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Abstract The fetus is a semi-allograft for the maternal host in
natural pregnancy, but the fetus is a complete allograft after
oocyte donation (OD), and there is greater antigenic dissimi-
larity with the mother. Thus, OD pregnancy is a good model
for understanding how the fetus is protected by the maternal
immune system. Recent clinical data have revealed a higher
risk of miscarriage, gestational hypertension, preterm birth,
and low birth weight with OD pregnancy. There is also a
higher incidence of chorionic deciduitis, dense fibrinoid de-
posits in the chorionic basal plate, inflammatory lesions in the
chorionic plate, and C4d deposition on syncytiotrophoblasts
in OD pregnancy. Impaired accumulation of T cells, regulato-
ry T (Treg) cells, natural killer (NK) cells, and monocytes in
the decidua basalis and poor remodeling of spiral arteries are
observed in OD pregnancy irrespective of whether preeclamp-
sia occurs. These findings may partly explain why OD preg-
nancy is associated with a high risk of gestational hyperten-
sion and preeclampsia. We need to clarify the immunological
and pathological differences between uncomplicated and
complicated OD pregnancy. In uncomplicated OD pregnancy,
the level of HLA match between mother and baby is signifi-
cantly higher than would be expected by chance, suggesting
that miscarriage may be frequent with marked HLA mis-
match. This review discusses the relationship between various

aspects of the immune system and complications of OD
pregnancy.

Introduction

There is a problem of declining fertility due to poor ovarian
reserve in older women undergoing in vitro fertilization (IVF).
Oocyte donation (OD) was first introduced in 1984 [41], and
OD increases the pregnancy rate so that it is similar to the rate
among younger women [30, 45, 81]. This assisted reproduc-
tive technology (ART) is a boom to older patients and those
with premature ovarian failure. OD has become relatively
common in patients treated by ART, and it was reported that
there were 15,973 OD cycles (approximately 10 % of all ART
cycles) in 2011 in the USA [7], although this procedure has
been prohibited in some countries such as Germany and Japan
by ethical reason.

However, it has become clear that OD pregnancy is asso-
ciated with an increased risk of gestational hypertension, pre-
eclampsia, preterm birth, low birth weight, bleeding compli-
cations, and miscarriage compared with natural pregnancy or
IVF pregnancy [1, 7, 16, 24, 28, 29, 35, 38, 49, 59, 64, 68, 69,
78, 80].

OD pregnancy is associated with an elevated risk of gesta-
tional hypertension and preeclampsia [6, 42, 46, 76]. Meta-
analysis of data on 86,515 OD pregnancies has revealed a
higher risk of preeclampsia (odds ratio 2.54 compared with
ART, odds ratio 4.34 compared with natural conception) and
gestational hypertension (odds ratio 3.00 compared with ART,
odds ratio 7.94 compared with natural conception) [42].
Interestingly, the incidence of hypertensive disorders (includ-
ing gestational hypertension and preeclampsia) is lower when
the oocyte donor is related to the recipient [25]. There should
be less HLAmismatch in OD pregnancy with an egg supplied
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by a relative, and preeclampsia is less frequent than when the
egg is from an unrelated donor. These findings suggest that a
high level of feto-maternal HLA mismatch in OD pregnancy
with an egg from an unrelated donor might lead to inadequate
induction of tolerance, resulting in gestational hypertension or
preeclampsia. Indeed, there is evidence of immunological dys-
function in women who develop preeclampsia during natural
pregnancy, such as an increase of Th1-type cells and Th17 cells
as well as a decrease of Treg cells [56, 57, 60, 62]. There is a
much higher incidence of obstetric complications in multiple
OD pregnancies compared to singleton OD pregnancies with
regard to preeclampsia (24.8 versus 8 %), preterm delivery at
≦37 weeks (54.9 versus 10.2 %), and cesarean section (81.4
versus 64 %) [2]. The risks of preeclampsia and gestational
hypertension in twin OD pregnancies were 2.56 (1.84–3.58)
and 3.08 (1.95–4.87) compared to those in twin pregnancies
after methods of ART [42]. Therefore, transfer of only a single
embryo should be recommended to patients using OD.

The high risk of complicated pregnancy in OD pregnancy
suggests that OD pregnancy may be a good model for under-
standing the immunological mechanisms related to successful
pregnancy and the pathophysiology of complicated pregnancy
from an immunologic viewpoint. Accordingly, this review
discusses the relationship between tolerance of fetal antigens
and complications of OD pregnancy.

MHC class I and class II expressions on trophoblasts

After attachment of the blastocyst to the uterine epithelium,
trophoblasts invade the maternal decidual layer and differen-
tiate into villous trophoblasts that play an important role in
nutrient transport from the maternal side and into extravillous
trophoblasts (EVT) that invade the maternal endometrium and
uterine wall and have a very important role in spiral artery
remodeling (Fig. 1). Uterine natural killer (NK) cells and mac-
rophages are also important for vascular smooth muscle cell
separation during spiral artery remodeling, and the
musculoelastic coat of the spiral artery is disrupted by NK
cells to reduce vascular resistance and promote massive blood
flow in these vessels (Fig. 1) [31, 44, 67, 79]. In early stage of
remodeling, NK cells and macrophages accumulate around
the vascular smooth muscle cells before endovascular EVT
presence. These cells produce matrix metalloprotease
(MMP) 2, 7, and 9 and urokinase plasminogen activator
(uPA) and play some roles for the separation of vascular
smooth muscle. And, NK cells and macrophages also induce
apoptosis of vascular endothelial cells. After that,
endovascular EVT cell attracts toward the spiral arteries and
spiral artery lumens are replaced by endovascular EVTs.

Syncytiotrophoblasts and cytotrophoblasts lack the surface
expressions ofMHC class I and class II molecules (Fig. 1). On
the other hand, EVT express polymorphic HLA-C molecules
and non-polymorphic HLA-E and HLA-G molecules (Fig. 1)

[22, 33]. HLA-E and HLA-G are important for protecting
trophoblasts fromNK cell-mediated cytotoxicity andmay also
regulate T cell activation (Fig. 1) [8, 9, 20, 33, 36]. But, HLA-
E and HLA-G are invariant, so these molecules play some
roles for non-specific immunoregulation. Therefore, the in-
duction of paternal HLA-C antigen-specific tolerance is nec-
essary for preventing fetal rejection. HLA-C is directly recog-
nized by NK cells and CD8+ T cells and indirectly recognized
by CD4+ T cells (Fig. 1). Indeed, HLA-C has been reported to
induce a direct cytotoxic response by CD8+ T cells during
allogeneic organ transplantation [15, 48]. The correct balance
among these immunoregulatory systems is required for suc-
cessful pregnancy.

Fetal antigen-specific CD8+ cytotoxic T cells are observed
in half of all human pregnancies and are often detected from
the first trimester. These cells have the ability to proliferate,
secrete IFNγ, and cause lysis of target cells following recog-
nition of paternal antigens [39]. Highly differentiated CD8+

resident memory Tcells are present in the non-pregnant uterus
and decidua, and a fetus-specific CD8+ T cell response has
been reported in uncomplicated pregnancy [73, 74]. These
CD8+ cells show increased expression of perforin and gran-
zyme B messenger RNAs (mRNAs). Interestingly, decidual
CD8+ T cells display reduced expressions of perforin and
granzyme B proteins, suggesting that microRNA (miRNA)
may regulate the production of these proteins at the post-
transcriptional level. Trophoblast-derived miRNA might be
involved in regulating perforin and granzyme B mRNAs
[73], suggesting that we should clarify placental miRNA ex-
pression in OD pregnancies.

Regulatory T (Treg) cells play a very important role in
controlling activated T cells in the decidua during HLA-C
mismatch pregnancy [73]. Tilburgs et al. reported that mater-
nal decidual-activated CD4+ Tcells were increased when feto-
maternal HLA-C mismatch was present [72]. The number of
decidual-activated CD4+ T cells shows a positive correlation
with the number of HLA mismatches between mother and
fetus, and activation of decidual CD4+ T cells only occurs
when feto-maternal HLA-C mismatch exists, although there
is no information about differences of activated NK cells and
CD8+ T cells between HLA-C-mismatched and HLA-C-
matched pregnancies [72]. However, HLA-A, HLA-B,
HLA-DR, and HLA-DQ mismatch does not induce the
activation of CD4+ T cells. Maternal antigen-presenting
cells (APCs) in the decidua pick up trophoblast cell debris
and present paternal HLA-C-derived peptides through ma-
ternal MHC class II to maternal CD4+ T cells. This system
is called as indirect antigen recognition. HLA-C cross-re-
active T cells have not identified, but it is likely that cross-
reactive T cells exist and directly bind and respond to pa-
ternal HLA-C molecules expressed on EVT [74]. HLA-C
molecules act as ligands for killer immunoglobulin-like
receptors (KIRs). KIR haplotype A has only the inhibitory
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receptors, whereas haplotype B has both stimulating and
inhibitory receptors. HLA-C genotype is classified into
HLA-C1 and HLA-C2. In pregnant women with KIR-
AA, NK cells lack the activating receptor for HLA-C2
expressed on EVT. Interestingly, the combination with ma-
ternal KIR-AA and fetal HLA-C2C2 genotype is one of the
risks for preeclampsia and recurrent pregnancy loss
[17, 18]. These findings suggest that mild or moderate
immunoactivation might be necessary for pregnancy suc-
cess. Uterine NK cells are major source of angiogenetic
growth factors, so activation of NK cells might be neces-
sary for adequate placentation. The balance between

immunostimulation and regulation might be important for
maintenance of pregnancy.

Treg cells are central to induction of fetal (paternal)
antigen-specific tolerance and successful pregnancy

Treg cells have an important regulatory role in both the induc-
tion and maintenance of fetal antigen-specific tolerance,
resulting in successful pregnancy in mice and humans
[3, 61]. In mice, Treg cells (especially paternal antigen-
specific Treg cells) increase in the uterine-draining lymph
nodes before implantation and rapidly accumulate in uterus

Fig. 1 MHC class I and II expressions on trophoblasts and remodeling of
spiral arteries by extravillous trophoblasts. Extravillous trophoblasts
(EVT) express polymorphic HLA-C molecules and non-polymorphic
HLA-E, HLA-G, and HLA-F, while villous trophoblasts lack
expression of MHC class I and class II molecules (upper left in the
table). HLA-C antigens are directly recognized by CD8+ T cells and
NK cells. HLA-C mismatch induces the cytoxic T lymphocyte
response, but Treg cells regulate the activation of CD8+ T cells.
Cytotoxicity of uterine NK cells is low, but those cells are a rich source
of angiogeneic growth factors. These cytokines produced by NK cells via

HLA-C recognition may be important for placentation. HLA-G reduces
the cytotoxic T cell activity by induction of apoptosis of CD8+ T cells.
HLA-E and HLA-G prevent NK cell-mediated cytotoxicity for
trophoblasts by inhibitory signals. Maternal macrophages and NK cells
play an important role in the remodeling of spiral arteries by EVT. Uterine
NK cells and macrophages in 8–10 weeks of gestation produce MMP-2,
MMP-9, uPA, and uPAR, and these enzymes can initiate vascular smooth
muscle cell separation. During 12 to 14 weeks of gestation, apoptosis of
EVT and VSM was observed. After that, EVT accumulate and vascular
lumens are replaced by EVTs
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after implantation (Fig. 2) [3, 13, 51, 66, 82]. Depletion of
Treg cells at the implantation period induces fetal resorption
in allogeneic mouse pregnancy, but not in syngeneic mouse
pregnancy, suggesting that Treg cells are essential for success-
ful implantation in allogeneic pregnancies [10, 65, 82]. In
primary pregnancy, Ki67+ proliferating paternal antigen-
specific Treg cells increase in the peripheral blood during
mid to late gestation (Fig. 2) [54, 66]. These cells are induced
when tolerogenic dendritic cell (DC) presents paternal anti-
gens to naïve CD4 Tcells (Fig. 2). Priming by seminal plasma
may play a role in this process by inducing paternal antigen-
specific Treg cells in uterine-draining lymph nodes and the
pregnant uterus, resulting in successful implantation (Fig. 2)
[51, 52, 66]. Self-specific activated/memory Treg cells are
present before pregnancy, and these Treg cells also protect
embryos at implantation in mice [5]. Therefore, paternal
antigen-specific Treg cells and preexisting self-specific
activated/memory Treg cells collaborate in establishment of

implantation. The same findings are observed in human.
Endometrial expression of Treg cell transcription factor
Foxp3 mRNA is decreased in women with primary
unexplained infertility, suggesting that reduction of Treg
cells in the endometrium might lead to implantation failure
and infertility [23]. It has also been reported that a decrease
of peripheral blood Treg cells in the late follicular phase is
associated with failure of artificial insemination by donor
(AID) sperm [40], which supports the above hypothesis. It
has been reported that seminal priming increases the success
rate of IVF-embryo transfer (ET) [75]. Further large-scale ran-
domized study is necessary to prove this hypothesis whether
the priming of seminal fluid improve pregnancy rate in
human.

Depletion of Treg cells during early pregnancy induces
fetal resorption in mice with allogeneic pregnancy but not
syngeneic pregnancy [3, 65]. In addition, adoptive transfer
of Treg cells from normal pregnant mice prevents fetal loss

Fig. 2 Expansion of Treg cells during pregnancy. Seminal plasma
contains paternal antigens that are presented by dendritic cells (DCs),
resulting in induction of Treg cells. After sexual intercourse, paternal
antigen-specific Treg cells accumulate in uterine-draining lymph nodes
before the implantation. After implantation, paternal antigen-specific
Treg cells rapidly accumulate in the pregnant uterus and establish
paternal antigen-specific tolerance. Some chemokines may play

important roles for accumulation of Treg cells at feto-maternal interface.
Non-inherited maternal antigen (NIMA)-specific Treg cells and memory
Treg cells from prior pregnancies also play an important role in the
induction of tolerance. Paternal antigen-specific Treg cells, NIMA-
specific Treg cells, and memory Treg cells might collaborate in the
establishment of tight materno-fetal tolerance
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in abortion-prone mice [82]. Moreover, Foxp3highCD45RA−

functional Treg cells are decreased in the decidua, but not in
the peripheral blood, of women with miscarriage despite nor-
mal fetal chromosomes, suggesting that inadequate immune
tolerance at the feto-maternal interface might induce miscar-
riage in humans [21].

A small number of maternal cells migrate into the fetus,
and these cells are not rejected by the fetal immune system
because feto-maternal tolerance is established during pregnan-
cy. Fetal-derived cells are detected in mother, and maternal
cells are also detected in fetuses. Microchimeric maternal cells
can be detected in adult humans, and maternal antigen-
specific tolerance persists for a long time (Fig. 2). And, fetal
antigen-specific tolerance also persists for a long time. If a
partner has the same HLA profile as a pregnant woman’s
mother, non-inherited maternal antigen (NIMA)-specific
Treg cells will expand rapidly, resulting in successful pregnan-
cy [27]. Therefore, Treg cells responding to maternal
microchimerism enforce tolerance to overlapping fetal anti-
gens during pregnancies in female offspring [27]. If a partner
does not share NIMA antigens, the risk of fetal loss and pre-
eclampsia might be increased, but this hypothesis has not been
proven in humans.

Therefore, paternal antigen-specific Treg cells promoted by
seminal plasma priming, NIMA-specific Treg cells, and
preexisting autologous antigen-specific Treg cells might col-
laborate in the establishment of tight materno-fetal tolerance.

Relationship between clinical manifestations,
such as implantation failure, early pregnancy loss,
and preeclampsia, and immunological changes in OD
pregnancy

Implantation in OD pregnancy

The European Society of Human Reproduction and
Embryology (ESHRE) published the pregnancy and delivery
rates for OD and conventional IVF-ET pregnancies in 2010
(Table 1), revealing a higher OD pregnancy rate than that
achieved by conventional IVF-ET (47.4 versus 33.2 %).
These data demonstrated that the implantation process is not
disturbed in OD pregnancy, although tolerance is necessary
for successful allogeneic implantation in mice. Even when the

fetus is completely allogeneic, implantation seems to proceed
normally in human.

Fetal loss in OD pregnancy

The estimated fetal loss rate in OD pregnancy was 38.0%, and
this was higher than in conventional IVF-ET pregnancy
(Table 1). It seems that paternal antigen-specific Treg cells
are important for establishment of paternal antigen-specific
tolerance, resulting in uncomplicated pregnancy, and seminal
plasma may play an important role in the induction of paternal
antigen-specific Treg cells [51, 52, 58, 66]. This effect of
seminal plasma is absent in OD pregnancy. Lashley et al.
[32] reported a significantly higher level of HLA-A, HLA-
B, HLA-C, HLA-DR, and HLA-DQmatching between moth-
er and child in uncomplicated OD pregnancy, suggesting that
HLA-mismatched OD pregnancy might be associated with an
increased risk of fetal loss. It has not been reported whether
functional Treg cells are decreased or activated CD8+ T cells
are increased when miscarriage of OD pregnancy occurs, and
there are also no reports about feto-maternal HLA mismatch
in relation to miscarriage. Investigation of Treg cells and ef-
fector CD8+ T cells in the decidua after miscarriage of HLA-
matched and HLA-mismatched OD pregnancies might help to
explain the immunological requirements for successful preg-
nancy in the near future. There are no reports about proges-
terone concentration in OD pregnancies. Endocrinical study in
OD pregnancy is also required.

Hypertensive disorders in OD pregnancy

Preeclampsia occurs in 3–8 % of pregnancies and is a major
cause of maternal and neonatal mortalities. Meta-analysis has
revealed that the risk of preeclampsia and gestational hyper-
tension is higher in OD pregnancy compared with IVF-ET
p r egnancy o r na t u r a l concep t i on [ 2 , 42 , 46 ] .
Epidemiological studies have shown that the lack of or insuf-
ficient seminal plasma priming in condom users and a short
cohabitation period are risk factors for preeclampsia [47].
When pregnancy is established by OD, donated embryo trans-
fer, or AID sperm, there is no priming effect of the partner’s
seminal plasma. Interestingly, these pregnancies are associat-
ed with a high risk of preeclampsia [59]. A decrease of Treg

Table 1 Pregnancy rate, actual delivery rate, and estimated fetal loss rate in oocyte donation cases and IVF-ET cases (ESHRE Report 2010)

Pregnancy
rate/transfer

Actual delivery
rate/transfer

Fetal loss (pregnancy rate
minus delivery rate)

Estimated fetal loss/
pregnancy

Oocyte donation (n = 22,804) 47.4 % 29.4 % 18.0 % 38.0 %

Conventional IVF-ET (n = 103,972) 33.2 % 25.5 % 7.7 % 23.2 %

Source: [30]
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cells and dysfunction of these cells have been reported in
preeclampsia [60, 62]. Hsu et al. [19] reported that the altered
phenotype of decidual DC in preeclampsia (reduced expres-
sions of HLA-G and ILT4). The number of DC-SIGN+ APCs
was significantly higher in preeclampsia compared with
healthy pregnancies. But, the contact between DC-SIGN+

APCs and Treg cells was rare in preeclampsia. And, DCs in
preeclampsia had a decreased ability to induce Treg cells in
vitro, suggesting that DC function to induce Treg cells de-
crease in preeclampsia [19].

It has been reported that high TGF-β concentration is im-
portant for induction of Treg cells from progenitor cells [47].
On the other hand, Th17 cell differentiation occurs by low
concentration of TGF-β and IL-6 in mice or IL-1β and IL-6
or IL-1β and IL-23 in humans. Inflammatory cytokines such
as IL-1β and IL-6 were elevated in preeclampsia [50].
Interestingly, the serum level of soluble endoglin (sEnd), an
inhibitor of TGF-β, increases before the onset of preeclampsia
[37], and endoglin mRNA expression in chorionic villous
samples obtained at 11 weeks of gestation is significantly
higher in women who subsequently develop preeclampsia
than in those with uncomplicated pregnancy [12]. These find-
ings suggest that TGF-β level is reduced and inflammatory
cytokine levels are increased at feto-maternal interface. When
the TGF-β level is reduced and IL-1β and IL-6 levels are
increased, progenitor cells differentiate into Th17 cells that
induce inflammation or rejection. Indeed, a decrease of Treg
cells and an increase of Th17 cells have been reported in
preeclampsia [60]. Unfortunately, there have been no reports
about the levels and function of peripheral or decidual Treg
cells and Th17 cells in OD pregnancy with preeclampsia, so
further studies are necessary. But in uncomplicated OD preg-
nancy, Treg cells and activated CD4+ T cells are increased
[77 ] . We shou l d c l a r i f y t h e b a l a nc e b e tween
immunostimulation and immunoregulation in OD pregnancy
with preeclampsia.

During the process of placentation, EVT invade the mater-
nal myometrium and invade the walls of maternal spiral arter-
ies, and EVT finally replace the endothelial cells of the spiral
arteries (Figs. 1 and 3). This process is very important for
dilating the spiral artery and decreasing vascular resistance
to ensure adequate maternal blood volume in the intervillous
space. Uterine NK cells produce MMP-2, MMP-9, and uPA,
enzymes that induce the separation of vascular smooth mus-
cle. Uterine NK cells also induce apoptosis of endothelial cells
and vascular smooth muscle cells, partly through Fas-Fas li-
gand signaling (Fig. 1). Treg cells may also play a role in
preventing maternal CD8+ Tcells and NK cells from attacking
EVT, thus allowing normal placentation to proceed. Shallow
trophoblast invasion and impaired remodeling of spiral arter-
ies have been reported in early-onset preeclampsia (Fig. 3).
Interestingly, there is a decrease of macrophages, NK cells,
CD4+ T cells, CD8+ T cells, and Treg cells in the decidua

basalis in OD pregnancy, irrespective of the presence or
absence of preeclampsia (Fig. 3) [43]. Remodeling of the
spiral arteries is also disturbed in OD pregnancy regardless
of whether preeclampsia occurs [43]. These findings help to
explain why OD pregnancy is associated with an elevated risk
of preeclampsia and gestational hypertension, but the crucial
difference between ODwith and without preeclampsia has not
been found. Redman et al. proposed that poor placentation is
not the direct cause of preeclampsia but rather a powerful
predisposing factor [50]. Indeed, poor placentation is also
observed in cases with small for gestational age fetus. These
cases do not show hypertension or proteinuria. They proposed
that poor placentation is not the direct cause of preeclampsia,
and an excessive maternal inflammatory response to
pregnancy might induce preeclampsia. Leucocyte activation
and maternal excessive inflammatory response in OD
pregnancy might develop preeclampsia. And, combinations
of maternal KIR-AA and fetal HLA-C2C2 in OD pregnancy
might be a great risk for preeclampsia. Until now, there are no
reports about these, so we should clarify these points in the
near future.

Placental pathology in OD pregnancy

The placenta is the feto-maternal interface, and various
immune-mediated pathological changes are observed in
villitis of unknown etiology (VUE), chronic deciduitis with
or without plasma cells, massive chorionic intervillositis, and
maternal floor infarction [4, 11, 26, 32, 34, 53, 55]. These
findings may suggest that maternal immune cells are attacking
the fetus in such conditions. Therefore, it is interesting to
examine placental pathology in OD pregnancy for better un-
derstanding of immunological reactions at the feto-maternal
interface.

Severe chronic deciduitis with dense fibrinoid deposition is
a characteristic finding in OD pregnancy (Fig. 3) [14],
affecting the border zone between mother and fetus.
Accumulation of maternal lymphocytes suggests conflict
between the immune cells of the mother and fetus. The
main populations of lymphocytes that accumulate in this
zone are CD4+ T cells and CD56+ NK cells [14]. CD4+ T
cells recognize MHC class II antigens, and feto-maternal
HLA-DR and HLA-DQ mismatch is correlated with an
increase in the percentage of activated CD4+ T cells in
the peripheral blood of the mother during uncomplicated
OD pregnancy [77]. These activated CD4+ T cells may
attack fetal tissue at the border zone between mother and
fetus, and dense fibrin deposits may be an indicator of such
conflict. It has been reported that selective migration of
fetus-specific Treg cells from the peripheral blood to the
decidua regulates the fetus-specific immune response of
the mother [71]. Interestingly, accumulation of Treg cells
in the decidua basalis is decreased in OD pregnancy
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regardless of the occurrence of preeclampsia [43]. Such
immunological changes suggest possible conflict between
the immune systems of the mother and fetus in OD
pregnancy. Fibrin deposition with chronic deciduitis is
associated with an increase of syncytial knots, which is a
sign of hypoxia or stress in the intervillous space (Fig. 3)
[14]. These findings also support the existence of an
immune interaction between mother and fetus in OD

pregnancy, although an increase of syncytial knots was
not found in another study [47].

VUE is an inflammatory condition that has been reported
in 5–15 % of all third-trimester placentas. VUE is associated
with fetal growth restriction and stillbirth [11]. Because ma-
ternal CD8+ T cells and fetal macrophages accumulate around
fetal-derived placental (villous) stromal cells, it seems that
VUE is based upon a maternal immunological response to

Fig. 3 Pathological and immunological changes in uncomplicated OD
pregnancy and OD pregnancy complicated by preeclampsia. Several
findings are observed in the villous trophoblast, chorionic plate, and
decidua in women with uncomplicated OD pregnancy and OD
pregnancy complicated by preeclampsia. In the villous trophoblast
(lower part in the figure), syncytial knots, chronic deciduitis, and dense
fibrinoid deposition are observed in OD pregnancy, but villitis unknown
etiology (VUE), massive chorionic intervillitis, and maternal floor
infarction are not recognized. CD4d staining in villous trophoblast is
increased in preeclamptic OD pregnancy, preeclamptic cases in natural
pregnancy, but not change in normotensive OD pregnancy, suggesting
that placental CD4d depositionmight be a sign of antibody-mediated fetal

rejection. Placental biopsy samples show decreased numbers of CD68+

Mφ, CD4+ T cells, and Treg cells in preeclamptic cases in natural preg-
nancy. The same findings are observed in OD pregnancies, regardless of
the presence or absence of preeclampsia. The numbers of CD8+ T cell in
preeclamptic cases in natural pregnancy are not changed, but these levels
are decreased in OD pregnancies, regardless the presence or absence of
preeclampsia. In chorionic plate (upper part in the figure), intervillositis,
chronic deciduitis, plasma cell infiltration, and fibrin deposition are ob-
served. M2Mφ are main population in chorionic plate. When inflamma-
tory lesions are found in this area, the incidence of preeclampsia is very
low, suggesting that inflammation in chorionic plate may represent a
protective response to fetal rejection
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the semi-allograft fetus (Fig. 3) [11, 26]. Styer et al. [70] re-
ported that there is a twofold increase of VUE in OD pregnan-
cies, suggesting that immune-related inflammation may be
present in these pregnancies. However, Gundogan et al. [14]
reported that the incidence of VUE in OD pregnancy was
similar to that in conventional IVF-ET pregnancy, so further
studies are necessary to confirm the relation with VUE.

Deposition C4d, a degradation product of complement fac-
tor C4, is considered to be evidence of antigen-mediated allo-
graft rejection. C4d deposition in the placenta is observed in
VUE, spontaneous preterm birth, maternal floor infarction,
and preeclampsia [4, 32, 34, 53, 55]. Placental C4d deposition
is significantly increased in women with preeclampsia irre-
spective of whether they have spontaneous or OD pregnancy
(Fig. 3) [32]. Importantly, diffuse CD4 deposition is not ob-
served in the chorionic villi in uncomplicated OD pregnancy,
suggesting that placental C4d deposition might be a sign of
antibody-mediated fetal rejection in preeclampsia (Fig. 3).
Placental expression of mRNAs for complement regulatory
proteins, such as CD46, CD55, and CD59, is significantly
reduced in both uncomplicated and preeclamptic OD pregnan-
cies [32], while upregulation of placental CD55 and CD59
mRNA expressions is observed in autologous preeclamptic
pregnancies [4]. Therefore, downregulation of complement reg-
ulatory proteins in the placenta is unique to OD pregnancy, and
this may trigger C4d deposition in the syncytiotrophoblasts.

The placental chorionic plates of women with uncompli-
cated OD pregnancy show inflammatory changes such as
intervillositis, chronic deciduitis, plasma cell infiltration, and
fibrin deposition (Fig. 3) [63]. Interestingly, when inflamma-
tory lesions are found in the chorionic plate in OD pregnancy,
the incidence of preeclampsia is very low (0 %), while pre-
eclampsia shows a very high incidence (45.5 %) when inflam-
mation of the chorionic plate is not detected [63]. These find-
ings suggest that chorionic plate inflammationmay represent a
protective response to attack by the maternal immune system.
However, maternal type 2 macrophages (M2Mφ) that control
the inflammation accumulate in this region, suggesting that
immune regulatory mechanisms might contribute to the pre-
vention of preeclampsia. These findings suggest that the bal-
ance between inflammation and regulation of inflammation
might be important for successful pregnancy.

The concept of selecting oocyte for OD to reduce the risk
for pregnancy complications

The risk for preeclampsia and gestational hypertension is low
when oocyte donor is related to the recipient, suggesting that
less HLA mismatch between mother and fetus seems to be
favorable for maintenance of OD pregnancy. NIMA-specific
Treg cells are present, and when partner has shared NIMA
antigens, NIMA-specific Treg cells rapidly increase after
pregnancy and enforce feto-maternal tolerance [27].

Therefore, we might select the oocytes which express the
same HLAs especially HLA C antigens for OD recipient. In
OD recipient with KIR-AA, oocyte donor with HLA-C2C2
genotype might be avoided. Furthermore, single-embryo
transfer is recommended to reduce multiple pregnancy be-
cause multiple pregnancy in OD pregnancy is a great risk
for preeclampsia. Those attempts have not been performed,
so prospective study to reduce the risk in OD pregnancy
should be tried in the near future.

Conclusion

OD pregnancy is associated with a high rate of complications.
Recent immunopathological studies have revealed some of
the immunological characteristics of uncomplicated OD preg-
nancy, but we have not yet identified the crucial factors that
lead to preeclampsia, preterm labor, and miscarriage in OD
pregnancy (Table 1). Some of the immunological abnormali-
ties were proven in OD pregnancy, but some of the immune
statuses have not been clarified. Further investigation of im-
munological changes in OD pregnancy may help to clarify the
mechanisms involved in maintenance of normal pregnancy
and the pathophysiology of preeclampsia.
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