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Abstract Deficits in immunological tolerance against self-
antigens and antigens provided by the diet and commensal
microbiota can result in the development of inflammatory
and autoimmune disorders. Dendritic cells (DCs) are pivotal
regulators of the immune response, specialized in antigen pre-
sentation to drive T cell priming and differentiation. DCs also
have a tolerogenic function, participating in the enforcement
of central and peripheral tolerance and the resolution of ongo-
ing immune responses. Thus, DCs control effector and regu-
latory mechanisms relevant to the pathology of autoimmune
disorders. In this review, we discuss recent findings regarding
the control of the adaptive immune response by tolerogenic
DCs. A thorough understanding of the mechanisms that con-
trol the tolerogenic DC phenotype will guide the development
of novel strategies for the treatment of autoimmunity.
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Introduction

Tolerance is a dynamic and active process throughwhich innate
and adaptive immune cells limit immune system activation and

tissue damage. Regulatory T cells (Tregs) are crucial in the
maintenance of peripheral tolerance in mice and humans [1].
Several Treg populations have been described; the best charac-
terized are those defined by the expression of the transcription
factor FoxP3, which can be classified in natural and induced
Treg cells [2–4]. Natural Tregs (nTregs) develop in the thymus,
but Tregs are also differentiated in the periphery (pTregs) in
response to specific factors such as transforming growth factor
beta (TGFβ), kynurenine, and retinoic acid (RA) [2, 4–6].
Additional regulatory T cell populations have been described
as well, for example, FoxP3-negative interleukin (IL)-10-pro-
ducing type 1 regulatory T cells (Tr1 cells) [7–12].

Dendritic cells (DCs) promote immune tolerance by partic-
ipating in the negative selection of autoreactive T cells in the
thymus during central tolerance [13–15]. DCs also limit effec-
tor T cells and promote Treg differentiation in the periphery
through various mechanisms including the production of cy-
tokines such as IL-10, IL-27, and TGFβ; the expression of
indoleamine 2,3-dioxygenase (IDO); and the control of the
extracellular levels of adenosine triphosphate (ATP) and aden-
osine [16–20]. In this review, we discuss tolerogenic DC phe-
notypes and the molecular pathways that control their devel-
opment and maintenance.

Overview on DCs

DCs constitute a heterogeneous cell population that plays a
pivotal role in linking the innate and adaptive immune re-
sponse. Based on their morphological features and function,
DCs can be classified in classical DCs (cDCs) and
plasmocytoid DCs (pDCs). Both cDCs and pDCs are derived
from the common DC progenitors (CDPs) in an Flt3-
dependent manner [21, 22], but the differentiation of each
DC subset is driven by different transcription factors (Fig. 1).
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pDCs are a small subset of DCs characterized by a
spherical shape that resembles plasma cells and are present
mainly in the blood and lymphoid tissues. In the steady
state, pDCs express low levels of major histocompatibility
complex class II (MHC-II) and co-stimulatory molecules
and low levels of the integrin CD11c. pDCs can efficiently
prime CD4+ T cell responses and cross-prime CD8+ T cell
responses and are characterized by the production of high
amounts of type I interferon (IFN) upon recognition of
foreign nucleic acids [23].

cDCs are highly phagocytic cells with a dendritic morphol-
ogy that express high levels of MHC-II molecules and are
endowed with potent antigen-presenting cell (APC) function.
So far, cDCs have been classified in at least two major subsets
characterized by the expression of either CD8α and CD103 or
CD11b [24]. CD8α+ cDCs efficiently present exogenous an-
tigens to CD8+ T cells; these cells also require Id2 and the
basic leucine zipper transcription factor, ATF-like 3 (Batf3)
for their differentiation [25, 26], but a Batf3-independent path-
way has also been described for their generation [27]. CD11b+

cDCs preferentially activate CD4+ T cells and require
Kruppel-like factor 4 (KLF4) for their differentiation [28].
Moreover, DCs are also present in nonlymphoid tissues,
where cDCs represent 1–5 % of tissue cells depending on
the organ and consist of two major subsets, CD103+

CD11b− and CD11b+ cDCs, in which CD103+ CD11b−

cDCs share their origin and function with lymphoid tissue
CD8+ cDCs, and CD11b+ cDCs consist of a mixture of tissue
cDCs and macrophages [24].

DCs sense environmental signals through specific surface
and intracellular pattern recognition receptors (PRRs). Many

classes of PRRs have been identified, including Toll-like re-
ceptors (TLRs), NOD-like receptors (NLRs), and the RNA
helicase RIG-I-like receptor (RIG), which trigger different
signaling cascades [29]. PRRs recognize molecules produced
by microorganisms. However, endogenous molecules re-
leased from damaged tissues or dead cells can also acti-
vate specific PRRs [30], suggesting that DC activation in
the context of chronic autoimmune disorders can be ini-
tiated by infections and perpetuated by the release of
self-molecules from damaged tissue even after the initial
infection has been cleared.

During inflammation and infection, DCs are activated by
PRR signaling, and then they migrate into T cell areas in
lymphoid organs to present pathogen-derived antigens to
antigen-specific T cells. In addition to antigen presentation
via MHC molecules and the provision of co-stimulatory mol-
ecules, DCs produce cytokines that polarize T cells into effec-
tor and regulatory subtypes. Different cytokines are produced
by DCs in response to diverse stimuli [31, 32], resulting in the
generation of varied effector and regulatory T cell responses
against self- and nonself-antigens.

Tolerogenic DCs: cell lineage or maturation status?

Pioneering studies on the role of DCs in peripheral tolerance
suggested that the regulatory function of DCs is determined
by their activation status. For example, the delivery of the
antigenHEL to DCs in vivo using an antibody reactive against
the DC surface antigen DEC-205 results induces transient
antigen-specific T cell activation followed by T cell deletion
and unresponsiveness [33]. Similar effects were observed
when the same experiment was performed using fusions of
autoantigens and DEC-205 reactive antibodies to ameliorate
experimental autoimmunity [34–38]. However, these antigen-
specific tolerogenic effects of DC-targeted antigen administra-
tion were abrogated when the mice were co-treated with an
anti-CD40 antibody that induces DC activation [33]. Thus, the
induction of self-tolerance or immunity is controlled by the
activation status of the DCs.

As discussed below, increasing evidence suggests that ma-
ture DCs can limit effector T cell responses and promote im-
mune tolerance in response to signaling triggered by IL-27,
IL-10, vitamin A, or ligands of the aryl hydrocarbon receptor
(AhR) [19, 39, 40]. Indeed, some DC subpopulations limit the
development of experimental autoimmunity [41] and meta-
bolic disorders [42]. It is still unclear, however, whether spe-
cific tolerogenic DC lineages exist in vivo or whether the
tolerogenic phenotype of DCs reflects their activation status.

Perforin-expressing DCs

In vitro experiments identified a subset of conventional
CD11c+ DCs expressing perforin (perf-DCs) that enforces
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Fig. 1 Dendritic cell subsets in lymphatic organs. Two major classes of
DCs have been identified based on their morphological and functional
features: classical DCs (cDCs) and plasmacytoid DCs (pDCs). cDCs are
also classified in two types based on the expression of CD8 and CD11b.
All subsets of DCs are derived from a common dendritic cell precursor
(CDP) in a process controlled by lineage-specific transcriptional
programs
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peripheral tolerance by deleting T cells [43]. The role of perf-
DCs in limiting inflammation in vivo was recently demonstrat-
ed using chimeric mice in which perforin expression was se-
lectively impaired in CD11c+ DCs. Chimeric mice lacking
perf-DCs show increased weight gain and exhibit features of
metabolic syndrome, concomitantly with an oligoclonal ex-
pansion of T cells in adipose tissue. Perforin deficiency in
DCs also enhances susceptibility to experimental autoimmune
encephalomyelitis (EAE) and is associated with higher fre-
quencies of Th1 and Th17 effector cells in the central nervous
system [42]. Collectively, these data identify perf-DCs as an
important population of tolerogenic DCs that limit autoreactive
T cells in vivo through a perforin-mediated mechanism.
However, several questions remain with regards to perf-DC
biology in health and disease [44]. What is the role of perf-
DCs in human inflammatory disorders and tumors? Do perf-
DCs represent a specific lineage associated with a unique tran-
scriptional program, or do they simply represent an activation
stage of DCs?

CD103+ DCs

Another subset of cDCs with steady-state tolerogenic proper-
ties is the population of CD103+ DCs present into the intesti-
nal mucosa, where they play a central role in enforcing toler-
ance to commensal bacteria and food antigens [45]. The
CD103+ DC subset is derived from the common DC precur-
sor, and its development depends on the growth factor Flt3
ligand [46]. Lamina propria CD103+ DCs induce the expres-
sion of gut-homing receptors CCR9 and α4β7 on T cells and
induce FoxP3+ pTreg cell differentiation through a mecha-
nism mediated by RA, a metabolite of vitamin A [5, 47–49].
In vitro and in vivo studies demonstrated that TGFβ and RA
produced by CD103+ DCs in the lamina propria, but not in the
spleen, mediate the differentiation of FoxP3 pTreg cells,
which is abrogated by treatment with a retinoic acid receptor
(RAR) antagonist [5, 49].

The mucosal administration of antigens has been shown to
induce the differentiation of FoxP3+ pTreg cells and suppress
pathological inflammatory responses [50]. Mucida and co-
workers recently showed that monocyte-derived APCs are
dispensable, while cDCs are critical, for the induction of pe-
ripheral FoxP3+ CD4+ Treg cells and tolerance by oral antigen
administration [51]. Indeed, although the establishment of oral
tolerance involves several subsets of cDCs in the mesenteric
lymph nodes, there is a hierarchy of cDC subsets that drive the
differentiation of FoxP3+ Treg cells, which is associated at
least in part with the expression of genes related to the
TGFβ and RA pathways. In particular, the mesenteric lymph
node CD11b− CD103+ DCs were the most efficient inducers
of FoxP3+ Tregs, followed by CD8α+ DCs, CD11b+ CD103+

DCs, and CD11b+ CD103− DCs [51].

CD103+ DCs in the gut also participate in intestinal homeo-
stasis in a T cell-independent manner. Using a conditional
knockout approach that allowed the deletion of specific sub-
sets of CD103+ DC in a model of experimental colitis, Muzaki
et al. demonstrated that intestinal CD103+ CD11b− DCs, the
migratory subset of DC, are the major regulators of intestinal
homeostasis by controlling the production of IFN-γ-induced
anti-inflammatory proteins in intestinal epithelial cells (IECs)
such as IDO1 and IL-18bp [52].

CD103+ DCs are crucial for gut homeostasis, but the mech-
anisms involved in their acquisition of a tolerogenic pheno-
type are not yet fully understood. Some studies have shown
that factors present in the lamina propria contribute to the
establishment of the regulatory function in CD103+ DCs, in-
cluding luminal bacteria, dietary constituents, IECs, other leu-
kocytes, stromal cells, and neuroendocrine factors. Among the
most studied of these factors are vitamin A and its metabolite
RA, which participates in the regulation of the Th17/FoxP3
Treg cell ratio by CD103+ lamina propria DCs by boosting
FoxP3+ Treg cell differentiation [5] and inducing the expres-
sion of gut-homing receptors on T cells [48]. RA also controls
the homeostasis of the migratory CD11b+ CD103+ DC subset
within the gut [53].

Another nutrient provided by diet that determines the dif-
ferentiation of tolerogenic DCs is the essential amino acid
tryptophan (trp). Dietary trp is metabolized into agonists for
the AhR through a series of cooperative biochemical reactions
catalyzed by enzymes provided by gut commensal bacteria
and the host [40, 54]. Tryptophan-derived AhR ligands induce
the production of anti-inflammatory IL-10 and IL-27 by DCs,
cytokines that favor the generation of FoxP3+ and Tr1 regula-
tory cells [55].

Finally, the gut mucosa is densely innervated and therefore
exposed to the local release of neurotransmitters. For example,
norepinephrine regulates some aspects of DC function, mainly
inhibiting the production of pro-inflammatory cytokines and
boosting IL-10 production [56–58]. Collectively, these data
suggest that metabolites provided by the diet and the gut flora
act in concert with endogenous signals to regulate the ability
of DCs to control T cell responses and tissue homeostasis.

Induction of tolerogenic DCs by cytokines

Both in mice and humans, IL-10 and IL-27 are linked to the
induction of CD4+ T cells with regulatory function [7, 9, 10].
However, accumulating evidence shows that these cytokines
also have a role in promoting DC tolerogenic function [19, 59].

We showed that IL-27 signaling in DCs limits the differen-
tiation of effector T cells and the development of EAE, while
expanding FoxP3+ Tregs and Tr1 cells [19]. Through detailed
transcriptional and epigenetic analyses, we found that IL-27
promotes the expression of the ectonucleotidase CD39 in DCs
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by a mechanism mediated by STAT3 [19]. CD39 catalyzes the
degradation of immunostimulatory extracellular ATP released
in the context of immune activation [60]. Indeed, we found that
IL-27-induced CD39 in DCs limits the differentiation of Th1
and Th17 cells by depleting extracellular ATP, consequently
reducing P2rX7-dependent NLRP3 activation and the produc-
tion of IL-1β and IL-18 (19). Interestingly, we recently found
that CD39 expression is also induced by IL-27 in Tr1 cells
where it participates in their suppressive function [11], suggest-
ing that the IL-27/CD39 axis is co-opted by several immune
cells to regulate ongoing immune responses.

IL-10 is an anti-inflammatory cytokine that impairs the
activation of DCs and the production of pro-inflammatory
cytokines by immune cells [39]. Indeed, IL-10 inhibits the
production of IL-12 and the expression of co-stimulatory mol-
ecules by various types of DC, which correlates with its ability
to inhibit primary alloantigen-specific T cell responses [61,
62]. IL-10-treated DCs drive the induction of anergy in
alloantigen- and peptide-activated T cells [59, 63, 64].

Interestingly, both IL-10 and IL-27 exert their immunosup-
pressive functions through signaling mediated by STAT3.
Indeed, STAT3 deficiency restricted to DCs results in the
spontaneous development of inflammation, suggesting that
cytokines that activate STAT3 signaling induce a tolerogenic
phenotype in DCs under homeostatic conditions and that
STAT3-controlled DCs have an important role in enforcing
immune tolerance in health and disease [65]. Altogether, these
data suggest that cytokines signaling via STAT3 induce a
tolerogenic phenotype in DCs.

Induction of tolerogenic DCs by AhR activation

AhR is a ligand-activated transcription factor activated by a
broad array of synthetic and natural agonists [66]. The inactive
AhR is located in the cytoplasm as part of a protein complex
that includes the 90-kDa heat shock protein (HSP90), the
proto-oncogene tyrosine-protein kinase SRC (c-SRC) protein
kinase, and the AhR-interacting protein Ara9 [67]. After acti-
vation by its agonists, AhR forms a complex with the AhR
nuclear translocator protein (ARNT) and translocates to the
nucleus, where the AhR/ARNT complex establish protein–
protein interactions with additional co-activators and tran-
scription factors [67]. These AhR-containing protein com-
plexes interact with specific sequences in target genes to con-
trol their transcriptional activity in what is known as the
Bgenomic pathway of AhR signaling^ [68]. Of note, several
AhR interactions with other proteins are only triggered by
specific AhR ligands, suggesting that some transcriptional
partners of AhR are recruited in a ligand-specific manner
[69–71]. Thus, it is possible that different AhR ligands
trigger the formation of specific protein complexes that
differ in their composition, leading to the recognition of
noncanonical DNA sequences [72].

In addition, AhR also regulates cellular responses through
nongenomic mechanisms. When AhR is activated by its li-
gands, c-SRC is released from the AhR/HSP90/c-SRC com-
plex and binds to multiple cellular targets to control their ac-
tivity through phosphorylation-dependent mechanisms [73].
Moreover, it has been reported that AhR is a ligand-
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Fig. 2 AhR induces tolerogenic
phenotype in DCs. Nanoparticles
(NPs) engineered to co-deliver the
non-toxic tolerogenic AHR
ligand ITE and a specific antigen
to DCs. Activation of AHR in
DCs induces a tolerogenic
phenotype that promotes the
generation of antigen-specific
FoxP3+ Treg cells (Treg) and
type-1 regulatory T cells (Tr1)
that suppress Th1 and Th17
effector T cells. Moreover, AHR-
targeting NPs interfere with the
differentiation of effector Th1 and
Th17 cells by DCs by modulating
the production of polarizing
cytokines
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dependent E3 ubiquitin ligase, involved in the degradation of
AhR-interacting proteins through the proteasome [74].
However, the relevance of these pathways for the immunoreg-
ulatory roles of AhR is still unknown.

AhR was initially characterized as the receptor for dioxins,
but the immune and liver defects observed in AhR-deficient
mice suggest that natural AhR ligands play a role in normal
physiology [75, 76]. As we already mentioned, the diet is an
important source of AhR ligands, and flavonoids represent the
largest group of naturally occurring dietary AhR ligands [77,
78]. However, the AhR ligands that have been more deeply
studied with regards to their effects on the immune response
are those derived from tryptophan, such as 6-formylindolo[3,2-
b]carbazole (FICZ), 2-(1′H-indole-3′-carbonyl)-thiazole-4-car-
boxylic acid methyl ester (ITE), and L-kynurenine [79–81]. L-
Kynurenine, for example, is generated by the enzymatic deg-
radation of tryptophan through a pathway controlled by the
rate-limiting enzymes IDO or tryptophan 2,3-dioxygenase
(TDO) [81]. IDO expression is induced in various cell types,
mainly in DCs under different stimuli as IFN-γ, TNF-α, IL-
1β, and IL-6 [82].

AhR has been shown to regulate DC activity in experimen-
tal models, but the molecular mechanisms involved are mostly
unknown [11, 83–85]. AhR is known to interact with and
regulate the activity and degradation of transcription factors
important for the control of DC function, such as nuclear
factor κB (NF-κB) and AP-1 [86, 87]. Several mechanisms
mediate the control of NF-κB activation by AhR, including
the regulation of NF-κB expression and direct NF-κB/AhR
protein interactions [86, 88–91]. We recently showed that
AhR induces Socs2 expression in DCs, interfering with
NF-κB activation by TRAF6 and therefore limiting the pro-
duction of pro-inflammatory IL-6 and IL-12 by DCs [85].
Thus, through its effects on NF-κB and other pathways,
AhR activation inhibits DC activation, decreasing the expres-
sion of MHC-II and co-stimulatory molecules and the produc-
tion of pro-inflammatory cytokines that drive Th1 and Th17
polarization [55, 83, 92–94].

Concomitantly, AhR activation boosts the ability of
DCs to promote the differentiation and expansion of
FoxP3+ Tregs through the production of kynurenins and
RA [55, 94, 95]. Indeed, AhR activation upregulates the
expression of IDO in DCs, which catalyzes the production
of kynurenine. Strikingly, kynurenine activates AhR in T
cells, promoting FoxP3+ Treg differentiation through dif-
ferent molecular mechanisms [94–97]. In addition, AhR
signaling in DCs upregulates the expression of the enzy-
matic machinery that controls the production of RA, a
metabolite that promotes the differentiation of FoxP3+

Treg cells [10]. Indeed, the differentiation of FoxP3+

Tregs by DCs pretreated with the AhR ligand ITE can
be significantly inhibited with inhibitors of RA signaling
[10].

Altogether, these data demonstrate that AhR activation in-
duces tolerogenic properties in DCs, which limit effector re-
sponses and promote the generation and expansion of Tregs.
These findings suggest that targeting AhR in DCs may
provide a therapeutic avenue to induce antigen-specific
tolerance in immune-mediated disorders. We have re-
cently tested this approach using two models of T
cell-dependent autoimmunity.

We first used gold nanoparticles (NPs) to co-deliver the
tolerogenic AhR agonist ITE and myelin autoantigen to
DCs.We found that these NPs induce a tolerogenic phenotype
in DCs that limits effector T cell differentiation and promotes
the differentiation of Tregs in vitro and in vivo (Fig. 2).
Indeed, these tolerogenic NPs suppress EAE development in
preventive and therapeutic paradigms [83]. More recently, we
constructed NPs loaded with ITE and β cell antigens (recom-
binant pro-insulin or relevant peptides) to modulate the T cell
response that drives the immune destruction of insulin-
producing β cells in type 1 diabetes (T1D). When evaluated
in spontaneous and cyclophosphamide-accelerated T1D
models in NOD mice, NPs arrested T1D development even
when administered after the onset of insulitis [85]. The anti-
diabetogenic effects of NPs were linked to the induction of
tolerogenic DCs through a mechanism mediated by Socs2.
Interestingly, these tolerogenic NPs were also able to induce
a tolerogenic phenotype in human DCs, limiting their ability
to activate β cell-reactive T cells from T1D patients [85].
Collectively, these data suggest that NPs engineered to ac-
tivate AhR and induce tolerogenic DCs while delivering
relevant immune targets may provide a new method for
the re-establishment of antigen-specific tolerance in human
autoimmune disorders.

Conclusions

DCs with a tolerogenic phenotype are an important compo-
nent of the immune system and regulate the immune response
in health and disease. It is yet unclear, however, whether
tolerogenic DCs constitute a specific lineage or simply reflect
a particular activation status of DCs. Indeed, these options are
not mutually exclusive and this issue should be the focus of
future investigations. Nevertheless, it is expectable that the
tolerogenic phenotype is controlled by specific signaling and
transcriptional programs, such as those controlled by STAT3,
AhR, and Socs2. The identification of these molecular pro-
grams will delineate the cytokines and metabolites that
control the induction and stability of the tolerogenic DC
phenotype in health and disease, as well as their modula-
tion by environmental factors. In addition, the identifica-
tion of the mechanisms responsible for the tolerogenic DC
phenotype will guide new therapeutic strategies for
immune-mediated diseases.
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