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Abstract Inflammatory bowel diseases are chronic, relaps-
ing, immunologically mediated disorders of the gastrointesti-
nal tract. Emerging evidence suggests a critical functional role
of transcription factors and T cell-related cytokines in ulcera-
tive colitis and Crohn’s disease. Gut-residing T cells from
patients with inflammatory bowel disease produce high
amounts of IL-9. Experimental models of colitis highlighted
that IL-9-producing T cells critically interfered with an intact
barrier function of the intestinal epithelium by impacting cel-
lular proliferation and tight junction molecules. The blockade
of IL-9 was suited to significantly ameliorate the disease ac-
tivity and severity in experimental models of inflammatory
bowel disease thereby suggesting that targeting IL-9 might
function as a novel targeted approach for therapy.
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Inflammatory bowel diseases

Inflammatory bowel diseases (IBD) comprise two main dis-
orders: Crohn’s disease (CD) and ulcerative colitis (UC). Both
diseases affect mainly young individuals and are characterized
clinically by chronic diarrhea, rectal bleeding, and abdominal
cramping in affected patients. However, there are key differ-
ences between these two disorders [1–3]: While inflammation
in CD can affect the entire gastrointestinal tract (most fre-
quently the terminal ileum and ascending colon), gut inflam-
mation is restricted to the colon in UC patients. Moreover, at
the histological level, gut inflammation in UC is usually re-
stricted to the mucosa and submucosa, whereas transmural
inflammation of the bowel wall is commonly seen in CD.

Gut inflammation in IBD is a key driver of disease-associated
complications. Such complications include the presence of fistu-
las and strictures (usually seen in CD) aswell as the development
of IBD-associated neoplasias and cancer [4–8]. Risk factors for
cancer development are the duration and the extent of colitis in
IBD patients further highlighting the relevance of mucosal in-
flammation as a triggering factor for neoplasia development [9].
In addition, it should be highlighted that IBD are not restricted to
the bowel wall, as many patients suffer from extraintestinal man-
ifestations of the diseases such as erythema nodosum, pyoderma
gangrenosum, primary sclerosing cholangitis, arthralgias, arthri-
tis, uveitis, and conjunctivitis [1, 2, 10, 11].

In spite of marked progress in medical therapy of IBD in
recent years, many patients still suffer from complications and
have to undergo surgery [1, 12, 13]. This observation high-
lights the destructive and progressive nature of IBD [14] and
underscores the need to better understand the pathophysiology
of IBD in order to develop novel therapeutic approaches. We
will thus first review the current understanding of the patho-
physiology of IBD and subsequently highlight the role of Th9
cells in the disease process.
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Pathophysiology of IBD

There is overwhelming evidence from genome wide associa-
tion studies in recent years that genetic factors are import for
disease manifestation in IBD. Specifically, single nucleotide
polymorphisms in more than 200 genes have been associated
with IBD development with specific findings in CD and UC,
like the NOD2 gene for a CD association [15–17]. However, a
significant overlap between both disorders has been found.
Most recent data support a continuum of disorders within
IBD, much better explained by three groups (ileal CD, colonic
CD, and UC). In any case, genetic factors play an important
role in disease location and disease behavior over time [18].

In addition to these genetic factors, environmental factors
have a fundamental role in disease manifestation of IBD. This
is exemplified by the effect of smoking (protects from disease
development in UC; risk factor for aggressive disease behav-
ior in CD) and the protective effects of appendectomy in UC
[15, 19–21]. In addition to these factors, other factors such as
diet, oral contraceptives, nonsteroidal anti-inflammatory
drugs, perinatal/childhood infections, or atypical infections
have been suggested to play a role in IBD pathogenesis.

Given the prominent role of genetic and environmental
factors in disease pathogenesis, development of IBD appears
to require the interaction between specific environmental and
genetic factors in individual patients. Thus, IBD can be
regarded as complex disorder in a genetically susceptible host
[15, 22]. As many genes (e.g., mucins, defensins) and envi-
ronmental factors related to IBD appear to affect the intestinal
barrier function, one may postulate that IBD are initially char-
acterized by an altered barrier function thus allowing antigens
from the commensal microflora or food antigens to reach the
mucosa. Such impaired barrier function with translocation of
bacteria has been demonstrated in vivo by confocal laser
endomicroscopy in affected patients [23]. This process then
appears to induce antigen presentation and immune cell acti-
vation resulting in specific T cell activation and proinflamma-
tory cytokine production [24, 25]. The exaggerated proinflam-
matory cytokine response then alters the finely tuned balance
between pro- and anti-inflammatory immune responses in the
mucosa and leads to perpetuation and chronicity of the inflam-
matory process.

Based on the prominent role of T cells in the perpetuation
of IBD, we will subsequently review the principles of T cell
polarization and then focus on T cell polarization in IBD with
special reference to Th9 cells.

T helper cell subsets

The identification of two different T helper cell subsets from
CD4+ T cell clones was made in 1986. This discovery of
Mossman and Coffman led to the Th1/Th2 paradigm, dividing

the CD4+ T helper cells in two different compartments with
distinct functions. Nowadays, it is well accepted that Th1 cells
are important for cellular immunity, whereas Th2 cells are
frequently associated with humoral immune responses [26].
T helper cell subsets are characterized by lineage-associated
key transcription factors (e.g., T-bet in Th1 cells and GATA-3
in Th2 cells) and specific secreted signature cytokines (e.g.,
IFN-γ in Th1 cells and IL-4, IL-5 and IL-13 in Th2 cells)
[27–31]. To stabilize the key features of each lineage and
ensure lineage commitment [32], a positive feedback loop is
known for many T helper cell subsets. These findings led to
the idea that T helper cell commitment is lineage-restricted
and static. On the contrary, lineage plasticity among different
T helper cell subsets can be observed in many situations, par-
ticularly in chronic inflammatory disorders such as IBD.

Th9 cells: an IL-9 producing T helper cell subset

After the definition of the Th1 and Th2 cells and their signa-
ture cytokines, further cytokines with relevance for polariza-
tion and phenotype stabilization of CD4+ T helper cells were
discovered. One of these cytokines was the T cell growth
factor P40. This cytokine was produced by a T cell clone
and was found to differ from the known growth factors IL-2
and IL-4 [33, 34]. Subsequently, it was shown that this growth
factor P40 is identical with another factor called the T cell
growth factor III (TCGFIII) and unable to stimulate the pro-
liferation of naïve CD4+ T cells [35]. Moreover, the mast cell
growth-enhancing activity factor (MEA) was identical with
the P40 growth factor that was finally called IL-9 [36].

The expression and release of IL-9 by activated CD4+ T
cells after T cell receptor (TCR) dependent stimulation was
shown to be mainly driven by the local cytokine milieu.
In vitro studies showed that under the influence of TGF-β,
stimulated CD4+ T cells produce significant amounts of IL-9.
Although IL-4 alone was not capable to induce IL-9 produc-
tion, IL-4 had marked capacities to enhance IL-9 secretion in
the presence of TGF-β. IL-4 signaling in T cells was found to
induce the signal transducer and activator of transcription
(Stat)-6 pathway, reduced the TGF-β induced expression of
forkhead box P3 (Foxp3), and prevented the induction of
Tregs [33, 37]. The differentiation of the IL-9 producing T
cell phenotype was additionally dependent on IL-2 [38].

IL-9 released by T helper cells was thought to be associated
with the Th2 subset for a long time, although a different reg-
ulation of IL-9 production compared to the other known Th2
cytokines like IL-4, IL-5, and IL-13 was observed. In subse-
quent years, however, it became clear that T cells exist that
produce chiefly IL-9 leading to the classification of these cells
as BTh9^ cells [39, 40]. In these cells, IL-9 is not coproduced
with the classical Th2, Th1, and Th17 cytokines [41]. It was
suggested that the cytokine TGF-β converts the classical Th2
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subset into an IL-9 producing phenotype. These cells
displayed impaired expression patterns of classical Th2 cyto-
kines, with the exception of IL-10. In addition, other signaling
pathways for Th9 induction were discovered. These studies
found that the TGF-β signal is indispensable for Th9 devel-
opment, while the IL-4 signal can be substituted. Further stud-
ies showed that IL-1β, IL-18, and IL-33 are able to replace the
IL-4 signal during Th9 differentiation [42, 43].

As the major T helper cell subsets were associated with the
specific expression of transcription factors like T-bet for Th1,
GATA3 for Th2, and RORγt for Th17 cells, various groups
searched for transcription factors associated with Th9 cyto-
kine production. Studies on IL-9 cytokine gene transcription
revealed that IRF4 is able to bind to the Il9 promoter. This
transcription factor also upregulates IL-9 in a concentration
dependent manner in Th9 differentiated CD4+ T cells [44].
Another transcription factor important for the Th9 phenotype
is the ETS family transcription factor PU.1 [45] that was pre-
viously mainly associated with B cell and macrophage activa-
tion. PU.1 presumably controls the histone modification at the
Il9 promoter and may be involved in the downregulation of
Th2 connected cytokines by direct interaction with the Th2
transcription factor GATA3 [44].

Funtionally, IL-9 shows growth stimulating capacities in
mast cells and T cells. These signals are probably transmitted
through the common γ-chain that is shared with other growth
stimulating factor receptors like IL-2, -4, -7, -15, and -21. As
IL-9 may show direct effects on CD4+ T cells and other im-
munomodulatory cells [46–49], the role of IL-9 in various
chronic inflammatory diseases has been studied in recent
years. Here, we will review its role in chronic intestinal in-
flammation and IBD.

IL-9 in inflammatory bowel diseases

IL-9 producing T cells have been discovered in a variety of
different chronic inflammatory and autoimmune diseases, es-
pecially atopic diseases, asthma and IBD. Although T cells
were not the only source for IL-9 production in these disor-
ders, they appear to be a major source of IL-9 production in
inflamed tissues.

CD4+ and CD8+ T cells accumulate in the inflamed intes-
tine of patients with IBD [50–52]. Upon antigen presentation
in the regional lymph nodes, T cells enter the circulation and
may re-enter the mucosa via specific adhesion molecules such
as α4/β7 that interact with their ligands (MAdCAM1) on gut
endothelial cells. Moreover, T cells expressing αE /β7 may
bind to E-cadherin on intestinal epithelial cells ensuring their
stable positioning in the gut. Due to high expression of αΕ/β7
on Th9 cells, specific blocking of the αE/β7 integrins with
antibodies leads to reduced numbers of Th9 cells in inflamed
colonic tissue.

T cells in the gut of patients with IBD produce large
amounts of proinflammatory cytokines that drive the inflam-
matory process leading to tissue damage [51, 53, 54]. There is
reasonable consensus that the mucosa of patients with
established CD is dominated by CD4+ lymphocytes with a
type 1 cytokine phenotype (Th1), characterized by the produc-
tion of interferon-γ and interleukin-2. In contrast, the mucosa
in patients with UC has been found to have CD4+ lympho-
cytes with an atypical type 2 cytokine production (Th2).
Interestingly, lamina propria CD4+ T cells in UC produce
mainly IL-5 and IL-13 but only low amounts of IL-4 indicat-
ing the presence of an atypical cytokine phenotype. In addi-
tion to the above cytokines, CD4+ T cells in CD and UC have
been found to produce other proinflammatory cytokines, most
notably IL-6 and TNF [55]. TNF is not only produced as a
soluble factor but can also be found as membrane bound TNF
on the surface of immune cells such as CD14+ macrophages
and T cells. The latter form of TNF can induce a co-
stimulatory signal via interaction with its ligand TNFR2 in
the mucosa [56]. The potential relevance of proinflammatory
cytokines has been studied in numerous preclinical models
and the results of these studies have suggested that controlling
their expression, production and functional activity is a very
promising approach for clinical IBD therapy [53, 57, 58]. This
concept is underlined by the fact that antibodies to TNF are
used for clinical therapy of both CD and UC [59]. Moreover,
antibodies against IL-12/IL-23 p40 have been recently ap-
proved for therapy of CD in the USA [60].

Several studies looked at cytokine gene regulation and ex-
pression of transcription factors in lamina propria T cells from
patients with UC. These reports showed an induction of
GATA-3 and IRF-4 expression in lamina propria CD4+ Tcells
in UC, consistent with the idea of an induction of Th2 and Th9
T cell responses, respectively [61, 62]. Additional studies in
IBD patients revealed that IL-9 and Spi1 and IRF4 mRNA
levels were raised in lamina propria T cells from patients with
active UC [63, 64]. In contrast, a much weaker induction of
IL-9 mRNA expression could be detected in CD patients as
compared to control patients. Double staining analyses dem-
onstrated that IL-9 was mainly produced by lamina propria
CD4+ T cells and only to a lesser extent by other cells. These
observations suggested that Th9 cells may play a role in the
pathogenesis of UC rather than CD whereas low levels of Th9
cells could be found under homeostatic conditions. The pres-
ence of IL-9 producing T cells in UC was remarkable, since
augmented levels of TGF-β but not IL-4 as potential inducers
of IL9 production have been described in this disease [58].
However, further studies showed that IL-33 plays an impor-
tant role in inducing IL-9 production in the absence of IL-4
[65, 66]. As IL-33 is highly produced by intestinal epithelial
cells in UC rather than in CD [67, 68], these observations were
consistent with a model in which TGF-β plus IL-33 drive
mucosal IL-9 production by T cells in UC.
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Another recent study addressed IL-9 serum levels in IBD.
In this study, IL-9 was detected in serum from many IBD
patients (41%). Moreover, IL-9 serum levels correlated to se-
vere prognosis and IL-6 production in IBD [69].

In initial studies on the potential functional role of IL-9 in
the inflamed intestine, potential target cells were screened for
IL-9R expression. These studies revealed high expression of
IL-9R on gut epithelial cells from UC patients with active
disease [63, 64]. To determine the functional relevance of
IL-9 for epithelial cells, these cells were culture in the pres-
ence or absence of IL-9. Administration of IL-9 resulted in an
impaired growth and proliferation of intestinal epithelial cells,
similarly to previous reports on the effects on the function of
IL-13 [64, 70]. Moreover, IL-9 stimulation increased pSTAT5
levels in gut epithelial cells and impaired mucosal wound
healing in a scratch assay system using Caco2 cells. In sum-
mary, the above findings in human cells indicated that epithe-
lial cells are a key target of IL-9 in the mucosa and that IL-9
exposure blocks proliferation of these cells and suppresses
mucosal wound healing.

To study the functional role of IL-9 in colitis, murine
models of chronic intestinal inflammation were used.
Several different animal models of IBD are currently used,
such as the T cell transfer colitis, hapten-induced (TNBS,
oxazolone) colitis, and the dextran sodium sulfate-induced
inflammation model [71–74]. Although none of these models
truly mimics IBD in human, all models induce acute and/or
chronic inflammation of the colon. Two of the most widely
used chemically induced models of intestinal inflammation
are the TNBS-mediated and the oxazolone-mediated colitis
models, which are useful to study T helper cell dependent
mucosal immune responses. The TNBS-mediated colitis mod-
el resembles a CD-related Th1-associated gut inflammation
and T cells have been shown to play a central role in this
model. In contrast, the oxazolone-mediated model is associat-
ed with a Th2-type cytokine response with augmented IL-13
production [71, 75].

First experiments to characterize the NKTcell-derived IL-9
in murine colitis models were done in the dextran sodium
sulfate model. Here, IL-9 producing invariant NKTcells were
able to protect mice from inflammation in an IL-4-
independent manner [76]. The functional role of IL-9 was
not studied with neutralizing antibodies, however. A recent
observation in the DSS model revealed the inflammatory

character of IL-9 in vivo. This study used anti-IL-9 antibodies
and noted suppression of mucosal inflammation upon therapy
[77]. Another study looked at the role of IL-9 producing T
cells by using the T cell transfer model. Using this transfer
colitis model Dardalhon et al. showed that adoptive transfer
of IL-9- and IL-10-producing T cells into RAG1 KO mice
induced colitis and promoted tissue inflammation [37].
These findings were consistent with a proinflammatory role
of IL-9 in experimental colitis.

Concerning the hapten-induced oxazolone colitis model
the absence of IL-9 resulted in protection from inflammation.
In Il9 knockout mice, colitis activity was suppressed as com-
pared to wild-type mice. Moreover, Spi1Cd4Cre mice with
conditional inactivation of PU.1 in T cells had less inflamma-
tory symptoms in oxazolone-induced colitis as compared to
wild-type mice. Similar results could be observed with IL-9
knockout mice in the TNBS-mediated colitis model and these
mice had decreased numbers of PU.1+ Tcells in colonic tissue
[78].

The importance of Th9 cells was further analyzed by the
use of IL-9 citrine reporter mice in the oxazolone-induced
colitis model [63]. These studies showed augmented reporter
gene activity in mucosal T cells strongly suggesting the pres-
ence of Th9 cells in oxazolone colitis in vivo. Additionally,
blocking anti-IL9 antibodies were successfully used to treat
inflammation in this model in a preventive fashion. Moreover,
anti-IL-9 antibodies suppressed chronic oxazolone colitis.

To functionally investigate, the role of IL-9 in intestinal
barrier function proliferation of epithelial cells and expres-
sion of tight junction molecules were analyzed in
oxazolone colitis. IL-9 was found to control claudin and
occludine expression in experimental colitis suggesting that
this cytokine directly controls barrier function [78].
Additionally, IL-9 reduced proliferation and increased ap-
optosis of epithelial cells in organoid culture systems.
These findings together with the reduced epithelial barrier
function demonstrated that IL-9 has the potential to regulate
the activation and function of intestinal epithelial cells dur-
ing colitis. Impaired barrier function in colitis was driven
by IL-9 and allowed translocation of commensal bacteria
into the intestinal wall which can serve as pacemaker of the
inflammatory process. Consistently, more translocating
bacteria could be observed in IL-9-treated colonic mucosa
as well as a delayed wound healing capacity of the mucosa.

Table 1 Evidence of Th9 cells in
described IBD models Model Th9 evidence

DSS-induced colitis IL-9 producing invariant NKT-cells protect mice from inflammation [76]

T cell transfer colitis Transferred IL-9 producing T cells in RAG1 KO mice induce inflammation [37]

Oxazolone-induced colitis IL-9 KO mice are protected from inflammation [63]

TNBS-induced colitis IL-9 KO mice are protected from inflammation [78]
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In addition to suppression of IL-9 function via neutralizing
antibodies, IL-9 expression might be targeted by inhibition of
regulatory transcription factors controlling IL-9 gene expres-
sion. In this context, the production of IL-9 could be effective-
ly suppressed by the use of GATA3 specific DNAzyme in
oxazolone-mediated colitis. Such treatment led to reduced
Th2 and Th9 cytokine production and DNAzyme-treated
mice did not develop inflammation. Such DNAzymes are able
to penetrate into cells and may allow to cleave a specific
mRNA in order to suppress expression at the protein level.
GATA3 DNAzyme may therefore block expression of various
proinflammatory cytokines (including IL-9) simultaneously
and thus emerges as potentially new approach for therapy of
UC in humans [62].

In summary, these recent findings demonstrated a key reg-
ulatory role of IL-9 and Th9 cells in experimental colitis
models (Table 1) and UC in humans. In the inflamed intestine,
IL-9 is mainly produced by mucosal T cells and IL-9R ex-
pressing intestinal epithelial cells are major targets of IL-9
(Fig. 1). IL-9R signaling in gut epithelial cells regulates pro-
liferation and claudin expression and thus has a major effect

on intestinal barrier function. The above studies in experimen-
tal colitis models suggest that targeting of IL-9 is an interest-
ing concept to suppress mucosal inflammation in patients with
UC. Further prospective studies exploring this concept are
highly warranted.
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