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Abstract There is extensive evidence that accumulation of
mononuclear phagocytes including microglial cells, mono-
cytes, and macrophages at sites of β-amyloid (Aβ) depo-
sition in the brain is an important pathological feature of
Alzheimer’s disease (AD) and related animal models, and
the concentration of these cells clustered around Aβ deposits
is several folds higher than in neighboring areas of the brain
[1–5]. Microglial cells phagocytose and clear debris, patho-
gens, and toxins, but they can also be activated to produce
inflammatory cytokines, chemokines, and neurotoxins [6].
Over the past decade, the roles of microglial cells in AD
have begun to be clarified, and we proposed that these
cells play a dichotomous role in the pathogenesis of AD
[4, 6–11]. Microglial cells are able to clear soluble and
fibrillar Aβ, but continued interactions of these cells with
Aβ can lead to an inflammatory response resulting in
neurotoxicity. Inflammasomes are inducible high molecular
weight protein complexes that are involved in many in-
flammatory pathological processes. Recently, Aβ was
found to activate the NLRP3 inflammasome in microglial
cells in vitro and in vivo thereby defining a novel path-
way that could lead to progression of AD [12–14]. In this
manuscript, we review possible steps leading to Aβ-
induced inflammasome activation and discuss how this
could contribute to the pathogenesis of AD.
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Function of microglial cells in the brain

Five to twelve percent of all cells in the brain are microglial
cells, depending on the brain region [15]. Because of their
immunomodulatory function, they are considered the resi-
dent macrophages of the brain. Using direct RNA sequenc-
ing, our group found important differences in gene expres-
sion between microglial cells and peripheral monocytes and
macrophages [16]. However, in spite of these differences,
microglial cells share a myeloid origin and several similar-
ities in their receptor repertoire with peripheral monocytes
and macrophages. All three cell types also share the ability
to activate several inflammatory pathways in response to
injurious stimuli.

In general, microglial cells constantly sense and screen the
environment with their processes. They are able to adopt an
amoeboid shape, migrate to the location of an injury, and be-
come activated [17]. Activated microglial cells are found in
states of infection and trauma but also in neurodegenerative
diseases like Parkinson disease, prion disease, and AD. Elevat-
ed levels of pro-inflammatory mediators have been found in all
of these conditions [18–20]. The production of such mediators
including cytokines, chemokines, reactive oxygen species, and
nitrogenmonoxide [9, 21] helps to attract more microglial cells
and possibly peripheralmonocytes and ultimately could lead to
the removal of pathogens and other toxic stimuli.

Microglia and Aβ

Microglial cells, monocytes, and macrophages express recep-
tors that promote phagocytosis of Aβ, and intracellular Aβ
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deposits have been observed in mononuclear phagocytes in
AD brains. These cells also express Aβ degrading enzymes
further contributing to Aβ clearance. In mouse models of AD,
we found that uptake of Aβ is mediated via the class A scav-
enger receptor Scara1, and deficiency in this receptor is asso-
ciated with increased mortality and Aβ accumulation in these
mice [8, 10] further supporting the paradigm that these cells
play a neuroprotective role by promoting Aβ phagocytosis,
degradation, and clearance. On the other hand, we also found
that the interaction of Aβ with a receptor complex that in-
cludes the pattern recognition receptor CD36 and a heterodi-
mer composed of the Toll-like receptors (TLR) 4 and 6, is
required for activation of microglial cells and the production
of inflammatory cytokines, chemokines, and neurotoxins
[9, 11]. Following Aβ binding to this receptor complex,
intracellular signaling leads to the translocation of nuclear
factor κB (NFκB) from the cytoplasm into the nucleus [22]
but also activation of cAMP/protein kinase A/phosphorylated
cAMP response element binding protein (CREB) [23]
resulting in the transcription of several pro-inflammatory cy-
tokines, NO-Synthase, and cyclooxygenase-2 [24, 25]. Re-
cently, an alternative intracellular signaling pathway that is
downstream from Aβ binding came into focus: the activa-
tion of the NLRP3 inflammasome [13, 14].

The NLRP3 inflammasome

Inflammasomes are inducible high molecular weight protein
complexes that were described first by Martinon et al. in 2002
[26]. Four different inflammasomes and their activators have
been well characterized so far: NLRP1 [27], NLRP3 [28],
NLRC4 [29], and AIM2 [30]. The NLRP3 inflammasome in
particular seems to be involved in many pathological mecha-
nisms, since it is activated by several microbes [31, 32], urate
crystals [33], cholesterol crystals [34], and soluble
and aggregated Aβ [12]. The NLRP3 inflammasome is an
intracellular protein complex consisting of the sensor protein
NLRP3, the adaptor protein apoptosis-associated speck-like
protein containing a caspase activating and recruitment do-
main (ASC) and pro caspase-1. Assembly and activation of
this complex leads to the cleavage of pro caspase-1 to active
caspase-1 (Fig. 1). Active caspase-1 in turn cleaves and there-
by activates pro-inflammatory cytokines of the IL-1β family.
IL-1β is synthesized as an inactive precursor and undergoes
posttranslational modifications to become an active cytokine
[35]. IL-1β is a very potent pyrogenic cytokine and therefore
its production and release has to be tightly controlled. In the
central nervous system, IL-1β seems to impact long-term po-
tentiation and synaptic plasticity in the hippocampus where
memory is consolidated [36].

Two steps are necessary to activate the NLRP3
inflammasome: the first step involves Bpriming^ of the
inflammasome, and is the result of disinhibition and nuclear

translocation of NF-kB which leads to the transcription of
NLRP3 itself and pro IL-1β, both prerequisites for the actual
activation of the inflammasome [37, 38]. Many signaling
pathways induced by a plethora of stimuli converge in the
activation of NF-kB—the most prominent stimuli being LPS
that signals via TLR4/CD14 [39]. A much faster way to make
NLRP3 available is the deubiquitination of NLRP3 which is
suggested to be dependent on mitochondrial ROS activity
[40]. The second step of NLRP3 activation is the oligomeri-
zation of NLRP3 and the assemblywith ASC and pro caspase-
1. NLRP3 has been shown to sense putative ligands with its C-
terminal leucine-rich repeats and self-oligomerizes via its nu-
cleotide binding domainNACHT [41]. Upon oligomerization,
ASC joins the complex and recruits caspase-1 via its caspase
recruitment and activating domain (CARD) [42]. In addition,
data from murine macrophages indicate that ASC specks can
transmit inflammasome activation from cell-to-cell in a prion-
like manner [43, 44].

Because inflammasome activation is involved in many
pathological processes, attention has been shifting lately to
understanding mechanisms of inflammasome regulation.
Yan et al. found that dopamine serves as an endogenous in-
hibitor of the NLRP3 inflammasome [45]. This dopamine
effect may be mediated via dopamine receptor 1 which is
expressed on many subsets of immune cells including
microglial cells [46]. The proposed underlying mechanism
of NLRP3 inhibition in this context is ubiquitination and
autophagy-mediated degradation of NLRP3 mediated by in-
creased levels of cAMP as described earlier by Lee et al. [47].
In addition, to such endogenous regulatory pathways, Coll
et al. characterized a very specific NLRP3 small inhibitor
[48]. MCC950, a diarylsulfonylurea-containing compound,
blocked NLRP3 inflammasome activation induced by ATP,
Nigericin, and urate crystals in vitro in human and murine
macrophages and delayed the onset and slowed the progres-
sion of experimental autoimmune encephalitis, an in vivo
mouse model of multiple sclerosis. This inhibitor could be
used to study the suitability of NLRP3 as a therapeutic target
in many diseases.

The NLRP3 inflammasome in AD

Elevated levels of IL-1β, an endproduct of inflammasome
activation, have been reported in brains of AD patients as far
back as 1989 [49]. It took nearly three decades to identify a
potential pathway that could explain such elevated levels,
when Aβ was identified as an inflammasome activator [12].
Halle et al. proposed that phagocytosis of Aβ is the first step
in NLRP3 inflammasome activation. Such activation required
priming of bone-marrow-derived macrophages and microglia
with interferon-γ or LPS before uptake of Aβ fibrils. Inhibi-
tion of phagocytosis with cytochalasin D abrogated
inflammasome activation by Aβ fibrils. Following their
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phagocytosis, Aβ fibrils localize in intracellular lysosomes,
compromising the membrane of these lysosomes and leading
to the release cathepsin B, a lysosomal proteolytic enzyme,
into the cytosol, thereby activating the inflammasome (Fig. 1).
The mechanisms by which cathepsin B activates the
inflammasome and whether this phenomenon occurs in AD
patients or AD animal models is not clear. Data from Aβ
treated rat primary microglial cells suggest an inhibitory role
for NLRP10 in this context [50]. NLRP10 inhibits the forma-
tion of the NLRP3 inflammasome by interacting with ASC.
Upon treatment with a cocktail of aggregated Aβ1-42 and
Aβ1-40, NLRP10 is degraded, probably by cathepsins,
allowing the NLRP3 inflammasome protein complex to be
formed.

Sheedy et al. suggested that the pattern recognition receptor
CD36 is a possible receptor for soluble Aβ that conveys the
signal from Aβ to the inflammasome in the aforementioned
two-stepmanner [14]. CD36 seems to be responsible for prim-
ing of the cells through activation of the receptor complex
CD36/TLR4/6, subsequent translocation of NF-κB to the nu-
cleus and transcription of NLRP3 and pro IL-1β (Fig. 1). The
mechanism by which soluble Aβ leads to the assembly of the
NLRP3 inflammasome is not fully understood. Sheedy et al.
show intracellular formation of Aβ fibrils and lysosomal lo-
cation after 3 h of treatment with soluble Aβ, but they did not
determine lysosomal integrity or the levels of cathepsin B. Aβ
treatment of cells obtained from CD36−/− mice or pre-
treatment with Congo red that interferes with the formation
of β-sheets, reduces IL-1β secretion. However, in this study,

murine bone-marrow-derived macrophages were used and not
immune cells isolated from the brain.

In 2013 Heneka et al. showed enhanced caspase-1 activation
in human brains from patients suffering from mild cognitive
impairment and AD. They also found that NLRP3 or Caspase-
1 deficiency in mice that carry mutations associated with famil-
ial AD (APP/PS1) were associated with improvements in cog-
nitive decline [13]. In addition, APP/PS1/Nlrp3−/− mice had
reduced hippocampal and cortical Aβ deposition, although the
processing and expression of the amyloid precursor protein was
not affected. Using methoxy-XO4, a fluorescent molecule that
binds Aβ with high affinity, injected intraperitoneally into adult
APP/PS1/ Nlrp3−/− and APP/PS1/Casp1−/− mice, the authors
showed a twofold increase in Aβ phagocytosis by microglial
cells from these mice compared to APP/PS1 mice. This finding
suggests that NLRP3 inflammasome activation reduces phago-
cytosis of Aβ bymicroglial cells. NLRP3 activation could there-
fore contribute to the pathogenesis of AD via two processes.
First, it can regulate production of IL-1β and possibly neuro-
toxins causing neuronal degeneration. Second, it can reduce Aβ
clearance leading to enhanced deposition, thereby creating a
self-perpetuating loop that culminated in AD progression.

A second pathway that might contribute to inflammasome
activation in AD brains involves extracellular ATP and the
purinergic receptor P2X7. Extracellular ATP may be released
by dying or degenerating neurons and activates P2X7 [28,
51]. P2X7, which is expressed on microglia [16], in turn acti-
vates the NLRP3 inflammasome [28, 51]. Interestingly, P2X7
expression is increased in human AD brains [52]. Based on

Fig. 1 Activation of the NLRP3 inflammasome byAβ. Both soluble and
fibrillar Aβ can contribute to inflammasome activation. Aβ fibrils cause
activation of microglial cells and therefore provide signal 1 via NF-κB
transcription of NLRP3 and pro IL-1β. Signal 2 can either be provided by

intracellular aggregation of soluble Aβ or by lysosomal rupture through
phagocytosed Aβ fibrils. Both events lead to the formation of the active
NLRP3 inflammasome. Active Caspase-1 finally cleaves pro IL-1β to
active IL-1β which is released into the extracellular space
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these reports, it is possible that signaling via P2X7 provides a
second mechanism for NLRP3 inflammasome activation in
addition to Aβ-induced signaling [53].

Open questions and caveats

Because microglial cells are the resident mononuclear phago-
cytes of the CNS, most published studies refer to Aβ-
associated mononuclear phagocytes as microglia. Work done
in animal models of Aβ deposition suggested that in addition to
microglia, some Aβ-associated mononuclear phagocytes are
blood or bone-marrow-derived monocytes [54, 55]. Our own
work using the Tg2576 mouse model of Aβ deposition sup-
ported the possibility that blood-borne monocytes accumulate
in the brains of these mice as the disease progresses [8]. Indeed,
we observed a significant increase in CD11b+/CD45hi cells
(believed to be monocytes based on their high expression of
CD45 [56, 57]) in Tg2576 animals compared to non-Tg con-
trols. We also found that accumulation of CD11b+/CD45hi cells
is significantly impaired in Tg2576 mice deficient in the che-
mokine receptor Ccr2 [8], a major chemokine receptor highly
expressed on monocytes [58] but not on resident microglia
[16]. This was later confirmed by Naert and colleagues [59].
More recent reports showed that cells expressing monocyte
markers are associated with plaques in two transgenic models
of Aβ deposition [60] and that adoptively transferred mono-
cytes home in to these plaques [61]. Furthermore, while CD36
is expressed in microglial cells, its level of expression on pe-
ripheral monocytes and macrophages is more than 100-fold
higher than in microglial cells [16]. These studies raise the
possibility that Aβ-induced CD36-dependent inflammasome
activation in AD may occur not only in microglia but also in
peripheral blood monocytes recruited to the brain.

Conclusion

The NLRP3 inflammasome appears to play an important role
in the pathogenesis and progression of AD making an attrac-
tive target for therapeutic intervention. However, interfering
with key parts of the inflammasome (NLRP3, ASC, and
Caspase-1) in a shotgun manner as a therapeutic approach
may also have serious systemic effects because of the ubiqui-
tous distribution and importance of inflammasome activation
in many peripheral processes. Future research should focus on
identifying CNS-specific pathways leading to inflammasome
activation, including possible additional receptors or endoge-
nous cell-specific inhibitors.
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