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Abstract The skin is the largest organ at the interface
between the environment and the host. Consequently, the
skin plays a central role in mounting effective host de-
fense. In addition to pathogens, the microbiota and the
host immune system are in permanent contact and com-
munication via the skin. Consequences of this permanent
interaction are a unique and partly symbiotic relationship,
a tight interdependence between these partners, and also a
functional Bsetting the clock,^ in which, in the healthy
steady state, an induction of protective responses to path-
ogens is guaranteed. At the same time, commensal mi-
crobes contribute to the alertness of the immune system
and to the maintenance of immune tolerance. Atopic der-
matitis (AD) is a chronic inflammatory skin disease based
on a complex genetic trait with defects in cutaneous bar-
rier, in stabilizing skin integrity. Most of AD patients de-
velop deviated innate and adaptive immune responses. As
a result, increased susceptibility to cutaneous infection is
found in AD patients, and the interactions between these
microbes and the skin participate in the development of
chronic cutaneous inflammation. The role of the adaptive
immune system was characterized in much detail, less
though the contribution of innate immunity to AD patho-

genesis. It is rather recent evidence that demonstrates a
dominant role of components of the innate immune system
not only for protecting from microbial invasion but also
by orchestrating chronic skin inflammation. In this review
we discuss the role of innate immune signaling and con-
secutive immune networks important for the pathogenesis
and management of AD.
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Atopic dermatitis: a prototypic chronic
inflammatory skin disease

Atopic dermatitis (AD) is a chronic inflammatory skin
disease. It affects at least 15 % of children and is charac-
terized by cutaneous hyper-reactivity to environmental trig-
gers [1]. Various studies indicate that AD has a complex
etiology, with activation of multiple immune and inflam-
matory pathways. Complex interactions between suscepti-
bility genes, the host’s environment, defects in skin barrier
function, and systemic and local immune responses con-
tribute to the pathogenesis of AD [1, 2]. In recent years,
genetic variants also of the innate immune system were
detected by genome wide association studies (GWAS) as
risk factors for AD and it has become clear that innate
immune responses are part of the development and re-
sponsible for the severity of AD. Deviations of innate
immune responses can be primary variants such as in
the expression of antimicrobial peptides (AMPs) dermcidin
and innate receptors and others are secondary to a devia-
tion of the adaptive immune response and a consequence
of a dominance of Th2 cytokines.
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Cutaneous innate immunity

Skin functions have developed during evolution, pre-
serving cutaneous integrity, and as the largest organ at
the interface between the environment and the host, its
dominant function is the orchestration of host defense
mechanisms. The skin continuously encounters signals
from the environment, which may act as triggers of
defense. One major mechanism of immune defense is
mounting tissue inflammation. Different functional com-
partments of the skin translate these signals into im-
mune responses, both of the innate and the adaptive
immune system. The skin displays not only a protective
function as a physical barrier, but it is also a site of
initial recognition of foreign substances, in which deci-
sions about the induction or inhibition and the quality
of immune responses take place. As in general, also the
cutaneous immune system is divided into an innate and
an adaptive part. It is now clear that the most effective
antimicrobial response is based on a balance between
the innate and adaptive immune system and that the
skin is a site of greatest immune interactions. Proper
immune function of the skin is crucial, as its dysfunc-
tion is implicated in the pathogenesis of a variety of
inflammatory skin disorders, including AD, and even
systemic disease as in food allergy. The skin’s innate
immune system can be divided into three major compo-
nents: anatomical/physical barrier (stratum corneum), se-
cretory, and cellular elements (Fig. 1).

Anatomical/physical barrier

Structurally, the skin is divided into two main components:
the epidermis or epithelial component on the surface and
dermis or connective component. These components are
separated by a basement membrane (lamina basale), which
provides a stabilizing and dynamic interface. Epidermis, a
continually renewing epithelium, is subdivided in different
layers with stratum corneum on the top (Fig. 1). Stratum
corneum consists of corneocytes (final step of keratinocyte
differentiation) which are surrounded by a protein envelope
and touched together through corneodesmosomes. This layer
has the main function as an anatomical barrier against path-
ogens, allergens, and shear force [3]. Keratinocytes, which
comprise 90–95 % of the total epidermal cell population,
play a pivotal role for the first defense. In addition to their
function in the maintenance of the keratin barrier, they are
themselves capable to produce a vast repertoire of cytokines,
chemokines, and AMPs [4] and serve as initiators and am-
plifiers of immune responses. Following acute barrier dis-
ruption, an increase in the epidermal expression of tumor
necrosis factor (TNF), IL-1, and IL-6 occurs, indicating orig-
inal epidermal Binflammation^ as defense mechanism [5].
Studies show that defects in epidermal barrier function con-
tribute greatly to triggering and perpetuating skin inflamma-
tion in AD [6] and the extent of barrier dysfunction corre-
lates with AD severity [7]. In vitro studies have shown that,
in comparison to healthy cells, keratinocytes from patients
with AD produce increased amounts of chemokines and
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Fig. 1 Cutaneous innate immune response. Structurally, the skin is
divided into two main components: the epidermis on the surface and
the underlying dermis. These components are separated by a basement
membrane (lamina basale). The cellular compartment of the cutaneous
innate immune system consists of resident cells, among them
keratinocytes, which are capable to produce a vast repertoire of

cytokines, chemokines and antimicrobial peptides (AMPs), different
types of dendritic cells (DCs) of both, the epidermis and dermis,
macrophages, and mast cells. In addition, many rapidly mobilized cells
such as neutrophils, inflammatory DCs, T cells, and eosinophils can be
immediately recruited to the skin and then can contribute to the
composition and orchestration of cutaneous inflammation
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cytokines, indicating, in addition to reactive, also intrinsic
susceptibility to epidermal inflammation in AD [8]. The skin
as complex organ in AD patients is characterized by in-
creased transepidermal water loss (TEWL). Several underly-
ing causes for increased TEWL can be identified. As one
primary effect of terminal keratinocyte differentiation,
ceramides are produced and placed into the stratum
corneum. In the stratum corneum, ceramides act as dominant
water-retaining molecules and major binders of structural
proteins in the extracellular matrix. In AD patients, de-
creased levels of ceramides are found, which contribute to
increased TEWL and malfunctioning of the stratum corneum
[9]. One very important barrier protein in the skin is
filaggrin. Filaggrin plays an integral role in maintaining the
physical strength of the stratum corneum, and by minimizing
entry of foreign antigens, it directly influences also the cu-
taneous immune response. In addition to lipids such as
ceramides, filaggrin and other proteins participating in for-
mation of the epidermal barrier determine the amount of the
TEWL [4]. In addition, filaggrin helps to maintain an acidic
pH in the skin by undergoing further processing in the outer
layers of stratum corneum to release free amino acids [10]. It
has also been demonstrated that the acidic filaggrin break-
down products urocanic acid and pyrrolidine carboxylic acid
function as antimicrobials by exerting inhibitory effects on
growth rate, cell density, and adhesion of Staphylococcus
aureus [11]. The importance of skin barrier dysfunction as
a causative factor for AD is highlighted in publications that
identified loss-of-function mutations in the filaggrin gene
(FLG) and found that they were associated with an increased
risk of AD and correlate with its severity; however, only one
third of AD patients carry FLG mutations, suggesting that
other factors than FLG likely exist to be responsible for the
barrier defects in AD patients [12, 13]. This could be other
affected barrier proteins, metabolizing enzymes and prote-
ases or factors that negatively regulate FLG expression in-
dependent of loss-of-function mutations. Indeed, it was dem-
onstrated that filaggrin was downregulated in AD based on
the overexpression of Th2 cytokines [14, 15]. Defects of the
skin barrier as described can even be detected as dry and
cracked skin, but more importantly on the molecular level,
these defects result in uncovering of S. aureus-adhering ex-
tracellular matrix adhesins, such as fibrinogen and fibronec-
tin [16] and decreased levels of sphinogosine, which exerts
potent antimicrobial effect [17]. In addition, skin surface pH
values change toward alkalinity when FLG is reduced
allowing, e.g., bacteria to thrive [10, 18]. Indeed, in a mu-
rine model of an epicutaneous bacterial colonization, we
showed that the level of skin barrier disruption correlates
with persistence of S. aureus colonization and that the pres-
ence of S. aureus associated with profound cutaneous in-
flammation [19]. Thus, all these changes in AD skin com-
pared to healthy skin favor S. aureus colonization and

infection allowing a cascade of events to dominate that fur-
ther orchestrates inflammation in the skin.

Secretory elements of the cutaneous innate immune
system

Besides the physical barrier of the stratum corneum, to main-
tain the integrity of the skin compartment, the cutaneous im-
mune system not only has an active and efficient defense
system of responses to various infectious challenges, but also
controls population density and composition of the cutane-
ous microbiome. For instance, keratinocytes are the main
producer of AMPs in the skin. As antibiotic-like substances,
AMPs play a decisive role in host innate immune defense,
providing a rapid and direct first-line component to inhibit
microbial growth [20]. Most AMPs carry an overall net pos-
itive charge. This ensures their interaction with the negative-
ly charged phospholipids in the cell membranes of both
Gram-positive and Gram-negative bacteria, as well as the
anionic components of fungi and viruses. The peptides form
a pore, which disrupt and destabilize the bacterial cell mem-
brane, resulting in bacterial lysis. In addition, AMPs can also
modify host immune responses, e.g., by acting as activating
cytokines, by stimulating so called pattern recognition recep-
tors (PRRs), and by promoting the recruitment of neutro-
phils, T cells, mast cells, and monocytes to the site of injury
or infection [20].

There are many AMPs expressed in human and animal
skin. Their main function in cutaneous host defense is to in-
hibit the growth of a wide spectrum of pathogens. The struc-
tures, expression, processing, induction, and antimicrobial
and immunomodulatory properties vary between the peptides.
AMPs can be subdivided into several families, among which
β-defensins and cathelicidins are two major classes. In
humans, β-defensin-1 (hBD-1) is constitutively expressed,
while hBD-2 and hBD-3 and cathelicidin hCAP18/LL-37
are induced in response to inflammatory stimuli, e.g., via
TLR signaling pathways [21]. HBD-2 kills predominately
Gram-negative organisms such as Escherichia coli and Pseu-
domonas aeruginosa, and yeasts, but is relatively ineffective
against Gram-positive bacteria such as S. aureus [22]. In con-
trast, HBD-3 and hCAP18/LL-37 are more potent, broad-
spectrum AMPs that show microbicidal activity against both,
Gram-positive and Gram-negative organisms and the yeast
Candida albicans [23]. AMPs are induced in the skin upon
injury, infection, and initiation of inflammation; however,
comparing two inflammatory skin diseases, psoriasis and
AD revealed that upregulation of AMPs in AD skin is much
reduced compared to psoriasis. Further analyses demonstrated
that AMP induction can be suppressed by Th2 cytokines,
mainly IL-4, which is functional in AD skin [24, 25].
Dermcidin, another antibacterial and antimycotic AMP, is
constitutively expressed in human eccrine sweat glands and
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secreted into sweat and has a broad spectrum of activity
against a variety of pathogenic microorganisms. AD patients
show a deficiency of dermcidin-derived antimicrobial pep-
tides in sweat, which correlates with infection severity [26].

Thus, AMPs in AD may be reduced constitutively or their
induction is suppressed by pleiotropic type 2 T helper (Th2)
cell cytokine IL-4, thereby contributing to the pathogenesis of
AD [27].

The role of Th2 cytokines for cutaneous innate immune
responses in AD

Detailed characterization of AD inflammation reveals a bi-
phasic cutaneous cytokine milieu with an initial recruitment
of IL-4-producing Th2 cells, followed by a more mixed phe-
notype in the chronic phase [28]. Th2 cytokines mediate in-
flammatory reactions crucially involved in AD pathogenesis.
Long established, Th2 cytokines IL-4 and IL-13 induce the
isotype switching of B lymphocytes to produce IgE, which in
the majority of AD patients can be found binding to ubiqui-
tous environmental antigens. Th2 cytokine IL-5 and granulo-
cyte–monocyte colony-stimulating factor (GM-CSF) are in-
volved in the activation and the enhancement of cell survival
of eosinophils and macrophages [29]. Human skin-derived
Th2 cells were shown to be recruited to the skin by
chemokines MDC and TARC (CCL22, CCL17) binding
CCR4 on Th2 cells [30], chemokines that are induced by
epithelial TSLP, and the Th2 cytokines IL-4 and IL-13, further
amplifying the vicious circle of inflammation. These Th2 cy-
tokines, above all IL-4, suppress AMPs [24, 25] and IL-4 not
only downregulate the IL-17 response on the T cell level [31],
but also deviate innate immune cells such as dendritic cells
(DCs) to counter regulate Th17 responses in cutaneous in-
flammation as recently shown [32]. Since IL-17-producing
cells are involved in protection against bacterial pathogens,
IL-4 suppressing antibacterial immune responses on the innate
(AMPs, DCs) and adaptive immune level [31, 33] demon-
strates additional causes why patients with AD are cutaneous-
ly colonized with and infected by S. aureus. Even the binding
of S. aureus to the skin was significantly increased in Th2-
inflammatory skin lesions compared to Th1-inflammatory
skin lesions [34]. There is also strong evidence that this Th2
bias also negatively affects the first line of resistance, the
barrier, in the skin of AD patients. Th2 cytokines have been
shown to downregulate FLG expression, and neutralization of
IL-4 and IL-13 improves skin barrier integrity [15]. IL-4 has
also been shown to inhibit ceramide synthesis in keratinocytes
[35] and delay the recovery of the skin barrier in vivo [36]. AD
patients with persistent S. aureus colonization show higher
IgE levels despite therapy, suggesting that Th2 polarization
adversely affects the immune response to this pathogen [37].
Indeed, IL-4 induces IgE production in B cells and suppresses
anti-infectious immune responses by downregulating AMPs

and inhibiting Th1 immunity [38]. A recent study of our group
discovered an important further mechanism, how IL-4 and
bacterial colonization promote AD: concerted activation of
TLR2 through S. aureus components and IL4R causes an
inhibition of anti-inflammatory IL-10 and consequently leads
to exacerbation and persistence of AD [39]. In a model for
AD, cutaneous inflammation following Th2 activation lasted
for up to 48 h. Additional exposure to S. aureus-derived innate
signals activating TLR2 amplified and expanded this derma-
titis now lasting for 14 days [39]. As this switch to chronic
dermatitis was completely dependent of IL-4, these investiga-
tions for the first time explain the biphasic cutaneous cytokine
milieu as a spontaneous development of Th2 inflammation in
the presence of innate TLR2 signals.

Dominant cells of the cutaneous innate immune system

Following a disruption of the physical barriers (filaggrin, tight
junctions), a rapid, innate immune response needs to be initi-
ated to prevent microbial invasion and replication. The cellu-
lar compartment of the cutaneous innate immune system con-
sists of resident cells, among them keratinocytes, which con-
tribute tremendously to immune functions, different types of
DCs of both, the epidermis and dermis, macrophages, and
mast cells. In addition, many rapidly mobilized cells such as
neutrophils, inflammatory DCs, and eosinophils can be imme-
diately recruited to the skin given the appropriate signals are
present [40] (Figs. 1 and 2). All of these cells are able to
recognize pathogens using different pathways. This recogni-
tion is managed by the binding of substances derived of path-
ogens to the so-called pattern recognition receptors on these
immune cells [41]. This initiates a signaling cascade, leading
to the production of pro-inflammatory cytokines, chemokines,
AMPs, and inducible enzymes in the skin [42]. Activation of
phagocytes leads to triggering of the respiratory burst and
killing of engulfed organisms [43]. Stimulation of DCs results
in the translation of innate signals to adaptive immune re-
sponses [44, 45].

Pathogen-associated molecular patterns
and pattern-recognition receptors

Pattern-recognition receptors (PRRs) recognize highly con-
served molecular patterns common to many classes of patho-
gens, known as pathogen-associated molecular patterns
(PAMPs) [41]. PAMPs are nucleic acids, lipids, lipoproteins,
carbohydrates, or peptidoglycans from bacteria, fungi, or pro-
tozoa. PRRs are expressed constitutively by the host, can be
induced, and are germline-encoded. Both the epithelial barrier
cells and resident innate immune cells in the skin express
PRRs [46]. There are several classes of PRRs: Toll-like recep-
tors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors
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(RLRs), and C-type lectin receptors (CLRs). All of these con-
tribute to the innate sensing of microbes, the development of
cutaneous inflammation as well as immune tolerance of the
skin.

Toll-like receptors and their ligands

Among PRRs, Toll-like receptors are a well-characterized
family with distinct recognition profiles [47]. TLR1–10 are
the best characterized human PRRs. The recognition of
PAMPs by TLRs occurs in different cell compartments, in-
cluding the cell surface (TLR1, 2, 4–6, 10) and endosomes
(TLR3, 7–9). The TLR family members are expressed on the
cell membranes of innate immune cells (DCs, macrophages,
natural killer cells) and of adaptive immunity cells (T and B
cells) and of non-immune cells (epithelial and endothelial
cells) [48]. When stimulated on innate immune sentinel cells
such as DCs, most TLR ligands promote the development of
Th1 or Th17 cells when these DCs activate and educate T
helper cells. This regulation of the adaptive immune system
by innate signals is very important because Th1 or Th17 cells
are crucial for antibacterial, antifungal, and antiviral immuni-
ty. This emphasizes the role of TLRs’ function across the
entire spectrum of innate and adaptive immunity.

TLRs are believed to function as homo- or hetero-dimers.
Most TLRs transduce a signal through the intracellular adapter
molecule called myeloid differentiation factor 88 (MyD88),
activating transcription factors such as activator protein
(AP)-1 and nuclear factor (NF)-κB, which results in the in-
duction of pro-inflammatory cytokines, chemokines, AMPs
and inducible enzymes in the skin [49].

TLR2 heterodimers and ligands

When compared to most other TLRs, TLR2 recognizes a re-
markably broad range of PAMPs. These include bacterial
lipopeptides (Lpp) from Gram-positive bacteria and
lipoarabinomannan from mycobacteria and zymosan from
yeast [50]. TLR2 has emerged as a principle receptor for
Gram-positive bacteria, especially S. aureus [51] and it is
now known that staphylococcal Lpp are the major ligands
for TLR2 [52]. Purified native staphylococcal Lpp, including
SitC, were shown to induce cytokines through the TLR2-
MyD88 signaling pathway [53]. The use of S. aureusmutants
deficient in maturation of lipoproteins (Δlgt) and improved
Lpp purification methods show that TLR2 is activated by Lpp
[52]. In vivo, different murine infection models showed that
mice, deficient in TLR2, display increased susceptibility to
staphylococcal infections with severe disease course, higher
bacterial loads in tissue, and/or reduced inflammation [54].
This high diversity of ligand recognition by TLR2 comes
possibly from its unique ability to homodimerize as well as
heterodimerize with TLR1 and TLR6. Ozinsky et al. [55]

were the first to show that TLR2, unlike other TLRs, has to
form heterodimers with TLR1 or TLR6 to be able to initiate
cell activation. Studies using knockout mice identified TLR1
as the coreceptor required for the recognition of bacterial
triacylated lipoproteins such as Pam3Cys [56]. Diacylated
components such as lipoprotein FSL-1 and Pam2Cys interact
with TLR2/TLR6 heterodimers [57]. Using fluorescence res-
onance energy transfer (FRET) in human primary monocytes,
Triantafilou et al. [58] have shown that a small pre-existing
population of TLR2 heterodimers increases rapidly upon li-
gand treatment. Additionally, it was shown that TLR2/6 li-
gand binding reduced the percentage of preformed TLR2/1
heterodimers, but not vice versa. Employing lipid raft-
disrupting agents [59], it was demonstrated that TLR2 hetero-
dimers translocate to lipid rafts, depending on their interac-
tions with specific ligands.

TLR2 heterodimers show functional differences

The unique ability of TLR2 to form heterodimers with TLR1
or TLR6 could be explained as evolutionary development
either to expand a ligand spectrum or to induce different im-
mune responses. Indeed, acylation patterns of Lpp are differ-
ent among pathogens. Although the intracellular signaling
seems to be identical following recognition of diacylated and
triacylated Lpp [60], some co-receptor molecules such as
CD14 and CD36 are known to increase the binding of Lpp
and other PAMPs to TLRs and so to amplify the immune
response. There is evidence that CD14 predominantly en-
hances the binding of TLR2/1 ligands [61], CD36 promotes
the recognition of TLR2/6 ligands [62]. These studies suggest
that the combination of different TLR2 ligands together with
or without interaction with various co-receptors multiplies the
ability of the immune system for adequate responses. There is
evidence that TLR1 and TLR6 are not redundant as TLR1
mutation is associated with higher mortality in sepsis [63]
and TLR6 has been shown to be protective for asthma [64].
Interestingly, a meta-analysis for TLR1, TLR2, and TLR6
polymorphisms toward pulmonary tuberculosis susceptibility
shows that TLR1 was associated with increased risk, but
TLR6 with decreased risk for tuberculosis [65]. The direct
comparison of TLR2/6 and TLR2/1 ligands in vitro revealed
that these substances show distinct activity in induction of
gene expression and inflammatory mediators in lung tissue
[66]. In the gut-associated lymphoid tissue (GALT), a TLR2/
6 ligand FSL-1 was more effective than TLR2/1 ligand
Pam3 at inducing Th1 and Th17 responses, while Pam3 was
superior to FSL-1 at inducing Th1/Th17 in the spleen [67].

Much less research has been directed toward determining
the functional differences of TLR2 heterodimers in vivo. Our
group has demonstrated for the first time such distinct differ-
ences for ligands of the two TLR2 heterodimers in vivo. In
this work, it is shown that even limited cutaneous exposure to
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TLR2/TLR6 but not TLR2/TLR1 ligands after cutaneous in-
fection with S. aureus induces, following severe inflamma-
tion, systemic immune suppression [68, 69]. This immune
suppression is due to systemic induction of Gr1+CD11b+

myeloid-derived suppressor cells (MDSCs) directly suppress-
ing T cells (Fig. 2). Interestingly, signals through TLR2 on
skin cells, but not on hematopoietic cells, as well as cutaneous
IL-6 induction were necessary and sufficient for the expansion
of MDSCs and for MDSCs to exert their immune suppression
in this context (Fig. 2). These data from models are confirmed
in human studies demonstrating MDSCs within peripheral
bloodmononuclear cells (PBMCs) and skin fromADpatients,
especially those with infectious complications such as eczema
herpeticum. This increase of MDSCs especially in patients
with severe AD indicates that the degree of inflammation de-
termines an elevation in the frequency of immunosuppressive
MDSCs as an attempt to stop severe inflammation. MDSCs
are recruited to the skin, especially to sites of cutaneous expo-
sure to TLR2/6 ligands from S. aureus. However, MDSCs fail
to stop cutaneous inflammation in AD but allow, through tem-
porary immune suppression, secondary infections to spread
resulting in even enhanced inflammation. Thus, immune sup-
pression in response to strong cutaneous inflammation predis-
poses AD patients to disseminated viral skin infections.

This suggests that (i) the presence of certain TLR ligands,
(ii) the ratio of different TLRs within a cell, or (iii) a possible
interaction between TLR2 and TLR1 or TLR6 defines the
nature of consecutive immune responses. Fine tuning of re-
ceptor specificity achieved by combination of different TLRs

could be beneficial to the host cell, as the structure of bacterial
Lpp is not constant in each bacterium. It was shown, recently,
that the degree of Lpp-acylation depends on environmental
factors and growth phase. Lipoprotein SitC was triacylated
when S. aureuswas in the exponential growth phase at neutral
pH and diacylated in the post-exponential phase at low pH
[70]. On the skin, where pH is low and chronic S. aureus
colonization (which is almost always found in AD) is present,
a post-exponential growth phase of S. aureus can be assumed.
Consequently, Lpp from S. aureus on the skin are more
diacylated. Based on our data, we hypothesize that diacylation
of Lpp could have immune suppressive effects as a conse-
quence. Further, one can also assume that pathogenic and
non-pathogenic skin microflora may have different acylation
properties and therefore different compositions of TLR2 li-
gands and thus overall differ in their immune consequences.

NOD-like receptors

Nucleotide-binding oligomerization domain-containing pro-
tein (NOD) 1 and NOD2 are intracellular receptors that re-
spond to the bacterial cell degradation peptidoglycan (PGN)
fragments. NOD1 responds selectively to Gram-negative bac-
teria, NOD2 senses muramyl dipeptide, a motif found in
PGNs from all bacteria, including S. aureus [71]. Human
keratinocytes were shown to express NOD1 and NOD2
[72]. Both NOD1 and NOD2 SNPs have been associated with
increased IgE levels and AD [73]. Interestingly, NOD2 plays a
critical role in clearance of S. aureus after subcutaneous or
intraperitoneal infection [74].We found that S. aureus-derived
peptidoglycan fragments activating NOD2 are exclusively ef-
fective in the presence of TLR signals [45]. Those dual acti-
vated DCs displayed significantly enhanced IL-12p70 and IL-
23 production compared to TLR agonist only stimulated cells
and predominantly primed Th1 and Th17 cells while sup-
pressing Th2 responses [45]. This points out that an activation
of multiple PPRs is needed for initiation of inflammation, a
situation which is a present in AD. In addition, this provides a
first hint of how a Th2-dominated dermatitis switches to Th1/
Th17 co-dominated inflammation as it is documented for AD.

Retinoic acid–inducible gene-like receptors

RLRs are intracellular innate receptors, containing a C-
terminal helicase domain that recognizes viral genomic
RNA and signals through an N-terminal CARD domain.
The family of RLRs consists of retinoic acid–inducible gene
(RIG)-I-helicase, MDA5, and LGP2. Activation of these re-
ceptors is crucial for eliciting antiviral responses, including
induction of type I interferon gene expression [75]. Up to date,
there is no evidence that RLRs play a role in AD pathogenesis.

Staphylococcus aureus
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IL-6

Skin inflammation

Immunosuppresion

T cell
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Skin

MDSC
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Fig. 2 Distinct functional consequences following cutaneous exposure
to different TLR2 heterodimers. Cutaneous exposure to TLR2/TLR6 but
not TLR2/TLR1 ligands induces systemic immune suppression following
cutaneous bacterial exposure. Cutaneous exposure to Gram-positive bac-
teria activates TLR2/TLR6 on keratinocytes, which secrete IL-6 causing
systemic induction of Gr1+CD11b+ myeloid-derived suppressor cells
(MDSCs). MDSCs are recruited to the skin directly suppressing T cells.
In AD, however, counter regulation of inflammation is not functional,
rather suppression of anti-infectious cellular immunity by MDSCs leads
to further amplification of dermatitis through bacterial or viral super-
infection
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C-type lectin receptors

CLRs contain one or more C-type lectin-like domains and
recognize unique sugars present on both Gram-positive and
Gram-negative bacteria, fungi, and viruses. Of the CLRs,
mannan-binding lectin (MBL) is the best characterized. The
transmembrane receptor dectin-1 is a receptor for β-glucans
[76] found on fungal cell walls. Activation of dectin-1 leads to
activation of NF-κB and secretion of pro-inflammatory cyto-
kines [77]. The expression and function of dectin-1 in patients
with AD have not been evaluated.

Polymorphisms in PPRs and associations with AD

The role of TLR2 for AD pathogenesis is discussed contro-
versially. Genetic analyses revealed that one of the TLR2
polymorphisms (Arg753Gln) located within the intracellular
part of the receptor correlated to infections with S. aureus [78],
and importantly, this mutation was associated with a more
severe phenotype of AD [79]. The subgroup of AD patients
carrying this polymorphism had increased disease severity
and was characterized by elevated IgE antibodies to S. aureus
superantigens and HDM allergens. Interestingly, while lower
TLR2 expression was observed in AD skin [68, 80] and on
macrophages of AD patients and these produced less pro-
inflammatory cytokines (IL-6, IL-8, IL-1β) after stimulation
with PGN and lipoteichoic acid (LTA) [81], heterozygous car-
riers of TLR2 Arg753Gln with AD displayed an increased
production of IL-6 and IL-12 by monocytes after TLR2 stim-
ulation compared to wild-type AD patients and healthy con-
trols [82]. This could be interpreted as follows: reduced re-
sponsiveness of TLR2 to S. aureus products may be beneficial
in the special situation of AD pathogenesis. In contrast, in-
creased responsiveness further amplifies inflammation in the
skin. In other studies, the A allele in position 216934 was
significantly associated with severe AD (scoring atopic der-
matitis [SCORAD], >50) [83], and this polymorphism did not
affect TLR2 mRNA expression; however, functional conse-
quences were decreased TLR2-induced IL-6, but not TNF
production [84]. This need for more individualized analyses
is further indicated by a study of 275 German parent-offspring
trios, which were analyzed for the four common TLR2 hap-
lotypes and no association with ADwas found [85]. Similarly,
no associations between TLR1, TLR2, TLR4, and TLR6
polymorphisms and ADwere found in other populations [86].

Two-fold risk for AD was found in children with Nod2/
CARD15 polymorphism [87] and a study covering 11 SNPs
of NOD1 found an association with AD [73]. One Nod1/
CARD4 haplotype and three polymorphisms (rs2907748,
rs2907749, rs2075822) were significantly associated with
AD in a population-based cohort, case–control population,
and/or family-based association analysis. Furthermore, AD

has been associated with a polymorphism (Cys1237Thr)
resulting in higher promoter activity in the gene encoding
TLR9, which is crucial for the recognition of unmethylated
CpG DNA sequences of bacteria, protozoa, and intracellular
viral antigens [88]. It is obvious that receptors involved in the
innate sensing of microbial substances play an important role
in cutaneous regulation of inflammation. One important con-
clusion of these analyses regarding AD pathogenesis is that
the complex genetic trait underlying AD phenotypes also in-
volves PRRs, but that better stratification and more individu-
alized phenotype/genotype analyses are needed to better dis-
close their role for cutaneous integrity and chronic inflamma-
tion of the skin.

The role of the microbiome for AD pathogenesis

Skin is a home to up to one billion bacteria per square centi-
meter [89]. The development of new technologies of microbi-
al sequencing has brought new insights into the composition
and distribution of cutaneous microbiota. It has revealed the
presence of highly diverse skin microbiomes with specific
location along distinct topographical sites of the skin [90].
Obviously, the exact composition of skin microbes varies be-
tween individuals, but intra-individuals comparison reveals
that it appears to remain relatively stable over time [91]. Even
between individuals (inter-individual comparison), the
microbiome of similar/identical locations demonstrates some
homology. At least 19 phyla are known to be part of the
bacterial skin microbiome, with Actinobacteria, Firmicutes,
Proteobacteria, and Bacteroidetes to predominate. The major-
ity of the identified genera are Corynebacterium ,
Propionibacterium, and Staphylococcus [90]. The investiga-
tions of flora from distinct skin sites such hair follicles, seba-
ceous glands, and sweat glands have shown that skin location-
specific physical metabolic and immunological factors are im-
portant for sustaining unique communities of microbes [92].
For instance, Propionibacterium and Staphylococcus species
are present in skin sites enriched in sebaceous glands,
Corynebacterium predominates moist sites such as the axilla,
where Staphylococcus species are also present. In dry sites
Proteobacteria and Flavobacteriales species dominate [93].
Thus, it is clear that there are pre-requisites of skin sites for
specific skin colonization explaining why we find some inter-
individual stability of microbiomes, even though the factors
determining cutaneous microbiomes still need to be character-
ized in muchmore detail. In general, intrapersonal variation in
microbial community and structure between symmetric skin
sites is less than the interpersonal variation [92].

Recent evidence supports the idea that skin microbiota has
a fundamental and complex role in the control of skin physi-
ology, cutaneous immunity, and beyond. A large number of
Gram-positive bacteria such as Lactococcus, Streptococcus,
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and Streptomyces species produce bactericidal factors that in-
hibit the growth of other bacterial strains [94]. Commensal
Staphylococcus epidermidis also produces a variety of mole-
cules that have antimicrobial activity. For example, peptides
called phenosoluble modulins (PSMs) demonstrate selective
activity against S. aureus, group A Streptococcus, and E. coli,
but not to other S. epidermidis [95]. Interestingly, S. aureus
strains also produce PSMs, but these have minimal antimicro-
bial activity and instead show chemotactic activity for neutro-
phils and induce lysis of these cells, whereas S. epidermidis
PSMs show bacteria-killing activity, but no effect on neutro-
phils [96]. It has been also shown that S. epidermidis produces
several AMPs and proteases that can limit biofilm formation
of pathogenic species [97] and can induce AMP production by
keratinocytes in TLR2-dependent manner [98]. Furthermore,
S. epidermidis can also limit inflammatory responses and con-
tribute to tissue repair. In a setting of skin injury, in which
pathology is dependent on TLR3, a product of this bacterium,
LTA, can suppress inflammation in a TLR2-dependent man-
ner by inhibiting local production of various inflammatory
mediators such as IL-6 and TNF [99]. These findings demon-
strate that there is a well-balanced regulation in between the
different components of the cutaneous microbiome. In addi-
tion to bacterial AMPs, cutaneous AMPs greatly contribute to
this complex regulation and the stability of the compositions
of the microbiomes living on healthy skin [100]. As a func-
tional consequence of the persisting skin microbiota, shaping
immune reactivity was identified. Thus, cutaneous microbiota
provide substances locally that act like adjuvants orchestrating
consecutive immune responses, starting from innate immune
sensing, finally fine-tuning effector cells. However, in contrast
to overt anti-infectious immune responses, microbiota
Bprepare for action^ by conditioning the immune system,
e.g., in the absence of a larger recruitment of immune cells.
For example, S. epidermidis directly controls the activation of
skin-resident T lymphocytes at steady state by production of
IL-1α, which, in turn, facilitates the production of IFN-γ and
IL-17 by dermal Tcells. Some studies demonstrated that in the
absence of skin commensals, the frequency of Foxp3+ Treg
cells may be increased [101]. On the other hand, commensals
are also important pathfinders for the induction and orchestra-
tion of immune tolerance. In the gut, commensals are critical
and active inducer of regulatory responses, for example for the
active suppression of inflammatory responses to food antigens
or prevention of inflammatory diseases [102].

Thus, in general, the recognition of PAMPs of commensal
bacteria through PRRs is not associated with pathogenic im-
mune responses. It is still enigmatic how the same innate
signaling results in even opposing immune consequences, in
some circumstances shaping Bdefense,^ in others initiating
Btolerance,^ but the general need for such differentiated regu-
lation is obvious. Importantly, but often overlooked, complex
innate immune sensing involves more than one single, e.g.,

TLR ligand, but it is rather a constellation of sensing via mul-
tiple PPRs, because ligands of multiple classes are usually
present and differ in quantity or quality according to the cir-
cumstances. Their combination may be determining the out-
come, i.e., when LPS on TLR4, RNA on TLR3, CpG DNA
motifs on TLR9, etc. are active as double, triple, or in a mul-
titude of activation pathways. It should also not be excluded
that xenogeneic signals (delivered through a currently unde-
fined mechanism) might synergize with microbial exposure
for these effects. Another explanation could be that the
strength of the innate immune signaling plays a role. A con-
stant mild inflammation could be interpreted by the host im-
mune system as a stimulus to counteract by inducing toler-
ance, a single pathway activation could result in receptor de-
sensitization similar to the phenomenon of Tcell anergy due to
a low affinity antigen or missing second signals, and strong
and chronic activation of the innate immune system induces
will induce pathways of immune suppression or termination.

Overall, it is clear that the innate immune response is
shaped by the skin microbiome and vice versa [92], and alter-
ations of microbial communities that affect host-microbiome
interactions have been associated with disease. AD is associ-
ated with changes in the composition of the skin microbiota,
highlighting the importance of the microbiota in disease etiol-
ogy [103]. Kong et al. [104] have recently performed 16S
ribosomal RNA bacterial gene sequencing from serial skin
sampling of children with AD to assess the relationship be-
tween skin microbiota and AD progression. In AD the propor-
tion of S. aureus was greater during disease flares than at
baseline or post-treatment and correlated with disease severity.
Interestingly, increased AD severity and flares were associated
with decreased bacterial diversity, whereas bacterial diversity
(with increase of Streptococcus, Propionibacterium, and
Corynebacterium) normalized during disease remissions and
closely approximated to that observed in the skin of healthy
individuals. Thus, bacterial diversity is associated with steady
state and healthy skin, which indicates that diversity could
prevent disease development and even promote improvement
of disease.

AD shows increasing prevalence rates especially in west-
ern countries, and epidemiology indicated that absence on
infections is associated with this increased incidence of AD.
Consequently, the Bhygiene hypothesis^ was established. Ac-
cording to this hypothesis, increased hygiene standards with
lack of exposure to infectious diseases early in life affect the
development of the immune system and contribute to the de-
velopment of AD and other atopic diseases. Today, this hy-
pothesis is slightly changed as not necessarily infections, but
just reduction in microbial diversity is believed to be underly-
ing reduced immune training to resist atopic inflammation.
Thus, exposure to an environment rich in microbes signifi-
cantly reduces the risk to develop atopic diseases later in life
indicating that exposure also to non-pathogenic microbes may
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prevent atopic and allergic diseases. Substitution of interac-
tions with microbial substances or even microbes has since
decades been investigated as preventive measure, but results
are controversial. In most studies, oral administration of
probiotics was used and an occurrence of atopic diseases
was observed. Meta-analysis of randomized controlled studies
shows that administration of lactobacilli or other probiotics
during pregnancy prevents or decreased the risk for AD in
children [105]. This protection from AD was provided for 4,
6 [106], or 7 [107] years of age. However,West et al. [108] did
not find any long-term effects in regard to the prevention of
AD in 8- and 9-year-olds in the cohort receiving Lactobacillus
paracasei, despite a protective effect at 13 months. Daily in-
take of probiotic lactobacillus bacteria reduced the prevalence
of AD at the age of 2 years by 50 % and this effect was stable
until the age of 4 years [109]. It was subsequently demonstrat-
ed that Lactobacillus reuteri and L. casei prime monocyte-
derived dendritic cells via DC-SIGN (DC-specific intercellu-
lar adhesion molecule 3-grabbing nonintegrin) to drive the
development of IL-10-producing regulatory T cells [110]. A
study, which investigated the oral treatment with combination
of probiotic strains, significantly decreased skin inflammation
in AD [111]. However, other strategies, reporting the oral use
of probiotic bacteria, were questioned in regard to design of
the study or failed to show significant effects in the prevention
or treatment of AD [112]. Thus, the intestinal microbiome
may also influence the skin. Studies investigating the effects
of cutaneous administration of non-pathogens are rare. We
recently demonstrated for the first time that signals derived
from non-pathogenic bacteria are also functional as a treat-
ment when applied to the skin [113]. In a prospective random-
ized placebo-controlled clinical trial application of a lysate of
the Gram-negative non-pathogenic bacterium Vitreoscilla
filiformis to inflamed AD skin leads to reduction of the AD
disease score SCORAD and the patient-reported pruritus dem-
onstrating that microbial signals can effectively alleviate T
cell-mediated cutaneous inflammation in AD patients [44].
Investigating the underlying mechanism, Volz et al. found that
the innate immune sensing of V. filiformis signals via TLR2-
induced high levels of IL-10 in DCs functioning as the innate
immune sentinel cells. These DCs orchestrated the induction
of IL-10high, IFN-γlow producing regulatory T (Tr1) cells [44],
which in turn suppressed dermatitis-mediating Th2 cell
proliferation (Fig. 3). Thus, besides the inhibition of growth
of pathogenic microbes, the other way, how commensal mi-
croorganisms contribute to host immunity, is induction of im-
mune tolerance. Recently, it has been shown that the relative
abundance of the Gram-negative gammaproteobacterium
Acinetobacter correlates with IL-10 production in PBMCs
from healthy individuals demonstrating that this co-existence
is not based on immunological neglect but rather on active
recognition resulting in tolerogenic cytokine production
[114]. Strikingly, atopic individuals harbor significantly lower

amounts of Acinetobacter on the skin and show diminished
IL-10 production.

S. aureus as an initiation and exacerbation factor in AD

It has long been known that the skin of most patients with
AD is colonized with S. aureus. S. aureus can be isolated
from clinically affected and unaffected skin, and both acute
and chronic AD lesions are colonized. Staphylococcal colo-
nization density is significantly lower in healthy individuals
than in patients with AD and bacterial counts on unaffected
skin are lower than on affected skin [115]. S. aureus colo-
nization is regarded as one of the most important initiating
and exacerbating factors in AD [38, 103] and patients with
more severe disease have been shown to have higher levels
of S. aureus in their home environments [116]. S. aureus
carries a wide repertoire of virulence factors, which are cru-
cial for development of staphylococcal infections, which
make them important targets for the host immune system
in order to generate immune responses. For example, cell-
surface proteins (including protein A) promote adhesion to
damaged tissue and to the surface of host cells [117], which
is a prerequisite for colonization and disease. S. aureus can
exacerbate or contribute to persistent skin inflammation in
patients with AD by secreting toxins with superantigenic
properties, resulting in massive polyclonal activation of T
cells and other immune cells. These superantigens and acti-
vated T cells correlate with the clinical severity of AD [118].
Interestingly, several types of superantigens exist and some
disturb the normal humoral immune response, resulting also
in anergy and immune suppression. Other products of
S. aureus contribute largely to disease in patients with AD.
Major cell wall components of S. aureus bind to TLR2, and
in models, mice deficient in TLR2 were shown to be highly
susceptible to S. aureus infection [54]. Lipoproteins and

Non-pathogenic bacteria (Vitreoscilla filiformis)

PRRs (TLR2)

IL-10

Dendritic cell

T cell

iTreg (Tr1)
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Immune modulation 
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Fig. 3 Preventing cutaneous inflammation in AD by non-pathogenic
bacteria. Vitreoscilla filiformis components induce high levels of IL-10
in DCs via TLR2. These IL-10-DCs orchestrate the induction of IL-10high

producing regulatory T (Tr1) cells, which in turn suppress dermatitis-
mediating Th2 cells
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LTA were shown to be predominant staphylococcal TLR2
ligands [52, 119]. The work of S. Kaesler et al. for the first
time described how the aggravation of cutaneous inflamma-
tion due to S. aureus occurs: the combination of the early
AD cytokine IL-4 and activation of TLR2 on skin resident
cells caused an inhibition of anti-inflammatory IL-10, which
is normally induced via TLR2, and as a consequence in-
flammation of AD is amplified and massively prolonged,
demonstrating chronification of AD [39]. These data show
that TLR2 activation on skin resident cells aggravates cuta-
neous inflammation through the binding of ligands from
pathogen bacteria. Children with lesions of AD were found
to have increased levels of LTA that correlated with AD
severity and S. aureus colony-forming units [119]. The
amounts of LTA in the skin lesions were sufficient to exert
biologic effects on various cell types in vitro, as 10 μg/ml
LTA from S. aureus and more were shown to stimulate the
production of multiple pro-inflammatory cytokines and
chemokines in different leukocytes, especially in macro-
phages and monocytes [120]. Recently, we identified a
new mechanism, how this S. aureus-derived cell wall com-
ponent temporarily directly modulates the adaptive immune
system. LTA activating the innate immune system through
TLR2 signaling leads to amplification of inflammation;
however, LTA when acting directly on T cells temporarily
potently suppresses T cell activation. This temporary T cell
paralysis functions independent of TLR signaling by means
of transient cell cycle arrest [Chen et al., in revision]. This
mechanism probably developed as means of S. aureus im-
mune evasion and in the context of AD allows S. aureus to
persist even when directly attacked by immune cells. These
studies provide a further understanding by which S. aureus
can exacerbate AD.

Therapeutic implications

Given the complex pathophysiology, the therapy of AD re-
quires a multisided approach and includes several goals: pro-
tection of the skin barrier, control of microbial colonization,
and suppression of inflammation. The current recommenda-
tions for AD therapy are dependent on the severity of the
disease and the success of previous therapeutic regimen. The
main axes of treatment are topical anti-inflammatory drugs
followed by emollients to support skin barrier function; anti-
inflammatory drugs already reduce cutaneous dominance of
S. aureus by restoring skin functions. However, in many in-
stances, disinfectants are added to the topical treatment in AD.
In the case of overt cutaneous infection, combinations of sys-
temic antibiotic treatment with topical anti-inflammatory
drugs are recommended. However, antibiotic therapy non-
specifically eradicates a variety of bacteria and thus decreases
S. aureus predominance but, at the same time, affects bacterial
diversity and may impact benefits derived from the non-
pathogenic microbiota. Indeed, patients treated with antibi-
otics show a short-time improvement but become quickly
recolonized, often with the same toxin-secreting organisms
[121]. Increasing knowledge about changes in skin
microbiome in AD [104] and the beneficial role of bacterial
substances when applied to the skin [44, 113] provides new
evidence to define preventive and therapeutic strategies to
regulate rather than eradicate microbes in patients with AD.
Consequently, re-establishing of a balanced microbiota or re-
colonization of the skin with commensals may be the promis-
ing novel therapies. Therefore, it is proposed to use antibiotics
during flares, where S. aureus predominate, and use microbi-
ota or substances derived thereof as therapeutic agents after-
wards, in the post-flare stages of AD.

Table 1 Ongoing clinical studies
for atopic dermatitis. Source:
www.clinicaltrials.gov

Target/activity Drugs

Anti-IgE Ligalizumab (QGE031)

Anti-IL4R (anti-IL-4/IL-13) Dupilumab, Pitrakinra (Aeroderm)

Anti-IL-13 Lebrikizumab, Tralokinumab

Anti-p40 (anti-IL-12/IL-23) Ustekinumab

Anti-IL-22 Fezakinumab (ILV-094)

Anti-IL-31 BMS-981164, CIM331

Anti-TSLP MEDI9929/ AMG157

JAK1 and JAK2 inhibitor Baricitinib

JAK1 and JAK3 inhibitor Tofacitinib

SHIP1 activator AQX-1125

Anti-GATA3 SB011

PDE4 inhibitor AN2728, Apremilast, DRM02, E6005, OPA-15406, Roflumilast

Antimicrobial peptide CLS001, DPK-060, LTX-109

NF-kB inhibitor NF-κB Decoy

PGD2 receptor (CRTH2) antagonist OC000459, QAW039

TSLP thymic stromal lymphopoietin, JAK janus kinase, PGD2 prostaglandin D2
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As some microbial AMPs specifically exert antimicrobial
activity against some bacteria but not against others, these
peptides may have also the potential to be used as a
pathogen-specific antibiotic therapy for AD. Indeed, several
recent clinical studies are currently testing the efficacy of
AMPs (Table 1).

Numerous studies indicate that Th2 cells and their cyto-
kines (with predominance of IL-4 and subsequent elevation
of IgE levels) contribute to pathogenesis of AD by effects
ranging from activation and enhancing of infiltration of im-
mune cells to suppressing AMPs production, reducing the
cutaneous barrier, and increasing of S. aureus binding to the
skin. Our own studies further indicated that IL-4 also drives
the chronic phase of AD inflammation [39]; therefore, clinical
trials reporting significant improvement of AD inflammation
by subcutaneous application of dupilumab, a human mono-
clonal antibody directed against IL-4Rα, the receptor for IL-4
and IL-13 could be promising [122] and is currently in clinical
trials (Table 1). On the other hand, the latest study of Heil et al.
with omalizumab, a humanized monoclonal mouse antibody
against IgE, has not shown an improvement of AD [123]. A
novel anti-IgE antibody called ligelizumab has been recently
developed (Table 1). As the involvement of Th17 and Th22
cells in AD pathogeny has been recently published [124],
ustekinumab (anti-IL12/IL-23) and an IL-22 inhibitor (ILV-
094) are currently under investigation for AD (Table 1). IL-
31 seems also to be involved in AD [125], and clinical studies
with its inhibitors are already ongoing (Table 1) [126]. Like-
wise, the first trial investigating antibody that prevents inter-
action of thymic stromal lymphopoietin (TSLP) and its recep-
tor has been finished recently (Table 1). Other innovative ther-
apies aim to target signaling pathways for a variety of immune
cells, cytokines and chemokines, for example, janus kinase
(JAK)1, JAK2, JAK3, SHIP1, GATA-3, key enzymes for T
cell activation such as phosphodiesterase 4 (PDE4) or a mol-
ecule responsible for Th2 activation prostaglandin D2 recep-
tor (CRTH2) (Table 1). Another target of new therapies is
NF-κB, a key molecule of TLR signaling (Table 1). Based
on our study [68] and findings of others, IL-6 appears to be
an important cytokine in AD pathogenesis. IL-6 was found to
be increased in AD [127] and especially in AD skin lesion, in
which the amount of IL-6 correlated with bacterial burden
[119]. Genome wide association studies recently also identi-
fied an IL-6 receptor (IL-6R) variant as a new risk factor for
AD [128], and we showed that IL-6 is the dominant cytokine-
mediating MDSCs accumulation and immune suppression in
severe AD [68]. Consequently, a small case series with three
patients demonstrated therapeutic efficacy of an IL-6R block-
ade by tocilizumab, an IL-6R antibody [129]; however, block-
ade of IL-6 was associated with bacterial infections indicating
possibly severe adverse events using such an approach. How-
ever, detectingMDSCs in the peripheral blood of patients with
severe AD could also be further developed as biomarker for

immune suppression and for stratified indication of IL-6
blockade or as new perspective of therapeutic options for de-
pletion (apheresis) of MDSCs.
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