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Regulatory roles of mast cells in immune responses
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Abstract Mast cells are important immune cells for host
defense through activation of innate immunity (via toll-like
receptors or complement receptors) and acquired immunity
(via FcεRI). Conversely, mast cells also act as effector cells
that exacerbate development of allergic or autoimmune disor-
ders. Yet, several lines of evidence show that mast cells act as
regulatory cells to suppress certain inflammatory diseases.
Here, we review the mechanisms bywhichmast cells suppress
diseases.
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Introduction

Mast cells are derived from hematopoietic stem cells and are
distributed in various tissues, especially the airways, skin, and

gastrointestinal tract, where various antigens are encountered.
Mast cells are thus considered to be sentinel immune cells in
host defense. Indeed, mast cells can contribute to host defense
against pathogens via innate immune systems such as toll-like
receptors or complement receptors [1]. Binding of antigen-
specific IgE to FcεRI on the surface of mast cells primes them
to release various mediators upon subsequent exposure to the
specific Ag [1]. IgE-mediated mast cell activation is important
for host defense against certain parasites [2]. Mast cells also
influence functions of various types of immune cells such as
dendritic cells (DCs), macrophages, T cells, and B cells [3],
contributing indirectly to host defense via such cells.
However, inappropriate or excessive activation of mast cells
is generally known to aggravate development of various dis-
eases such as allergic and autoimmune diseases [4]. On the
other hand, mast cells also play a suppressive role in develop-
ment of certain diseases. Thus, mast cells can act not only as
effector cells but also as suppressor cells, in certain immune
responses, and those various roles are described in the follow-
ing sections.

Regulatory role of mast cells in skin allograft rejection

The number of mast cells is increased at the local sites of
allografts such as the liver [5], kidney [6], and lung [7] in
humans, which suggested that mast cells may contribute to
the pathogenesis of allograft rejection. Mast cell-deficient
KitW-sh/W-sh mice were used to elucidate the roles of recipient
mast cells in acute and chronic cardiac allograft rejection [8].
In this model, recipient mast cells were not required for acute
or chronic cardiac allograft rejection [8]. On the other hand,
mast cells played an immune-suppressive role in a murine
model of skin allograft transplantation [9]. Compared with
in naïve mice, long-term skin allograft survival was observed
in mice rendered tolerant to alloantigens by co-injection of
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allogenic cells and anti-CD154 blocking Abs [9]. In the set-
ting, the numbers of regulatory T cells (Tregs), which are
important for tolerance to alloantigens [10], and mast cells
were increased in the skin allografts of the tolerized mice
compared with the non-tolerized mice [9]. Remarkably, the
long-term skin allograft survival seen in tolerized wild-type
mice was not observed in tolerized mast cell-deficient KitW-sh/

W-sh mice [9], suggesting that mast cells somehow contribute
to Treg-mediated skin allograft tolerance. In addition to Tregs
and mast cells, IL-9, which is a potent cytokine that enhances
growth and recruitment of mast cells [11–13], was also crucial
for skin allograft tolerance in this model [9]. Tregs were a
potential source of IL-9 in skin allografts, and treatment of
wild-type mice with anti-IL-9 neutralizing Abs resulted in
failure of skin allograft tolerance and accumulation of mast
cells in the skin allografts [9]. Although direct evidence that
Treg-derived IL-9 is involved in skin allograft tolerance was
not generated (i.e., by adoptive transfer analysis using IL-9-
deficient and IL-9-sufficient Tregs), these observations sug-
gest that Treg-derived IL-9 may control mast cell function
(Fig. 1). Likewise, Tregs and mast cells (especially their inter-
action) were crucial for protection in a Th1- and Th17-
dependent model of nephrotoxic serum nephritis [14].
Transfer of wild-type Tregs prevented nephrotoxic serum
nephritis and accumulation of mast cells in kidney-draining
lymph nodes in wild-type, but not mast cell-deficient KitW/W-v,
recipient mice [14]. On the other hand, transfer of IL-9-
deficient Tregs failed to protect wild-type recipient mice
against nephrotoxic serum nephritis and mast cell accumula-
tion in kidney-draining lymph nodes [14]. Therefore, these
observations in the two models of skin allograft and nephro-
toxic serum nephritis suggested that Treg-derived IL-9

promotes mast cell function, and the mast cells somehow sub-
sequently contribute to immune suppression.

Certain subsets of DCs, so-called tolerogenic DCs, are
known to be crucial for induction of Tregs in draining lymph
nodes, thereby contributing to allograft tolerance [15, 16].
Indeed, long-term skin allograft survival seen in wild-type
mice tolerized by co-injection of allogenic cells and anti-
CD154 blocking Abs was diminished in tolerized DC-
depleted mice as well as mast cell-deficient KitW-sh/W-sh mice
[9, 16]. In the setting, mast cell-deficient KitW-sh/W-sh mice
showed impaired DC migration from the skin grafts to
draining lymph nodes [16]. Mast cell-derived TNF and GM-
CSF were, respectively, crucial for migration of DCs from
skin grafts to draining lymph nodes and survival of DCs in
draining lymph nodes [16] (Fig. 1). Taken together, mast cells
control tolerogenic DCs, resulting in induction of Tregs in
draining LNs during skin allograft tolerance.

Regulatory role of mast cells in graft-versus-host disease

Mast cells may contribute to the pathogenesis of acute graft-
versus-host disease (GVHD) in humans [17]. Acute GVHD
induced in irradiated DBA/2 mice (H-2d) transplanted with T
cells and bone marrow cells from B10.D2 mice (H-2d) by
mismatching minor histocompatibility antigens [18] was sup-
pressed by treatment with peptide antagonists of binding of
IgE to FcεR1 [19], suggesting that IgE/Ag-stimulated mast
cells can enhance development of acute GVHD. In addition,
the onset of acute GVHD in irradiatedWBB6F1-KitW/W-vmast
cell-deficient mice was significantly delayed compared with
in irradiated WBB6F1-Kit+/+ mice (H-2ja/b) after transplanta-
tion of CD8+ T cells and T cell-depleted bone marrow cells
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Fig. 1 Regulatory role of mast
cells in skin allograft rejection.
Mast cell-derived TNF and GM-
CSF, respectively, enhance
migration of dendritic cells (DCs)
from the skin to draining lymph
nodes and survival of DCs in
draining lymph nodes. Then, DCs
induce regulatory T cell (Treg)
expansion in draining lymph
nodes, after which the Tregs
move to the skin allograft and
produce IL-9, resulting in
enhanced growth and recruitment
of mast cells. Tregs and mast cells
somehow suppress CD8+ T cell-
mediated allograft rejection
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from C3H.SW mice (H-2b) [20]. These observations suggest
that mast cells act as effector cells in the development of acute
GVHD induced by mismatching minor histocompatibility an-
tigens in mice. Conversely, the development of acute GVHD
by mismatching MHC antigens was significantly exacerbated
in C57BL/6J mast cell-deficient KitW-sh/W-sh mice (H-2b)
transplanted with T cell-depleted bone marrow cells from
FVB/Nmice (H-2q) compared with C57BL/6J wild-type mice
transplanted with T cell-depleted bone marrow cells from
FVB/N mice [21], suggesting that mast cells play an immu-
noregulatory role in this setting. The exacerbated acute
GVHD seen in C57BL/6J mast cell-deficient KitW-sh/W-sh re-
cipient mice was independent of Tregs, because the number,
frequency, and suppressive function of Tregs were normal in
the liver, spleen, and lymph nodes of those mice during the
acute GVHD [21]. The exacerbated acute GVHD recovered to
the level seen in the wild-type recipient mice when wild-type,
but not IL-10-deficient, mast cells were administered [21].
These observations suggest that mast cell-derived IL-10 is
crucial for inhibition of acute GVHD due to mismatched
MHC antigens, independently of Tregs in mice, although it
remains unknown what triggers mast cells to produce IL-10 in
the setting.

Regulatory role of mast cells in contact hypersensitivities

Delayed-type hypersensitivity (DTH), which is experimental-
ly elicited in mice by immunization with exogenous antigens
such as cells (i.e., sheep red blood cells [SRBC] and allogenic
splenocytes), protein antigens (i.e., ovalbumin [OVA], meth-
ylated bovine serum albumin [mBSA], and keyhole limpet
hemocyanin), and pathogens (Mycobacterium, Leishmania,
and viruses), is considered to be a Th1 cell-mediated cellular
immune response [22]. Mast cells were not essential for de-
velopment of DTH induced by immunization of mice with
methylated human serum albumin (mHSA) emulsified in
complete Freund’s adjuvant (CFA) or SRBC emulsified in
incomplete Freund’s adjuvant (IFA) or CFA [23]. On the other
hand, mast cell-deficient KitW/W-v mice and KitWf/Wf mice
showed reduced DTH when immunized with mHSA emulsi-
fied in IFA [23], SRBC without adjuvant [24], or OVA emul-
sified in CFA [25]. Therefore, mast cells must function as
effector cells in such models of DTH.

Classically, contact hypersensitivity (CHS), which is in-
duced by epicutaneous exposure to haptens, was considered
to be a form of DTH reaction. However, studies using gene-
deficient mice showed that the molecular mechanism of
development of CHS differs from that of DTH [26].Mast cells
are involved [24, 27–33] or not involved [34–39] in develop-
ment of acute CHS (Table 1). This apparent discrepancy in the
contribution of mast cells to DTH and acute CHS may have
been due to different experimental protocols. Likewise, the
role of mast cells in development of OVA-induced allergic

airway inflammation differed between immunization proto-
cols (i.e., in the presence or absence of adjuvant) [40, 41].
On the other hand, mast cells play a regulatory role in devel-
opment of certain CHS models in mice. It is known that ultra-
violet B (UVB) irradiation suppresses systemic immune
responses including CHS [42]. After exposure to UVB, induc-
tion of acute CHS by 2,4,6-trinitrochlorobenzene (TNCB)
was suppressed in Kit+/+ mice, but not in mast cell-deficient
KitW-f/W-f mice [43]. In this model, UVB-induced production
of histamine by mast cells is considered to be important for
UVB-induced immune suppression during acute CHS [43].

Chronic CHS is induced by repeated epicutaneous expo-
sure to haptens. Development of chronic CHS induced by 2,4-
dinitrofluorobenzene (DNFB) or urushiol was exacerbated in
mast cell-deficientKitW-sh/W-sh and KitW/KitW-vmice compared
with Kit+/+ mice, suggesting that mast cells suppress the de-
velopment of chronic CHS [44]. The exacerbated DNFB-
induced chronic CHS was attenuated by intradermal engraft-
ment of bone marrow cell-derived cultured mast cells from
wild-type, but not IL-10-deficient, mice [44]. In this model,
IL-10 production by IgG1/FcγR-mediated mast cells is cru-
cial for suppression of chronic CHS [44] (Fig. 2). Likewise,
development of chronic CHS induced by oxazolone was
exacerbated in mast cell-deficient KitW-sh/W-sh mice compared
with Kit+/+ mice [45]. The exacerbated oxazolone-induced
chronic CHS was similarly attenuated by engraftment of bone
marrow cell-derived cultured mast cells from wild-type, but
not IL-2-deficient, mice [45]. These results suggested that IL-
2 production bymast cells in response to IgE/Ag in the spleen,
but not local skin, enhances Treg expansion in the inflamed
skin, but not in the spleen, following suppression of skin
inflammation during chronic CHS by Tregs [45] (Fig. 2).

By contrast, mast cell-depleted mice (diphtheria toxin
(DT)-injected Mcpt5-Cre+ iDTR+ mice or Mcpt5-Cre+ Rosa-
DTA+ mice, in which connective tissue-type mast cells are
depleted but mucosal-type mast cells are present) showed at-
tenuated development of DNFB-induced chronic CHS as well
as DNFB- and/or FITC-induced acute CHS [32], suggesting
that mast cells are potent effector cells in induction of acute
and chronic CHS. The reason for the discrepancy between
mast cell-deficient Kit mutant mice and mast cell-depleted
mice remains unclear, but it may be due to mast cell-
independent Kit signaling in mast cell-deficient Kit mutant
mice (KitW-sh/W-sh mice, KitW/KitW-v mice, etc.) or some effect
of mucosal-type mast cells in mast cell-depleted mice (DT-
injected Mcpt5-Cre+ iDTR+ mice and Mcpt5-Cre+ Rosa-
DTA+ mice). Also, since a commercial database (NextBio,
Illumina Inc.) indicates that Mcpt5 mRNA is expressed in
certain types of macrophages, B cells and NK cells, and mast
cells, we can not rule out the possibility that depletion of such
cells as well as mast cells also influences the phenotypes seen
of DT-injected Mcpt5-Cre+ iDTR+ mice and Mcpt5-Cre+

Rosa-DTA+ mice.
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Regulatory role of mast cells in innate-type allergic airway
inflammation

It is thought that, in the sensitization process to allergens dur-
ing allergic airway inflammation such as asthma, the allergens
have to invade hosts beyond the epithelial cell barrier in the
airway. House dust mites (HDMs) are considered as a major
source of allergens in various allergic diseases such as atopic
asthma, dermatitis, and rhinitis [46]. HDM-derived cysteine
proteases such as Der p1 and Der f1 can disrupt the tight
junctions between epithelial cells [47–49], allowing invasion
of allergens into hosts. In addition to disrupting the tight junc-
tions, such proteases also induce necrosis of epithelial cells,
following induction of antigen-non-specific inflammation by
damage-associated molecular patterns (DAMPs). Supporting
this, inhalation of Der p1 and papain, which is a plant-derived
cysteine protease and homologous to Der p1/Der f1 and
human cathepsin B [50], in mice resulted in induction of

airway inflammation in the absence of acquired immune sys-
tems [51, 52]. In the setting, papain damaged airway epithelial
cells, after which epithelial cell-derived DAMP BIL-33,^
which is a member of the IL-1 cytokine family and binds to
IL-33R (a heterodimer of ST2 and IL-1R accessory protein),
activated group 2 innate lymphoid cells (ILC2) to secrete IL-5
and IL-13 in the lung, leading to development of eosinophilic
airway inflammation [51–53] (Fig. 3). IL-33 can activate both
mast cells and basophils even in the absence of IgE/Ag-FcεRI
cross-linking [54–56]. During the papain-induced innate-type
airway inflammation, IL-33-dependent basophil-derived IL-4
was important for type 2 cytokine production by ILC2, indi-
cating that basophils are potent effector cells [52] (Fig. 3). On
the other hand, mast cell-deficient KitW-sh/W-sh mice showed
exacerbated development of papain-induced innate-type air-
way inflammation, suggesting that mast cells normally play a
suppressive role [57]. In the setting, IL-33-dependent mast
cell-derived IL-2 induced expansion of Tregs, after which

Table 1 Roles of mast cells in contact hypersensitibity; analysis of different mast cell-deficient mice

Model Strain Phenotype Hapten Concentration of hapten (%) Solvent of hapten Reference

Sensitization phase Challenge phase Sensitization phase Challenge phase

Acute W/Wv, Sl/Sld Suppressed TNCB 5.0 0.8 EtOH/Ac (3:1) OO 24

W/Wv, Sl/Sld TNCB 5.0 5.0 EtOH/Ac (3:1) OO 27

W/Wv, Sl/Sld TNCB 5.0 1.0 EtOH/Ac (3:1) OO 28

W/Wv, Sl/Sld Oxazolone 3.0 1.0 EtOH/Ac (3:1) EtOH/Ac (3:1) 28

W/Wv Oxazolone 1.6 0.8 EtOH EtOH 29

KitW/KitW-v TNCB 2.0 1.0 Ac/OO (4:1) Ac/OO (1:9) 30

W/Wv DNFB 0.5 0.2 EtOH EtOH 31

W/Wv Oxazolone 2.0 1.0 EtOH EtOH 31

Mcpt5-Cre+ iDTR+ DNFB 0.5 0.2 Ac/OO (4:1) Ac/OO (4:1) 32

Mas-TRECK DNFB 0.5 0.3 Ac/OO (4:1) Ac/OO (4:1) 33

Mas-TRECK Oxazolone 2.0 1.0 Ac/OO (4:1) Ac/OO (4:1) 33

Acute Wf/Wf, W/Wv No change TNCB 5.0 0.5 Ac/DP (1:1) Ac/DP (1:1) 34

Wf/Wf, W/Wv Oxazolone 3.0 0.5 Ac/DP (1:1) Ac/DP (1:1) 34

Wf/Wf, W/Wv Oxazolone 3.0 1.0 Ac/DP (1:1) Ac/DP (1:1) 34

W/Wv, Sl/Sld TNCB 5.0 0.5 EtOH EtOH 35

W/Wv, Sl/Sld Oxazolone 3.0 0.3 EtOH EtOH 35

W/Wv, Sl/Sld Oxazolone 3.0 2.5 EtOH EtOH 35

W/Wv, Sl/Sld DNFB 0.5 0.2 Ac/OO (4:1) Ac/OO (4:1) 36

W/Wv, Sl/Sld Oxazolone 3.0 0.5 Ac/OO (4:1) Ac/OO (4:1) 37

W/Wv, Sl/Sld DNFB 0.5 0.2 Ac/OO (4:1) Ac/OO (4:1) 37

W/Wv TNCB 2.5 1.0 Ac/OO (4:1) Ac/OO (4:1) 38

W/Wv, Sl/Sld Oxazolone 3.0 0.5 Ac/OO (4:1) Ac/OO (4:1) 39

Chronic KitW-sh/W-sh Exacerbated Oxazolone 1 0.5 Ac Ac 45

KitW-sh/W-sh, KitW/W-v DNFB 0.5 0.5 Ac Ac 44

KitW/W-v, KitW-sh/W-sh DNFB 0.5 0.2 Ac/OO (4:1) Ac/OO (4:1) 32

Chronic Mcpt5-Cre+ iDTR+ Suppressed DNFB 0.5 0.2 Ac/OO (4:1) Ac/OO (4:1) 32

EtOH ethanol, Ac acetone, OO olive oil, DP dibutyl phthalate
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Treg-derived IL-10 inhibited ILC2 proliferation and type 2
cytokine production, resulting in suppression of ILC2-
mediated papain-induced innate-type airway inflammation
[57] (Fig. 3).
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