o sub-
units. Activation of these receptors results in inhibition of
adenylate cyclase and decreased cAMP [155]. FFAR2 also
couples to Gαq and promotes calcium release, a prerequisite
to induce cell migration [156].

It is currently accepted that within the intestinal microbiota,
specific bacterial species can positively influence health status
and improve disease resistance against inflammatory diseases
such as colitis, arthritis or asthma [125]. For example, IBD, a
chronic inflammatory disorder of the gastrointestinal tract, is
associated with an imbalance in healthy microbiota especially
from the genera Bifidobacterium and Bacteroides [157], and a
parallel reduction in SCFAs [158]. Furthermore, germ-free
mice recolonized with Bacteroides fragilis [159] present less
severe signs of colonic inflammation in the DSS colitis model,
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a well-established murine model of human IBD. Although the
beneficial effects of B. fragilis colonization have been as-
cribed to Polysaccharide A (PSA), as PSA alone is able to
protect mice from experimental colitis by suppressing IL-17
production and promoting the development of IL-10-
producing Tregs in the gut [160], feeding of germ-free mice
with acetate can mimic the protective effect [161]. In 2009,
Sina et al. demonstrated that mice lacking the FFAR2 receptor
are more susceptible to acute DSS colitis [162]. In this model,
SCFA-induced neutrophil recruitment through FFAR2 con-
tributed to contain systemic bacterial dissemination and was
therefore crucial to prevent mortality. Yet, Ffar2−/− mice were
protected from chronic DSS colitis [162]. Ffar2−/− mice pre-
sented lesser signs of colonic inflammation including less tis-
sue damage and neutrophil infiltration in both models. Strong
mucosal neutrophil infiltration and over-activation is a hall-
mark of IBD (reviewed in [163]). Along the same line, several
groups have shown that SCFAs promote neutrophil migration
and ROS production in a FFAR2-dependent manner [155,
164–166, 161]. However, using a different transgenic mouse
strain, Maslowski and colleagues found that absence of
FFAR2 results in more severe inflammation as well as higher
levels of neutrophilic infiltration and activation during the
acute phase of DSS treatment [161]. The protective effect of
FFAR2 was attributed to its expression on immune cells as
revealed using bone marrow chimeras. In the same study,
greater morbidity and impaired weight recovery was observed
in Ffar2−/− mice during chronic DSS colitis [161]. The rea-
sons for these discrepancies between studies are not yet clear.
Since FFAR2 deficiency in neutrophils does not seem to affect
their ability to migrate to other chemoattractants [166], in-
creased neutrophilic recruitment in the latter model might be
due to the presence of other potent chemokines at the site of
inflammation. Besides, one should take into account the
strong inter-laboratory variability of the DSS colitis models,
mainly due to the different colitogenic potential of the DSS
batches, but also to the mouse strain used, as well as environ-
mental factors such as the hygiene conditions of the mouse
facility [167] which in turn would impact the microbiota. In
this sense, while Bacteroidetes produce preferentially acetate
and propionate, Firmicutes generate mainly butyrate. Acetate
and propionate are highly potent at activating FFAR2 whereas
butyrate has less activity. Conversely, FFAR3 has higher af-
finity for butyrate than propionate and marginally binds ace-
tate. Thus, the net effect of deleting one receptor may be sub-
jected to several variables, including the presence or absence
of specific commensals as well as diet composition. A further
limitation to define the role of FFAR2 in SCFA activity in vivo
relates to the wide expression pattern of this receptor in im-
mune cells. ImmGen gene expression data suggests that in
addition to neutrophils, Ffar2 is also expressed in eosinophils,
monocytes, splenic, mesenteric and small intestine DCs, as
well as in resident macrophages from the lung [33].

In macrophages, SCFAs suppress inflammatory cytokine
production through the attenuation of HDAC activity and con-
comitant modulation of gene expression [168]. Along the
same line, a study using immature and LPS-matured human
monocyte-derived DCs revealed that both butyrate and propi-
onate strongly reduced the expression of several pro-
inflammatory chemokines and cytokines at the transcriptional
level [169]. Similar observations were made with murine bone
marrow-derived DCs, where acetate, butyrate and propionate
inhibited the LPS-induced expression of costimulatory mole-
cules CD80, CD86 and CD40 and production of pro-
inflammatory cytokines [170, 171]. DCs exposed to SCFAs
also displayed a strong Treg-inducing capacity [172].
Analysis of the gene expression profile of murine in vivo
FLT3L-expanded splenic DCs exposed to butyrate or the
HDAC inhibitor Trichostatin A showed repression of LPS-
responsive genes, particularly Il12a, Il6 and Relb, a member
of the NF-κB family mediating DCmaturation [172]. Thus, in
contrast to neutrophil migration and activation, which are de-
pendent on GPCR activation, the anti-inflammatory effects of
SCFAs on macrophages and DCs are linked to the modulation
of gene expression, an effect that might be related to HDAC
inhibition. Accordingly, the effect of butyrate on Treg induc-
tion by splenic DCs was independent of GPR109a expression,
yet the contribution of FFAR2 to these effects was not inves-
tigated [172]. Conversely, a later study reported that
Gpr109a−/− colonic DCs and macrophages express less
RALDH1 and IL-10 and as a consequence fail to induce
Tregs [173]. Furthermore, Gpr109a−/− mice showed lower
Treg numbers and frequencies in colonic LP, as well as en-
hanced susceptibility to acute DSS colitis and colonic inflam-
mation [173]. Of note, while both colonic and splenic macro-
phages exhibit similar amounts of GPR109a, colonic DCs
express more GPR109a than splenic DCs, possibly explaining
the contradictory results. Further studies using conditional
knockout mice will be required to better understand the effects
of SCFAs on specific cell populations in vivo.

SCFAs have also been reported to act directly on T cells
promoting either immunity or tolerance depending on the cy-
tokine milieu. Using the TNBS T cell-dependent colitis mod-
el, more severe symptoms were observed in Ffar2−/− mice,
accompanied by exacerbated intestinal Th17 responses
[161]. The same mice were also more susceptible in the
models of K/BxN serum-induced inflammatory arthritis and
OVA-induced allergic airway inflammation [161]. Furusawa
et al. showed that a high fiber diet increases caecal levels of
SCFAs, which results in enhanced differentiation of colonic
IL-10-producing Tregs (cTregs) and ameliorates the develop-
ment of adoptive transfer colitis [174]. This effect was medi-
ated by commensal fermenting bacteria, since no expansion of
Foxp3+ Tregs could be observed under germ-free conditions
[174]. In the same vein, microbiota-deficient broad spectrum
antibiot ic- t reated mice displayed reduced SCFA
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concentrations in the stool and less cTregs [172, 175].
Butyrate administration to mice which selectively lack
peripherally-derived Tregs but display intact thymic Treg dif-
ferentiation, due to deletion of the conserved non-coding
DNA sequence (CNS) 1 in the Foxp3 gene, did not result in
Treg expansion. These findings suggest that butyrate is only
able to act on extrathymic Tregs. Mechanistically, the authors
demonstrated that these effects were not due to improved pro-
liferation or survival of Tregs, but enhanced histone acetyla-
tion in the promoter and conserved non-coding regions of the
Foxp3 locus, thereby enhancing the accessibility of other tran-
scription factors to enhancer elements [174]. These results are
supported by previous studies showing the inhibitory effect of
Class IIa HDAC during Treg induction [176–179]. In addi-
tion, butyrate promotes the acetylation of Foxp3 itself increas-
ing its stability [174]. Nevertheless, HDAC inhibition might
not be the only mechanism involved in cTreg induction by
SCFAs. Ffar2−/− mice failed to expand their cTreg compart-
ment after propionate administration, advocating for an in-
volvement of this receptor [175].

While these findings link SCFAs and fermenting commen-
sals with the induction of cTregs, thus providing a new mo-
lecular mechanism for their anti-inflammatory effect, the ef-
fect of SCFAs on other T helper (Th) cell subsets is less well
understood. Several groups reported no major effects of
SCFAs on Th subsets [175, 174, 172]. In contrast, other stud-
ies indicate that propionate and butyrate potentiate IFNγ and
IL-17 production during Th1 and Th17 differentiation, al-
though these cells produce more IL-10 and have suppressive
capacity [180]. These effects were not mediated by FFAR2 or
FFAR3 as T cells do not express FFAR2 or FFAR3 at func-
tionally relevant levels [180]. Instead, SCFAs act by inhibition
of HDAC activity and subsequent enhancement of the mTOR-
S6K pathway [180].

Given their ability to be transported to the systemic circu-
lation, SCFAs can also exert functions in other organs besides
the intestine. An interesting study linked fiber consumption to
lung homeostasis, showing that low fiber intake renders mice
more susceptible to allergic airway inflammation (AAI). This
effect is mediated by SCFAs, since a high fiber diet promoted
the growth of SCFA-producing bacteria, resulting in increased
systemic SCFA levels, and administration of propionate in a
model of AAI ameliorated the disease symptoms in a FFAR3-
dependent manner [17]. Although no SCFAs were detected in
the lungs, activation levels of DCs from lung-draining lymph
nodes negatively correlated with fiber intake. Indeed, propio-
nate can directly act on DC precursors in the bone marrow,
promoting the differentiation of cells with lower Th2-inducing
potential [17]. Another study reported that SCFAs are able to
reach the brain, where they can influence microglial function
[181]. Absence of microbiota leads to disruption of microglial
homeostasis under steady state conditions and stunted
microglial activation in response to inflammatory stimuli.

SCFA administration was able to revert these effects, though
no expression of FFAR2 was detected in microglia. Therefore,
SCFAs might either modulate microglia through a FFAR2-
independent mechanism and/or act in an indirect way,
targeting an intermediary cell subset that will respond by pro-
ducing factors that affect microglial function. Analysis of the
microglial compartment in Ffar2−/− mice advocates for a
FFAR2-dependent mode of action, but the specific population
which participates in this dialog remains elusive.

Collectively, this evidence points to a tight relationship
between microbiota and tolerance. Yet, studies attempting to
use SCFAs as a therapeutic approach in inflammatory situa-
tions have rendered contradictory results (reviewed in [182]).
Thus, further investigation will be required to better under-
stand their mechanism of action on specific cell types and to
prove their anti-inflammatory potential as new therapeutic
tools.

Medium-, long-chain and polyunsaturated fatty acids

In addition to the above mentioned GPCR recognizing
SCFAs, interest has been put on other receptors recognizing
medium-chain (C6-C12) and long-chain fatty acids (C10-
C18) as well as polyunsaturated fatty acids (PUFAs), usually
acquired from the diet. For example, GPR120 (FFAR4),
which recognizes long-chain unsaturated fatty acids such as
docosahexaenoic acid (DHA), possesses potent anti-
inflammatory actions effects by preventing the secretion of
pro-inflammatory cytokines in macrophages [183]. The ef-
fects mediated by GPR120 may explain, at least in part, the
beneficial effects of omega-3 fatty acids contained in the
Mediterranean diet, long recognized for its positive effects
on health. Still, PUFAs can also exert their function through
peroxisome proliferator-activated receptors (PPARs), a group
of nuclear receptors that act in an anti-inflammatory manner,
both by directly regulating gene expression as well as through
interference with the prototypic inflammatory mediator NF-
kB (reviewed in [184]). GPR40 and GPR84 represent two
other examples of previously considered orphan receptors that
are now jumping to fame because of their recently described
effects on the immune system and the identification of their
endogenous ligands [185, 186]. Studies targeting these recep-
tors in specific cells types, and particularly in DCs, as well as
investigating their role in immune-mediated diseases will con-
tribute to our understanding of their function and their poten-
tial therapeutic applications.

Vitamin A

Vitamin A (all-trans retinol, VitA) is a fat-soluble vitamin that
has many essential functions for the life of all vertebrates and
its deficiency has several detrimental effects on human health.
Since animals lack the required machinery for de novo VitA
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synthesis, theymust obtain it from their diet, either from plants
and microorganisms in the form of carotenoids, or by
ingesting animal-derived products that contain retinyl esters.
After absorption in the intestine, both sources are transported
to the liver in the form of retinyl esters. The majority travels
incorporated into chylomicrons and is taken up by hepato-
cytes, where they are hydrolyzed. Free retinol can then asso-
ciate with retinol-binding protein (RBP), which allows the
secretion of the retinol-RBP complex into plasma. Another
fate of free non-esterified retinol is storage within lipid drop-
lets in hepatic perisinusoidal stellate cells, which occurs espe-
cially under VitA-sufficient conditions (reviewed in [187]).
Although the main site of VitA depot is the liver (>90%), its
presence has been detected in other organs such as skeletal
muscle and bone marrow. Plasmatic concentrations of retinol
are tightly regulated and maintained around 2 μM regardless
of fluctuations in daily VitA intake (reviewed in [187]).

Target cells are responsible for carrying out the conversion
of all-trans retinol to all-trans retinoic acid (ATRA), which is
the active form of VitA. This two-step process involves oxi-
dation of all-trans retinol to all-trans retinal followed by oxi-
dation of retinal to ATRA. The first step can be performed by
cytosolic alcohol dehydrogenases (ADH) and membrane
bound short-chain dehydrogenases/reductases (SDR). The
second step can be executed by at least three different en-
zymes, known as retinal dehydrogenases 1, 2 and 3
(RALDH1–3) [187].

ATRA exerts most of its functions through the activation of
Retinoic Acid Receptors (RARs), which are ligand-activated
nuclear receptors [188, 189]. There are three different sub-
types of RARs (α, β and γ), which display higher homology
between different species than among themselves, implying
they have specific roles in retinoic acid signaling. RARs func-
tion as heterodimers, associated with another nuclear receptor,
Retinoid X Receptor, which also exists in three different forms
(α, β and γ). Upon ligand binding, RAR-RXR heterodimers
associate with specific DNA sequences known as RAR ele-
ments (RARE) and retinoid X response elements (RXRE)
located in promoter regions of target genes. RAR-RXR het-
erodimers can then modulate gene transcription by recruiting
negative or positive regulatory proteins. More than 500 genes
have been suggested to be regulated byATRA, either by direct
or indirect mechanisms, which accounts for the pleiotropic
effects of this metabolite [190].

ATRA participates in maintaining the homeostasis of cDC
subsets. The fate commitment of pre-cDCs into different DC
subpopulations is dependent on the concentration of this me-
tabolite. In particular, the development of splenic
CD11b+CD8α− and small intestine LP CD11b+CD103+ DCs
is severely impaired in absence of VitA [191, 192], whereas
other DC subsets and progenitors are able to develop normal-
ly. ATRA can also guide the differentiation of in vitro-gener-
ated CD103+ DCs [73] into the cDC1 and cDC2 subsets found

in the intestinal LP, CD103+CD11b− and CD103+CD11b+

[193]. Addition of ATRA to human monocyte-derived DCs
during their development imprints them with mucosal-like
properties. ATRA-conditioned DCs express CD103 [194,
195] and constitutively produce the anti-inflammatory cyto-
kine IL-10. They also display higher levels of CCR7 than their
non-treated counterparts, suggesting that these DCs would
exhibit enhanced migration to the draining LNs [194]. Some
studies also reported the induction of RALDH2 after ATRA
administration [195].

In the gut, a specific subset of intestinal DCs expresses
RALDHs which allow them to convert retinol into ATRA
[196]. This subpopulation of DCs is characterized by the ex-
pression of CD103 and is present in Peyer’s Patches, mLNs
and LP. Regarding the signals required to induce ATRA-
synthesizing ability in gut-associated DCs, the available infor-
mation suggests it is mediated by a mechanism dependent on
TLR1/2-MyD88 signaling. Expression of ATRA-synthesizing
enzymes can be induced in DCs by TLR2 ligation [197, 198].
Furthermore, DCs isolated from Tlr2−/− mice express lower
levels of ATRA-producing enzymes and show an impaired
capacity to imprint gut-homingmolecules in Tcells. The same
was observed for Myd88−/− DCs [198].

ATRA exerts several functions in the intestine; first of all, it
is essential for maintaining homeostasis of the mucosal im-
mune system, by inducing the gut homing receptors α4β7
integrin and CCR9 in T cells and B cells. Depletion of VitA
in mice caused a significant reduction of α4β7 integrin+ CD4+

T cells in secondary lymphoid organs and complete absence of
Tcells in the LP, indicating that this metabolite is essential for T
cell migration to gut tissues [196]. Moreover, ATRA is required
by CD103+ DCs in the gut to induce the generation of intestinal
Foxp3+ Tregs via amechanismwhich depends on TGF-β [199,
7, 200, 201]. Induction of Tregs by intestinal CD103+DCsmay
play an important role in maintaining tolerance to dietary anti-
gens and commensal flora. ATRA-conditioned DCs can induce
gut homing IL-10 producing Tregs which is dependent on their
ability to produce ATRA [195]. Furthermore, ATRA seems to
regulate the balance between Th17 and Treg differentiation.
Despite their opposing roles, both of these subsets require
TGF-β for their development. Notwithstanding, the additional
presence ofATRA is able to inhibit Th17 differentiation in vitro.
This mechanism could be particularly relevant in mucosal tis-
sues, where tight regulation of immune responses by ATRA
would be crucial for maintaining integrity of the intestinal bar-
rier [202–204]. However, the ATRA concentration used in this
work appears to be 1000-fold higher than physiological levels
in plasma (μM versus nM) [205], suggesting that these results
should be interpreted with caution. Later studies have shown
that nM concentrations of ATRA do not impair Th17 differen-
tiation [206–208]. In fact, addition of an ATRA receptor antag-
onist inhibited the differentiation of Th17 cells in vitro [206],
while VitA-deficient mice showed a dramatic decrease of Th17
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cells in the gut [207, 208], which could be explained by altered
numbers and composition of the microbiota. Therefore, low
levels of ATRA may be required for the development of intes-
tinal Th17 cells.

Interestingly, the study of a mouse reporter strain that
expresses luciferase upon RA signaling revealed high levels
of RAR activity in CD4+ T cells upon activation.
Furthermore, RA signaling proved to be essential to mediate
rejection in a skin allograft model [209]. Ablation of RA
signaling caused a shift from Th1/Th17 to a Th2 phenotype
[209]. Furthermore, Th1 and Th17 mucosal and systemic
responses were severely impaired in VitA-deficient mice,
further underscoring the role of RA signaling in adaptive
immunity [210]. These findings could explain the consider-
able amount of data showing a correlation between VitA
deficiency and impaired responses to several pathogens.
Several studies have revealed the importance of VitA in
fighting infections. VitA deficiency in children from devel-
oped and developing countries has been linked to greater
mortality caused by infectious diseases [211, 212]. Clinical
trials showed that VitA supplementation in neonates and
children reduced mortality by 12 and 25%, respectively
[213, 214].Mucosal IgA responses in the gut and respiratory
tract are impaired inVitA-deficient individuals, possibly due
to the essential role of ATRA in imprinting homing receptors
to lymphocytes and in the induction of IgA responses [215].
Insufficient levels ofVitA cause deficient immune responses
to vaccines and respiratory and gastrointestinal pathogens. It
has been reported that VitA deficiency in mice leads to de-
creased numbers of antigen-specific CD8+ Tcells in the low-
er respiratory tract which express unusually high levels of
CD103 [216]. This high CD103 expression has been sug-
gested to interfere with Tcell migration to the lower respira-
tory tract, thus accounting for the lower numbers observed.
VitA-deficientmice also showed an altered IgA/IgG produc-
tion ratio in response to intranasal inoculation of a Sendai
virus vaccine [217]. Co-administration of VitAwith the vac-
cine was able to improve the mucosal IgA response in VitA-
deficient mice [218, 219]. Further work is needed to deter-
mine how the interplay betweenDCs andTcells can be tuned
by VitA levels to regulate mucosal immunity.

Vitamin D

Vitamin D (VitD) is mostly produced in the skin, where a
cholesterol derivative, 7-dehydrocholesterol, is converted up-
on exposure to sunlight via a UVB-dependent reaction. VitD
can also be acquired from the diet in limited amounts. Once it
enters systemic circulation, VitD must undergo 2 hydroxyl-
ation steps to be transformed into the metabolically active
form, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). The first hy-
droxylation occurs mostly in the liver and it is catalyzed by
25-hydroxylases. The resulting product, 25-hydroxyvitamin

D3, is the main circulating VitD metabolite and has a half-
life of approximately 15 days. 25-hydroxyvitamin D3 is then
further hydroxylated by 1-⍺ hydroxylases to yield the final
active metabolite of VitD, 1,25(OH)2D3. This reaction mainly
takes place in the kidneys and is tightly regulated by parathy-
roid hormone levels and serum calcium and phosphorous
levels (reviewed in [220, 221]).

VitD has various described immunomodulatory ef-
fects. The first reports of the effect of 1,25(OH)2D3 on
immune cells [222–224], as well as the expression of a
high-affinity receptor for this metabolite in different im-
mune subpopulations [225, 226] were made over two
decades ago. In line with these studies, VitD adminis-
tration showed a therapeutic effect in different mouse
models of autoimmune disease, including encephalomy-
elitis [227, 228] and type 1 diabetes [229].

1,25(OH)2D3 exerts its effects on immune cells by binding
to the Vitamin D Receptor (VDR), a ligand-activated nuclear
receptor that acts as a transcription factor upon binding of
1,25(OH)2D3. When this metabolite binds to the receptor, it
induces its heterodimerization with RXRs. The heterodimer
binds to VitD response elements in the promoter of VitD target
genes, inducing or inhibiting their transcription [230].
Analysis of Vdr−/− mice revealed lymph node hypertrophy
and elevated numbers of mature DCs in the subcutaneous
lymph nodes, highlighting the importance of the VitD-VDR
signaling axis in maintaining DC homeostasis [231].

Studies of in vitro-generated human [232–234] and murine
[231, 235] DCs conditioned with 1,25(OH)2D3 or VitD ana-
logs revealed that these cells are resistant to maturation in-
duced by inflammatory stimuli. The involvement of VDR
signaling in the effect mediated by 1,25(OH)2D3 on DCs
was confirmed in experiments with Vdr−/− DCs, where the
immunomodulatory effects of this metabolite were lost upon
deletion of the receptor [231]. Although there are some con-
tradicting reports regarding their phenotype under steady state
conditions, they unanimously show that 1,25(OH)2D3-condi-
tioned DCs fail to acquire a fully mature phenotype in re-
sponse to inflammatory stimuli such as LPS, TNF-α and
CD40 ligation. Treatment with 1,25(OH)2D3 prevents the up-
regulation of MHC II and costimulatory molecule (CD40,
CD80, CD86) expression [236, 232, 233, 231, 237].
1,25(OH)2D3-conditioned DCs produce significantly lower
levels of IL-12 [232, 233, 231, 237], but higher amounts of
the anti-inflammatory cytokine IL-10 [232, 234]. This results
in a decreased capacity to induce T cell responses in a mixed-
lymphocyte reaction setting [236, 234, 235, 232, 233, 237]. In
addition, 1,25(OH)2D3-conditioned DCs are able to induce
IL-10-producing Tregs that display potent immunosuppres-
sive activity [237]. In conclusion, these studies showed that
1,25(OH)2D3 treatment induces a tolerogenic phenotype in
DCs and introduced the idea of using 1,25(OH)2D3-condi-
tioned DCs for immunotherapy. Although tolerogenic DCs
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can also be obtained by administering other compounds such
as glucocorticoids, 1,25(OH)2D3-treated DCs present the ad-
vantage of inducing Tregs with antigen specificity [237]. As a
whole, this opens the door to using 1,25(OH)2D3-treated DCs
loaded with antigen as immunotherapy, excluding the possi-
bility of unwanted off-target effects. Indeed, in a model of
allogeneic pancreatic islet transplantation, adoptive transfer
of antigen-loaded DCs only prevented graft rejection if DCs
were pre-treated with 1,25(OH)2D3 [238]. Furthermore, treat-
ment with 1,25(OH)2D3 enabled antigen-loaded DCs to pro-
mote prolonged survival of skin grafts expressing the same
antigens [231].

Regarding the mechanism through which 1,25(OH)2D3 ex-
erts its effects on DCs, there are several reports implicating inhi-
bition of NF-κB by this metabolite [239–242]. A recent study
showed that VDR is able to interact directly with IKKβ,
preventing assembly of the IKK complex and consequently
inhibiting phosphorylation and degradation of IκBα. This results
in impaired translocation of NF-κB to the nucleus and hence
lower transcriptional activity [243]. In addition, VDR activation
could induce metabolic reprogramming in DCs. Proteomic anal-
ysis revealed that 1,25(OH)2D3 treatment induces dramatic
changes in DC glucose metabolism, including proteins involved
in glycolysis, the TCA cycle and pentose phosphate pathway
[244]. Lipid metabolism was also modulated by this metabolite,
in particular fatty acid oxidation and elongation in the mitochon-
dria, glycerophospholipid metabolism and phospholipid degra-
dation [244]. Later studies confirmed these findings, showing
that 1,25(OH)2D3 upregulates oxidative metabolism and aerobic
glycolysis through the PI3K/Akt/mTOR pathway. Interestingly,
1,25(OH)2D3-treatedDCs rely on glycolysis to induce andmain-
tain their tolerogenic phenotype [245, 246].

Serum levels of the active form of VitD 1,25(OH)2D3 are in
the picomolar range, which is around 100 times lower than the
dose used in the studies described above. Conversely, the con-
centration of the monohydroxylated precursor is approximately
1000 fold higher [247], implying that the effect of VitD on DCs
could be influenced by its local conversion by neighboring cells
or even DCs themselves. This local production could lead to
accumulation of this metabolite in the microenvironment, thus
reaching effective concentrations to act on its target cells.
Although the liver and kidneys are the major sites of VitD mod-
ification, the expression of VitD-metabolizing enzymes in im-
mune cells [248, 249], including DCs [250] has been reported.
In studies conducted by several groups, human in vitro-generat-
ed DCs and freshly isolated DCs from blood were capable of
producing 1,25(OH)2D3 when an external source of 25-
hydroxyvitamin D3 was added [250–252]. 1,25(OH)2D3 pro-
duction was further increased when LPS was added to the cul-
ture. This observation was accompanied by the discovery of 1-⍺
hydroxylase expression in these cell subsets, which was induc-
ible by LPS stimulation [250]. Nevertheless, the VitD-
metabolizing ability of the different DC subsets in vivo remains

unknown. It is important to consider that 1,25(OH)2D3 generat-
ed by DCs could also act on other cells that express the VDR,
such as T cells [225]. This would have important implications
during the adaptive immune response by downregulating T cell
activation and promoting generation of Tregs. In addition, it
could be important for maintaining tolerance. 1,25(OH)2D3

has a direct effect on T cells in vitro, characterized by an upreg-
ulation of Foxp3 and CTLA-4 and inhibition of pro-
inflammatory cytokine production [253]. In contrast, the addi-
tion of 25-hydroxyvitamin D3, the precursor of the active me-
tabolite, only had an effect on T cell activation when DCs were
present, supporting the idea that DCs can regulate the activation
of nearby T cells by metabolizing the VitD precursor into its
active form [252]. A study by Sigmundsdottir et al. claimed that
VitD conversion by DCs might play an important role in the
skin. 1,25(OH)2D3 induced the chemokine receptor CCR10 in T
cells, thus promoting their migration and retention in the epider-
mis once they enter the skin [254]. Furthermore, this effect was
further enhanced by IL-12. These findings led the authors to
hypothesize that T cell recruitment to the epidermis could have
emerged as a response to the epidermal damage caused by sun
exposure. Nevertheless, the implications of this andwhether this
process functions as a tissue-repair mechanism need to be fur-
ther investigated. Interestingly, the ImmGen database shows
high VDR expression in LCs [33], suggesting that
1,25(OH)2D3 synthesized in the skin could have an effect on
this cell subset. Analysis of human ex vivo dermal DCs and LCs
revealed that 1,25(OH)2D3 diminished the immunogenicity of
both subpopulations, but it only endowed LCs with Treg-
inducing ability [255].

Current studies estimate that 1 billion people worldwide
suffer from VitD deficiency [256]. A growing body of evi-
dence supports the notion that low VitD levels correlate with
higher occurrence of autoimmune diseases, including MS,
type 1 diabetes, SLE and RA. In many of these cases, the
information available suggests that VitD supplementation
could prevent/delay the onset of disease or ameliorate its out-
come. Epidemiological studies point towards a connection
between geographical latitude and prevalence of MS; regions
located closer to the equator have a lower incidence of the
disease [257]. This gives room for speculation regarding the
role of sun exposure, and therefore, VitD, in the development
of MS. Supporting this hypothesis, the amount of VitD in
serum from MS patients negatively correlate with disease se-
verity [258]. Moreover, a recent clinical trial revealed that
high-dose VitD supplementation in MS patients is able to
downregulate IL-17 production by CD4+ T cells, as well as
the frequencies of effector CD4+ T cells [259]. Another link
between VitD and MS incidence was provided by several
genome-wide association studies which implicated the genes
coding for the VitD-metabolizing enzymes (CYP27B1,
CYP24A1) in the pathogenesis of MS, showing that specific
alleles correlate with greater risk of developing the disease
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[260, 261]. Exon sequencing of CYP27B1 from individuals
belonging to families with history of MS identified a number
of loss-of-function variants which were associated with higher
incidence of MS [262]. There is also evidence of an associa-
tion between specific polymorphisms in the VDR gene and
predisposition to the disease [263, 264]. Although the poly-
morphisms implicated do not result in changes to the protein
structure, they might affect the stability of the mRNA or its
translation efficiency.

VitD has also been implicated in IBD. IBD patients display
deficient VitD levels [265, 266], while Vdr−/− mice display
higher susceptibility to different models of colitis [267, 268,
269]. These findings suggest a link between VitD levels and
gut homeostasis. A study of the gut microbiome of Vdr−/− and
Cyp27b1−/− mice, which cannot synthesize 1,25(OH)2D3, re-
vealed that thesemutations result in alteration of the composition
of intestinal flora, supporting a role for VitD in regulating colo-
nization by different bacterial families. Together, it appears that
reduced VitD levels can give rise to reduced tolerogenic DC
frequencies, leading to insufficient Treg numbers and break of
tolerance.

Concluding remarks

The field of metabolites exerting effects on DCs, as well as
other immune cell populations, is ever expanding. Other clas-
ses of metabolites which were not included in this review due
to space limitations include tryptophan derivatives and aryl
hydrocarbons (reviewed in [270]), cholesterol derivatives
and bile acids (reviewed in [271]), lipoxins and resolvins
(reviewed in [272]), and others (reviewed in [141]).

Although the first studies ascribing immunomodulatory
properties to the metabolites listed in this review were pub-
lished over three decades ago, their role as a means of commu-
nication between DCs and the environment has only recently
begun to be deciphered. This is due in part to major advances in
the development of tools to study DC biology and ontogeny
that took place in the last few years. A significant proportion of
the information available so far derives from studies using GM-
CSF-derived DCs which present several limitations. Therefore,
readdressing some of the initial questions with more physio-
logical culture systems is highly important. Together with the
use of mice that allow targeting specific DC subsets in vivo, this
will shed more light on how metabolites can influence DC
function in the context of immune-mediated diseases.
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