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Abstract Nociception is the process of transmission of pain-
ful signals by nociceptors in the primary afferent nerve fibers,
which specifically respond to noxious stimuli. These noxious
stimuli are detected by nociceptors and converted into electri-
cal signals, which are then transmitted to the spinal cord, thal-
amus, and the cerebral cortex, where pain is finally sensed.
Transient receptor potential (TRP) ion channels have emerged
as a family of evolutionarily conserved ligand-gated ion chan-
nels that function as molecular detectors of physical stimuli.
Several member of this family, at least six channels from three
TRP family subtypes (TRPV1–4, TRPM8, and TRPA1), are
expressed in nociceptors, where they act as transducers for
signals from thermal, chemical, and mechanical stimuli and
play crucial roles in the generation and development of path-
ological pain perception. This review focuses on the increas-
ing evidence of TRP channel involvement and contribution in
nociceptive pain and the pain hypersensitivity associated with
peripheral inflammation or neuropathy, and on the renewed
interest in targeting TRP channels for pain relief.
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Peripheral inflammation

Pain is defined by the International Association for the Study
of Pain (IASP) as Ban unpleasant sensory and emotional ex-
perience associated with actual or potential tissue damage, or
described in terms of such damage.^ Painful signals generated
by tissue damage are detected by nociceptors, which transfer
the signals to the central nervous system to produce this un-
pleasant sensory and emotional experience. The two main
types of nociceptors that detect painful signals are unmyelin-
ated C-fibers and myelinated Aδ-fibers [1]. These nerve fibers
use electrical signals, by means of action potentials, to convey
noxious information rapidly to the brain. In the generation of
these action potentials that carry the signal and produce the
pain sensation, a crucial role is played by ion channels that are
specifically expressed in the aforementioned nerve fibers. In
recent years, ion channels such as transient receptor potential
(TRP) channels, ATP channels, acid-sensing ion channels,
and Piezo channels (whose opening causes the cation influx
that depolarizes sensory neurons) have been identified as key
pain receptors [2, 3]. Among these channels, certain TRP
channels such as TRPV1–4, TRPA1, and TRPM8 have
attracted considerable attention because they have been shown
to be expressed in nociceptors, where they act as detectors and
transducers for thermal, chemical, and mechanical stimuli.
Activation or sensitization of these channels is deeply in-
volved in the pathological pain condition. Pain can generally
be classified as a nociceptive, inflammatory, or neuropathic
condition depending on the pathogenesis. This review high-
lights the emerging role of TRP channels, with an emphasis on
TRPV1 and TRPA1, in the peripheral mechanisms of these
pain conditions.
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TRPs in nociceptive pain as chemical and physical
sensors

Nociceptive pain represents the normal response of somatic or
visceral tissues to noxious insult or injury. This form of pain is
typically the result of tissue damage caused by a noxious
stimulus, but it is a critical component of the body’s defense
system that protects against further damage and heals the dam-
aged tissue.

In the elucidation of the molecular mechanism of pain, lim-
ited progress was made until the capsaicin receptor (TRPV1)
was cloned in 1997. TRPV1 was first reported by Caterina
et al. as a nonselective cation channel that exhibits high calci-
um permeability [4]. TRPV1 is expressed by the peripheral and
central terminals of small-diameter sensory neurons
(nociceptors) in the dorsal root ganglion (DRG), trigeminal
ganglion (TG), nodose ganglion (NG), geniculate ganglion
(GG), and jugular ganglion [4–8], and TRPV1 modulates pain
transmission at the first sensory synapse [9–12]. Approximate-
ly 35–50 % of all DRG or TG neurons were found to be
TRPV1-positive [7, 13], and these represent a large population
of unmyelinated C-fibers and a small population of thinly my-
elinated Ad-fibers. TRPV1 expression occurs largely in asso-
ciation with the expression of substance P and calcitonin gene-
related peptide. TRPV1 functions as a polymodal receptor [14]
because it is activated not only by capsaicin but also by nox-
ious heat (≥43 °C), low pH (protons) [4, 6, 13], and several
other exogenous or endogenous agents (Table 1) such as cam-
phor [15], allicin [16, 17], spider toxins [18, 19], anandamide
[20], arachidonic acid metabolites [21], N-arachidonoyl dopa-
mine [22], oleoylethanolamide (OEA) [23], N-OEA [24], and
polyamines [25]. Intra-cutaneous administration of these
chemicals in animals induces pain-related behaviors,
which suggests a role of TRPV1 in nociception.

TRPV1-deficient mice show a complete loss of physiolog-
ical and behavioral responses to capsaicin, partial diminution
in the responses to noxious heat, and normal responses to
noxious mechanical stimuli [26, 27]. In sensory neurons from
mice lacking TRPV1, in vitro calcium influx or electrophysi-
ological response to capsaicin, protons, and heat is completely
absent. TRPV1 is widely recognized as a heat sensor, but,
intriguingly, TRPV1 null mice in certain studies showed nor-
mal sensitivity to acute noxious heat [28, 29], which suggests
that other molecules might participate in the sensation of nox-
ious heat when TRPV1 is not expressed.

TRPA1 is another nonselective cation channel of the TRP
family that is critically involved in nociception. In the sensory
nervous system, TRPA1 was reported to be expressed in the
DRG [7, 30], TG [7], NG [31], superior cervical ganglion
(SCG) [32], and GG [8, 33]. Interestingly, TRPA1 is highly
coexpressed with TRPV1 in small-diameter nociceptors [7,
30, 34], which raises the question of functional specificity.
Like TRPV1, TRPA1 also functions as a polymodal receptor:

TRPA1 can be activated by multiple stimuli such as chemical,
thermal (≤18 °C), mechanical, and osmotic stimuli [30,
35–37], as detailed next.

First, the TRPA1 channel functions as a chemical sensor and
detects a remarkably broad range of chemicals (see Table 1),
including exogenous chemicals such as the pungent ingredients
of mustard oil, garlic, wintergreen oil, clove oil, ginger, and
cinnamon oil, all of which induce acute painful burning or
pricking sensation [16, 35, 38, 39]; and endogenous chemicals
that are produced during oxidative or nitrative stress, including
α,β-unsaturated aldehydes such as 4-hydroxynonenal (4-HNE),
cyclopentenone, prostaglandin metabolites such as 15d-PGJ2,
hydrogen peroxide/hydroxyl radicals, and nitrooleic acid
[40–44]. Most of these chemicals are electrophilic and have
been shown to activate TRPA1 by covalently modifying cyste-
ine residues in the channel [45, 46]. The nociception caused by
these reactive chemicals is drastically reduced or eliminated in
TRPA1 knockout mice [45, 47, 48]. Conversely, TRPA1 can
also be activated by certain nonelectrophilic chemicals such as
thymol [49], NSAIDs such as flufenamic acid and niflumic acid
[50], isoflurane [51], farnesyl thiosalicylic acid [49, 52], 1,4-
dihydropyridines [53], nicotine [54], and icilin [30]. The senso-
ry qualities of most of these chemicals are clearly related to their
noxious stimuli, and this supports the view that TRPA1 is a key
sensor of chemical damage.

Second, TRPA1 has been suggested to serve as a thermal
sensor of noxious cold stimuli [30, 38, 55], although cold-
induced TRPA1 activation is substantially weaker than the
activation induced by allyl isothiocyanate [56]. This finding
was supported by two independent studies in which TRPA1
knockout mice displayed impaired response to cold [56, 57].
However, this property remains controversial because other
studies failed to confirm direct, cold-induced TRPA1 activa-
tion, and TRPA1-deficient mice were also found to show nor-
mal cold sensitivity [31, 35, 58].

Third, TRPA1 might also detect mechanical nociceptive
stimuli, although this idea requires further verification. Among
TRPs, the TRPA1 channel possesses a unique structure com-
posed of several ankyrin repeats in the N terminus; these re-
peats have been hypothesized to act as a spring when under
mechanical stress [59]. In Drosophila and Caenorhabditis
elegans, TRPA1 has been demonstrated to be involved in me-
chanical nociception [60, 61]. In mammals, TRPA1 expressed
in mechanosensitive hair cells of the inner ear has been pro-
posed to function as a putative mechanosensor [31, 37]. Fur-
thermore, mice deficient in TRPA1 display impaired behavior-
al sensitivity to punctate mechanical stimuli [57]. In one study
in which skin-nerve preparations from TRPA1-deficient mice
were used, cutaneous fibers were demonstrated to exhibit a
drastic reduction in their firing rate in response to mechanical
stimuli [62]. In another study, under acute pharmacological
inhibition of TRPA1 achieved through antagonist application
to the receptive field, cutaneous fibers were shown to exhibit
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Table 1 TRPs and modulators

TRPs Exogenous agonists Endogenous agonists; activators Antagonists; inhibitors Intracellular modulators

TRPV1 2-APB
Allicin
Camphor
Cannabidiol
Cannabigerol
Capsaicin
Etodolac
Eugenol
Evodiamine
Gingerol
Hydrogen sulfide (H2S)
Olvanil
Piperine
Polygodial
Resiniferatoxin
Spider toxins

2-AG
12-(s)-HPETE
15-(s)-HPETE
5-(s)-HETE
Ammonia
Anandamide
Extracellular calcium
Extracellular Mg2+

Extracellular protons
Leukotriene B4
LPA
NADA
Nitric oxide
N-Oleoylethanolamide
Oleoylethanolamide
Palmitoylethanolamide Polyamines
PUFAs
Temperature (≥43 °C)

5′-I-RTX
A 784168
Adenosine
BCTC
Capsazepine
Cholesterol
PME
Resolvin D2 and E1
Ruthenium red
Thapsigargin
Yohimbine

Calmodulin
CaMKII
Diacylglycerol
Intracellular calcium
P38
PI3K
PIP2
PKA
PKC
PLA
PLC

TRPA1 1,4-Dihydropyridines
2-APB
Acrolein
Allicin
Allyl isothiocyanate
Apomorphine
Auranofin
Cannabichromene
Cannabidiol
Cannabinol
Capsiate
Cinnamaldehyde
Curcumin
Diphenyleneiodonium
Eugenol
FTA
Flufenamic acid
Formalin
Garlic
Gingerol
Hydrogen sulfide
Icilin
Isoflurane
Niflumic acid
Streptozotocin
Tetrahydrocannabinol

4-Hydroxynonenal
4-Oxononenal
5′ 6′-EET
Bradykinin
Cyclopentenone prostaglandins
H2O2

Methylglyoxal
Nicotine
Nitric oxide
Nitrooleic acid
Polysulfide
Temperature (≤17 °C)
Tetrahydrocannabinol

A 967079
AP 18
AZ465
Borneol
Camphor
Chembridge-5861528
HC-030031
Resolvin D1 and D2
Resveratrol
Ruthenium red
Thymol

CMCR
Diacylglycerol
Intracellular alkalization
Intracellular calcium
PIP2
PKA
PLC

TRPV2 2-APB
Cannabidiol
Carvacrol
Probenecid

IGF-I
Lysophosphatidylcholine
Lysophosphatidylinositol
Temperature (≥52 °C)

Lanthanum
Ruthenium red
SKF96365
Tranilast

CaMKII
PKA

TRPV3 2-APB
6-Tert-butyl-m-cresol
Borneol
Camphor
Carvacrol
Carveol
Eugenol
Incensole acetate
Dihydrocarveol
Menthol
Thymol

Arachidonic acid
Farnesyl pyrophosphate
Temperature (≥34 °C)

GRC15300
Icilin
Isopentenyl pyrophosphate
Resolvin D1

Calmodulin
Intracellular calcium

TRPV4 4-alpha PDD
Apigenin
Bisandrographolide A

5′ 6′-EET
8′ 9′-EET
Anandamide

Gadolinium
GSK 2193874
HC 067047

Calmodulin
cAMP
Intracellular calcium
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markedly decreased firing rates in response to mechanical
stimuli [63]. Moreover, Brierley et al. used in vitro electro-
physiological and pharmacological approaches and observed
that TRPA1 is required for normalmechanosensory function in
specific subsets of vagal, splanchnic, and pelvic afferents, and
further found that behavioral responses to noxious colonic dis-
tension were substantially reduced in TRPA1-deficient mice
[64]. A recent study also indicated that TRPA1 mediates me-
chanical currents in the plasma membrane; in this study, direct
recordings of cultured mouse sensory neurons were obtained
under application of a rapid, focal mechanical stimulation to
the somamembrane [65]. Collectively, this emerging evidence
suggests that TRPA1 plays a role in mechanosensitivity.

Other TRP channels such as TRPV2, V3, V4, andM8 have
been suggested to contribute to pathological pain in various
disease states. However, the role of these channels in detecting
nociceptive pain is poorly understood. Their agonists and an-
tagonists are listed in Table 1. TRPV2 is activated by high
temperature (≥52 °C) [66], which is consistent with the tem-
perature range sensed by Ad-fibers [67, 68]. Based on this
activation feature and on the expression of TRPV2 mainly in
medium-sized primary afferents that do not express TRPV1,
TRPV2 has been suggested to act as a high-threshold temper-
ature sensor in Ad nociceptors [66, 69, 70]. However, evi-
dence from studies conducted using knockout mice does not
support an acute heat-sensing role for TRPV2 [29, 71].

TRPV3 is activated bywarm temperature (≥34 °C) [72–74]
and certain chemical agents, including camphor, menthol,

carvacrol, eugenol, insensol, and 2-aminoethoxydiphenyl bo-
rate [75–81]. A role of TRPV3 in thermosensation was re-
vealed in knockout mice, which showed strong deficits in
response to innocuous and noxious heat but not in other sen-
sory modalities [76]. TRPV3 is prominently expressed in—
and functions in—skin keratinocytes, although both peripher-
al and central neurons, including neurons in the DRG, TG,
SCG, spinal cord, and certain brain regions, are also TRPV3-
positive [72–74]. In keratinocytes, TRPV3-mediated currents
and calcium influx have been reported [82, 83], but evidence
supporting functional TRPV3 expression in sensory neurons
has not been obtained. The TRPV3 expressed in skin
keratinocytes might participate in sensing physical stimuli
by means of signal relay to sensory nerve endings through
chemical mediators such as ATP and prostaglandin E2
[72, 84–87].

TRPV4 is another thermosensor that is activated by
warm temperature (≥27 °C) [88, 89]. Unlike other
thermo-TRP channels, TRPV4 was originally detected as
an osmosensory channel that is activated by extracellular
osmolarity (hypotonic cell swelling) and was expected to
function as a putative mammalian mechanosensitive chan-
nel [90–92]. Furthermore, TRPV4 is not only activated by
physical stimuli but also various stimuli ranging from ex-
ogenous to endogenous chemicals such as anandamide
and arachidonic acid [93], bisandrographolide [94], 4-
alpha-phorbol 12,13-didecanoate [95], acetylcholine [96],
apigenin [97], and dimethylallyl pyrophosphate [98].

Table 1 (continued)

TRPs Exogenous agonists Endogenous agonists; activators Antagonists; inhibitors Intracellular modulators

Citrate
GSK 1016790
Phorbol esters
RN 1747

Citric acid
Cytochrome P450
DMAPP
Eicosanoid
Low PH
N-Acyl taurine
Nitric oxide
Temperature (≥27 °C)

Lanthanum
Resolvin D1
RN 1734
Ruthenium red

PKA
PKC
PLA2
Src tyrosine kinase

TRPM8 Eucalyptol
Geraniol
Hydroxycitronellal
Icilin
Linalool
MC
Menthol
NCD

3-Iodothyronamine
Lysophospholipids
Temperature (≤25 °C)

5-Benzyloxytryptamine
AMTB
Arylglycine derivatives
BCTC
Benzimidazoles
Capsazepine
M8-An
PUFAs
Tetrahydroisoquinoline

Calmodulin
Intracellular calcium
PIP2
PKA
PKC
PLA2

Abbreviations: 2-AG arachidonoyl glycerol, 2-APB 2-aminoethoxydiphenylborane, 4-alpha PDD 4 alpha phorbol 12,13-didecanoate, AMTB N-(3-
aminopropyl)-2-{[(3-methylphenyl)methyl]oxy}-N-(2-thienylmethyl) benzamide hydrochloride salt, BCTC N-(4-tert-butylphenyl)-4-(3-chloropyridin-
2-yl) piperazine-1-carboxamide, cAMP cyclic adenosine 3′,5′-monophosphate,CMCR covalent modification of cysteine residues,DMAPP dimethylallyl
pyrophosphate, EET epoxy eicosatrienoic acids, FTA farnesyl thiosalicylic acid, HETE hydroxy eicosatetraenoic acid, HPETE hydroperoxy
eicosatetraenoic acid, IGF-I insulin-like growth factor-I, I-RTX 5-iodoresiniferatoxin, LPA lysophosphatidic acid, MC menthane carboxamide; NAEs
N-acyl ethanolamines, NADA N-arachidonoyl dopamine, NCD neomenthane carboxamide derivatives, PI3K phosphoinositide 3-kinase, PIP2 phos-
phatidylinositol 4,5-bisphosphate, PKA protein kinase A, PKC protein kinase C, PLA phospholipase A, PLC phospholipase C, PME pinosylvin methyl
ether, PUFA polyunsaturated fatty acid
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Therefore, like TRPV1 and AI, TRPV4 can be also de-
fined as a polymodal receptor. Moreover, TRPV4 is
expressed by a wide range of tissues, including in the
sensory neurons present in the DRG, TG, and NG
[99–101]. Mice lacking TRPV4 display a marked reduc-
tion in sensitivity to pressure, which suggests an essential
role of TRPV4 in the normal detection of pressure and as
a receptor of the high-threshold mechanosensory complex
[102].

TRPM8 is defined as a sensor of cool temperatures
(≤25 °C) [103, 104], and it can also be activated by cooling
compounds such as menthol, icilin, and several other agents
[38, 103–106]. TRPM8 is expressed in a small population of
nociceptors located in the DRG and TG that do not express
TRPV1 [7, 103, 104]. Given that most nociceptors are
TRPV1-positive neurons, the lack of TRPM8 coexpression
with TRPV1 suggests that TRPM8 is not involved in the de-
tection of noxious stimuli. Nevertheless, a recent study involv-
ing selective cell ablation demonstrated that TRPM8-
containing neurons are required for noxious cold aversion
[107].

Taken together, TRP channels in peripheral sensory neu-
rons (or in keratinocytes) act as sensors of various stimuli.
Such stimuli from outside of the body (exogenous agonists)
stimulate directly certain TRP channels and evoke nociceptive
pain (Fig. 1). Meanwhile, endogenous agonists are often in-
duced or upregulated following pathological conditions such
as inflammation or nerve injury, which in turn stimulate their
receptors (TRP channels) and contribute to the inflammatory
or neuropathic pain as one potential mechanism.

TRPs in inflammatory pain

Inflammatory pain results from the activation and sensitiza-
tion of the nociceptive pain pathway—characterized by a re-
duced threshold and an increased responsiveness of sensory
neurons—by a variety of mediators released at the sites of
tissue inflammation. These mediators, which include proin-
flammatory cytokines, chemokines, reactive oxygen species,
protein kinases, vasoactive amines, lipids, ATP, acids, and
other factors, might be released by infiltrating leukocytes,
vascular endothelial cells, or tissue-resident mast cells after
tissue injury. The mediators associated with the inflammatory
response directly or indirectly stimulate or sensitize peripheral
sensory neurons (nociceptors), which results in a reduction in
the activation threshold of the nociceptors and an increase in
their responsiveness. The activation or sensitization (or both)
of TRP channels in the sensory nerve during inflamma-
tion is considered to be the major mechanism underlying
inflammatory pain (Fig. 2a).

Studies conducted using knockout mice have clearly dem-
onstrated the essential roles of certain TRP channels in the
initiation or maintenance of inflammatory pain. In TRPV1-
deficient mice, the development of inflammatory thermal
hyperalgesia was defective but mechanical hypersensitivity
was unchanged [26–28, 108, 109], whereas TRPA1-deficient
mice exhibited markedly reduced development of
hyperalgesia in response to injections of inflammation-
related chemicals, including formalin, 4-HNE, prostaglandin
metabolites, H2O2, and bradykinin [41, 45, 47, 48, 58, 110].
TRPV4 is another TRP family member that might contribute
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Fig. 1 TRPs in nociceptive pain
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to inflammatory pain; results obtained using TRPV4-deficient
mice indicate that this channel is required for the development
of thermal hyperalgesia induced by both cutaneous and

colonic inflammation [111–115]. Conversely, TRPV2 might
not be involved in inflammatory pain: as compared with wild-
type mice, TRPV2 knockout mice showed no change in
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thermal and mechanical responses in a model of inflammation
(induced by complete Freund’s adjuvant (CFA)) [71]. TRPV3
expressed in skin keratinocytes might play a role under in-
flammatory conditions by enhancing the peripheral input
through inflammatory mediators [84, 85, 116]. TRPM8 was
demonstrated to contribute the cold-induced hyperalgesia ob-
served in inflammation produced by CFA; this hyperalgesia
was impaired in TRPM8 knockout mice [117].

TRPs might participate in inflammatory pain through two
mechanisms. In one mechanism, certain products released
from inflamed tissues, including arachidonic acid derivatives
such as anandamide, 15d-PGJ2, and 12-(S)-HPETE, and ox-
idative stress products such as 4-HNE and H2O2, might func-
tion as endogenous TRPV1, V4, or A1 activators and directly
stimulate them and contribute to spontaneous pain [41, 48, 93,
110, 118–120]. These findings demonstrate that TRPs could
contribute to inflammatory pain by acting as the terminal sub-
strate for inflammatory mediators. Sensitization of TRPs is
considered to be another potential mechanism underlying in-
flammatory pain. In the development of inflammatory pain,
three cellular and molecular mechanisms have been
established (Fig. 2b). First, inflammation might increase
TRP channel expression in sensory neurons either transcrip-
tionally or posttranslationally. For example, peripheral inflam-
mation increases TRPV1 levels in nociceptor peripheral ter-
minals in a transcription-independent manner and contributes
to the maintenance of inflammatory heat hypersensitivity
[121]. By contract, peripheral inflammation induces transcrip-
tional upregulation of TRPA1 (but not TRPM8) in DRG neu-
rons and thus contributes to inflammatory cold hyperalgesia
[122]. Moreover, neurotrophic factors, including members of
the nerve growth factor and glial cell-derived neurotrophic
factor families, have been suggested to be involved in the gene
regulation of both TRPV1 and TRPA1 [121–126]. Second,
because TRP channels are transmembrane receptors, the num-
ber of functional TRP channels present in the plasma mem-
brane is a critical determinant of channel function. Emerging
evidence has demonstrated that inflammatory mediators in-
duce a rapid translocation of TRP channels from the cyto-
plasm to the plasma membrane following the activation of
second-messenger pathways and subsequent posttranslational
modification such as channel phosphorylation or glycosyla-
tion [127–134]. Numerous proinflammatory agents and tro-
phic factors have been suggested to sensitize TRP channels
through posttranslational regulation; these molecules include
CCL3 [135], bradykinin [136–138], serotonin [139], hista-
mine [140], glutamate [10, 127, 141], PGE2 [142], ATP
[143], trypsin/tryptase [144, 145], NGF [131], and insulin/
insulin-like growth factor 1 [128, 146, 147]. Phosphorylation
is one of the molecular mechanisms involved in the sensitiza-
tion of TRP channels. Inflammatory mediators act on recep-
tors that are coupled to either G proteins or tyrosine kinase
pathways and thus activate phospholipase C (PLC) and/or

adenylate cyclase; this, in turn, induces second-messenger
pathways such as those involving protein kinase C (PKC),
protein kinase A (PKA), and/or phosphoinositide 3-kinase
(PI3K) activation and leads to channel phosphorylation. Pre-
vious studies have shown that PKC activation-sensitized,
SNARE-dependent exocytosis, and Src-PI3K-dependent
phosphorylation of TRPV1 are involved in the channel’s
membrane insertion under inflammatory conditions [127,
129, 148] and that cyclin-dependent kinase 5 might regulate
the transport of TRPV1 from the Golgi apparatus to the plas-
ma membrane [149]. Third, in addition to the translocation of
the channels from the cytoplasm to the membrane, channel
phosphorylation and a disinhibition mechanism might alter
the channel structure and functionally enhance channel sensi-
tivity. Inflammatory mediators might sensitize TRPs by re-
leasing the inhibition of TRP channels, which is subjected to
regulation by phosphatidylinositol 4,5-bisphosphate turnover
mediated by PLC activation [34, 150, 151].

TRPs in neuropathic pain

Neuropathic pain is initiated or caused by a primary lesion or
disease in the somatosensory nervous system; this type of pain
includes the pain in diabetic neuropathy or chemotherapy-
related peripheral neuropathy, postherpetic neuralgia, spinal
cord injury pain, and phantom limb pain. Pathophysiological
changes in primary sensory neurons induced by nerve injury
and disease and the consequent changes in signal processing
in the central nervous system constitute the underlying mech-
anism of neuropathic pain. Following peripheral nerve dam-
age, TRP channel expression changes dynamically in sensory
neurons. First, the expression of TRP channels, including
TRPV1, TRPA1, TRPV3, and TRPM8, decreases in the in-
jured neuron in response to peripheral axonal damage; this
downregulation of TRP channels might be a result of the loss
of trophic support following injury [8, 13, 122, 152–154].
Concurrently, however, certain TRP channels, such as TRPV1
and TRPA1, are upregulated in nearby spared neurons follow-
ing nerve injury, and this increase correlates closely with be-
havioral change [13, 122, 152–154]. In studies conducted
using human tissue, TRPV1 and TRPV3 levels were found
to be decreased in the skin of patients with diabetic or other
painful neuropathies but increased in intact nerve fibers in
certain patients with pain hypersensitivity, whereas the level
of TRPV4 was observed to remain unchanged [99, 155]. One
potential mechanism has been suggested for these phenotypic
changes: the damaged neurons might release growth factors
and neurotransmitters into the surrounding area and, conse-
quently, cause an increase in the excitability of surrounding
neurons [13, 153, 156, 157]. These dynamic changes contrast
the changes detected in inflammation, in which TRP channels
are generally upregulated (see above); this reflects the notion

Semin Immunopathol (2016) 38:277–291 283



that inflammatory pain simply features a Bsurplus^ of noci-
ceptive signaling, whereas the sensory abnormalities of neu-
ropathies include not only hypersensitivity (hyperalgesia or
allodynia), but also paresthesias, hypoesthesia, or complete
deficits perceived as numbness [158] (Fig. 3).

In addition to the drastic phenotypic change observed as
alterations in TRPV1 and A1 channel expression patterns,
knockdown or pharmacological inhibition of these TRPs has
been widely demonstrated to reduce pain behavior in several
animal models of neuropathic pain [122, 154, 159–178]. In-
terestingly, however, studies conducted using knockout mice
have provided little evidence supporting the notion that these
TRPs (TRPV1 and TRPA1) are essential contributors to the
development of neuropathic pain. For example, knockout of
TRPV1 or TRPA1 typically exerts no effect on pain behaviors
induced by nerve injury [26, 27, 57] or diabetes [179]. By
contrast, mechanical hyperalgesia induced by paclitaxel, vin-
cristine, or diabetes was strongly reduced in TRPV4 knockout
mice, and knockdown or pharmacological inhibition of
TRPV4 reduced chemotherapy-induced mechanical or hypo-
tonic hyperalgesia [173, 180]; this suggests a critical role of
TRPV4 in mechanotransduction in the setting of nerve injury
[181]. Conversely, TRPM8 null mice display a marked reduc-
tion in injury-induced responsiveness to acetone cooling
[117], and pharmacological blockade of TRPM8 leads to a
reduction in nerve injury-induced cold hypersensitivity
[182], which indicates that TRPM8 might play a role in
cooling-induced neuropathic pain. Furthermore, recent studies
have suggested the involvement of TRPM2 in nerve injury-
induced mechanical allodynia [183–185].

In conclusion, TRPs act as chemical, thermal, and mechan-
ical sensors in nociceptors and detect nociceptive pain. Certain
TRPs—particularly TRPV1 and TRPA1—are essential for the

development of hyperalgesia and allodynia under inflamma-
tory conditions, whereas TRPV4 and TRPM8 might contrib-
ute to neuropathic hypersensitivity to mechanical and cold
stimuli, respectively. However, the essential role of all such
TRP channels in the development of neuropathic pain remains
to be further identified, although antagonists of certain TRPs
have been shown to reduce the pain behavior following nerve
injury.

TRPs as targets of analgesics

The roles of TRP channels in mediating pathological pain
make them potential targets for analgesics. TRP channels are
located in nociceptors where pain is generated, and thus the
simplest access for analgesics would involve blocking the
channels directly. Two main approaches have been proposed
to inhibit TRP channels: blocking the channel activity using
antagonists and, paradoxically, stimulating the channels to
desensitize them. Drug development studies have focused on
TRPV1, TRPV3, TRPM8, and TRPA1, which have been
clearly demonstrated to be involved in pathological pain (see
above). Currently, at least seven antagonists of TRPV1, two of
TRPA1, and one of TRPV3 are being clinically tested by
pharmaceutical industries [186–188]. However, as discussed
in the preceding section, several TRP channels perform dual
functions: they act as sensors/detectors of nociceptive signals
under normal conditions, which helps prevent tissue damage,
and they also act as contributors to inflammatory or neuro-
pathic pain under pathological conditions, and this can pose a
risk of noxious perception being blunted when the channels’
activity is blocked. In accord, in healthy human volunteers,
increase in heat pain threshold was observed after the
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administration of TRPV1 antagonists, including SB-705498
[189], MK-2295 [190], ABT-102 [191], and AZD1386 [192].
Hyperthermia is another adverse effect of TRPV1 antagonists;
almost all TRPV1 antagonists undergoing clinical develop-
ment, such as AMG517 (Amgen) [193], ABT-102 (Abbott)
[191], and AZD1386 (AstraZeneca) [192], caused hyperther-
mia in human volunteers that in certain cases lasted for 1–
4 days, with core body temperatures rising up to 40.2 °C
[193].

In contrast to the challenges associated with developing
antagonists, in the case of agonists that have been applied to
locally desensitize TRP channels and have been used clinical-
ly, severe adverse effects have not been reported, although the
agonists might produce initial irritation or even degeneration
of sensory nerves. This notion of a paradoxical use of agonists
might be derived from the experience gained with certain
herbal remedies used in traditional medicine. For example,
preparations or prescriptions containing agonists of TRP
channels, such as menthol (TRPM8), cinnamaldehyde
(TRPA1), or shogaol (TRPV1), have long been used topically
or orally to relieve neuralgia, arthralgia, menstrual pain, and
headache in traditional Chinese medicine. Moreover,
capsaicin-containing creams, occlusive patches, and liquid
formulations have been developed and used for treating
chronic painful conditions such as diabetic neuropathy,
postherpetic neuralgia, and other painful disorders [186,
194–196]. A recent study analyzed several related human
studies involving a total of over 2000 participants, and the
results indicated that high-concentration capsaicin patches
were effective in the treatment of postherpetic neuralgia and
HIV neuropathy [197]. As an ultrapotent analog of capsaicin,
resiniferatoxin has been developed preclinically for treating
intractable cancer pain through intrathecal administration
[186, 198]. Furthermore, clinical trials have shown beneficial
effects of topically administered peppermint oil in alleviating
thermally elicited pain and postherpetic neuralgia [199, 200];
in accord, the results of animal experiments have shown that
oral menthol administration can cause short-term analgesia
[201]. Icilin and menthol might also reduce mechanical and
thermal hypersensitivity caused by peripheral nerve injury
[202]. The minor side effects observed with these agonists
provide useful information for developing TRP-targeted
analgesics.

As discussed in preceding sections, the sensitization of
TRPs contributes to inflammatory and neuropathic pain. In
addition to simply blocking TRP channels by using antago-
nists, an alternative strategy for developing analgesics that
target TRPs involves preventing or reducing TRP sensitiza-
tion. Targeting the channels by using endogenous modulators
is an attractive approach for controlling TRP activity. As al-
ready noted, numerous intracellular and extracellular agents
might activate/sensitize or inhibit TRP channels, and thus in-
terfering with these processes might result in analgesia. For

example, inhibition of PKCε has been reported to completely
block both inflammatory mediator-induced TRPV1 sensitiza-
tion and heat hyperalgesia [203, 204]. Another study recently
reported that disrupting the interaction between TRPV1 and
A-kinase-anchoring protein 79/150 using inhibitory peptides
prevents TRPV1 sensitization and inflammatory hyperalgesia
[205]. Furthermore, endogenous inhibitors of TRPV1/A1,
such as resolvins [206] and artemin [207], have been proposed
for use in the treatment of pain conditions. These attempts
might yield novel ideas for maximizing the reduction of the
activity of sensitized TRPs while concurrently minimizing
any disruption of their sensor functions.

Conclusions

Eighteen years have passed since the first pain sensor,
TRPV1, was cloned [4]. During this period, numerous
pain-related TRP channels have been discovered and
comprehensively investigated. The rapid progress in the
identification and characterization of TRP channels has
enhanced our understanding of both nociceptive and
pathological pain. Based on the growing knowledge of
the TRP channels and their involvement in distinct pain
conditions, we can expect pharmacological interventions
targeting TRPV1/A1 channels to be effective in the treat-
ment of chronic inflammatory syndromes that involve
thermal hyperalgesia; conversely, targeting TRPV4 or
TRPM8 should be effective for treating neuropathic con-
ditions that include mechanical or cold hypersensitivity,
respectively, in diseases that involve nerve injury or neu-
ropathy. Moreover, several TRPs are expressed in a
board range of tissue and organs that are outside the
somatosensory system; thus, in addition to functioning
as pain sensors or enhancers, these channels might per-
form other functions in organisms and might be involved
in various diseases. Consequently, pharmacological inhi-
bition of TRP channels might produce both clinical ben-
efits for analgesia and unexpected adverse effects, such
as the hyperthermia noted in the preceding section. To
overcome these challenges, further investigation must be
conducted using newly devised approaches, such as the
discovery of second-generation antagonists or selective
delivery of drugs through topical application or local
injection instead of systemic administration.
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