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Abstract Systemic sclerosis (SSc) is connective tissue disor-
der in which fibrosis of the skin and internal organs is the main
hallmark. Despite the difficulties of studying a complex dis-
ease, significant advances have been achieved in the SSc ge-
netics field. In this review, we will describe the firmest genetic
susceptibility markers known to date. We will analyze the
most recent findings in the HLA region and in non-HLA
genes. Furthermore, we will propose functional connections
of these loci with the mechanisms involved in SSc pathogen-
esis. However, only non-HLA genetic regions that have been
associated with SSc at the genome-wide significance level or
that have been reported to be associated with the disease in at
least two different independent studies will be considered. In
spite of the increasing number of SSc genetic susceptibility
factors identified, further studies with larger sample sizes,
deeper phenotype characterization of the patients and innova-
tive analyses will be needed to translate SSc genetics into
clinical practice and patient care in the future.
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Introduction

Complex diseases, such as systemic sclerosis (SSc), are de-
fined as those involving the interaction between genetic pre-
disposition and environmental triggers. However, the environ-
mental factors that influence the disease onset or prognosis of
SSc are unknown. Moreover, from the genetics point of view,
the number of relevant genes or the extent of their involve-
ment in the disease pathogenesis have not been established
yet.

The heritability of SSc was considered controversial in the
largest published SSc twin study, which in general suggested a
modest genetic contribution to the phenotype [1]. Neverthe-
less, this study included only 42 sets of twins, and it should be
considered that, in a family study of 703 cases, an affected
first-degree relative increased the risk of SSc 13 times com-
pared to the general population [1, 2]. Moreover, having an
affected sibling increased SSc risk by 15 times [2], and there
was a remarkable concordance of autoantibodies between SSc
twins [1]. Additionally, recent analyses have shown that the
standardized incidence ratio of SSc seemed to be less than
those observed in autoimmune diseases (ADs) such as rheu-
matoid arthritis or ankylosing spondylitis, but similar to those
observed for Hashimoto thyroiditis or psoriasis [3]. In addi-
tion, SSc prevalence, clinical outcomes, and autoantibody
profiles have been reported to vary depending on patient an-
cestry [4]. Therefore, the role of genetic factors in SSc suscep-
tibility can now be considered solidly established.

Case-controls studies, in particular those based on single-
nucleotide polymorphisms (SNPs), have provided a continu-
ously growing panel of genetic players in the SSc pathogenic
process. Genome-wide association studies (GWASs), which
include hundreds of thousands of SNPs located throughout the
genome, have been very effective in identifying a huge num-
ber of genetic loci associated with complex traits, including
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autoimmune diseases (ADs) [5]. GWASs offered for the first
time a hypothesis-blind approach to the analysis of complex
traits. Moreover, analyses covering a great proportion of the
variability of the human genome, especially in Caucasian co-
horts, including large cohorts, became feasible for the first
time. Unfortunately, SSc was not included in the first GWAS
in ADs in 2007 [6], and until 2010, no SSc-related non-HLA
locus had been established at the genome-wide significance
level (p value<5×10−8) [7] (Table 1). Although the initial
genetic association reports in SSc were hardly reproducible,
the coming of GWASs [7–11] and the recruitment of large
patient cohorts have resulted in a growing number of firmly
established SSc genetic susceptibility loci.

In this review, we will provide an updated overview of the
known SSc-related genetic factors and we will address their
possible functional implication in the pathogenic events that
are characteristic of this chronic and disabling condition.

HLA

The human leukocyte antigen (HLA) was the first genetic
association with SSc to be discovered and, similar to other
ADs, it remains as a major autoimmunity genetic marker
[12]. HLA-class II is expressed exclusively on antigen pre-
senting cells and presents extracellular antigens. Considering
that (1) the genes encoding the three major types of HLA class
II molecules (HLA-DP, HLA-DQ, and HLA-DR) have been
associated with SSc, (2) the associations with SSc in the HLA
region are closely related to the autoantibodies in the patient
sera, and (3) the reported remarkable variability between pop-
ulations, we will address a comprehensive analysis of this
region in the present section.

Classical HLA alleles

HLA associations have been studied in different ethnic popu-
lations, as discussed below, and have been shown to vary
according to the presence/absence of the three most common
SSc-related (and mutually exclusive) autoantibodies. The
HLA-DQB1*0301 allele has been associated with the entire
disease group of SSc patients in whites, blacks, and Hispanics
[4], while HLA-DRB1*01, DRB1*04, and DQB1*0501 al-
leles have been related to anticentromere positive SSc patients
(ACA+) and HLA-DRB1*11 and HLA-DPB1*1301 have
been associated with antitopoisomerase positive SSc patients
(ATA+), independently from their ethnic origin [4, 13, 14].

In white European ancestry populations, it has been de-
scribed that the HLA-DRB1*1104/HLA-DQA1*0501/HLA-
DQB1*0301 haplotype and the HLA-DQB1 alleles that en-
code a non-leucine residue at position 26 (DQB1 26 epi) pre-
dispose to develop SSc. On the other hand, the HLA-
DRB1*0701-HLA-DQA1*0201-HLA-DQB1*0202

haplotype and the HLA-DRB1*1501 haplotype have a pro-
tective effect [14]. These HLA effects are also seen in Hispan-
ic populations [14]. Furthermore, in whites, the HLA-
DRB1*04 or HLA-DRB1*08 alleles and the HLA-
DQB1*05 and HLA-DQB1*26 epi alleles cause an increased
risk for ACA+ SSc [14, 15]. However, ATA+ SSc is associat-
ed with an over-representation of the HLA-DRB1*11 allele,
t h e HLA-DRB1*1104 /HLA-DQA1*0501 /HLA-
DQB1*0301 haplotype, and the HLA-DQB1*03 and HLA-
DPB1*1301 alleles, or a reduced frequency of the HLA-
DQB1*0501 allele [13–15]. Moreover, the HLA-DRB1*01
alleles have been described to predispose to ACA+ SSc and
to protect against ATA+ SSc [15]. The anti-RNA polymerase
III antibody positive SSc patient subset (ARA+) is defined by
DRB1*0404, DRB1*11, and DQB1*03 in both white and
Hispanic populations [14].

Regarding black populations, the HLA-DRB1*0804,
HLA-DQA1*0501, and HLA-DQB1*0301 alleles are associ-
ated with the overall disease and HLA-DRB1*08 with ARA+
patients [14].

SNP-based analyses

As it was expected from candidate gene studies, GWASs con-
firmed the great contribution of the HLA region to the SSc
genetic component. In the three GWASs carried out to date in
SSc, the most prominent genetic association signal
corresponded to the HLA class II region in chromosome 6
[7–11]. In the interrogated European descent populations, the
highest peaks corresponded to the HLA-DRB1 gene
(rs6457617) and theHLA-DQB1 locus (haplotype block defined
by rs9275224, rs6457617, and rs9275245), respectively [7, 11].

In addition, the Immunochip, a custom platform designed
to provide a dense-mapping of different autoimmune-related
chromosomal regions, has allowed the link between SNPs,
classical HLA-alleles, and polymorphic amino acid positions
in the HLA molecules [16, 17]. This platform, with complete
coverage of the known variants in the extended HLA region,
offers a suitable basis for novel imputation strategies that al-
low the deduction of the amino acids that better tag the asso-
ciations pointed out by SNP-based analyses and that define
the classical HLA alleles [16]. In the case of SSc, the differ-
ential associations of the classical HLA alleles with the main
SSc serological subsets (ACA+ or ATA+) were further con-
firmed, since it was necessary to define a different HLAmodel
for each serological subset to explain all the HLA associations
observed in the whole disease analysis [18]. The ACA+ asso-
ciations were best explained by certain residues in the 13th
polymorphic position in HLA-DRB1 and the 69th position in
HLA-DQA1. On the other hand, the ATA+ subgroup associa-
tions were dependent on the 67th and 86th positions in HLA-
DRB1 and the positions 76th and 96th in HLA-DPB1 [18].
Moreover, both the subtype and the whole disease groups
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Table 1 Locus with or without significance level

Locus Locus coordinates Chr:bp Locus function Associated genetic
polymorphism/s

Risk/protection References

Type I IFN pathway

IRF5a 7:128,937,940-128,950,035 Virus-mediated
activation of IFN

rs2004640,
rs10954213,
rs2280714,
rs10488631,
rs12537284,
rs4728142,
rs3757385

Risk [7, 11, 18, 27,
28, 29]

IRF8a 16:85,899,168-85,922,606 Differentiation into
monocyte precursor
cells

rs11642873 Protection [33]

IRF7 11:612,555-615,999 Regulates IFNα
genes

rs4963128 Protection [35]

IL-12 pathway

IL12Aa 3:159,988,836-159,996,019 Differentiation
of Thl

rs77583790 Risk [18]

IL12RB2a 1:67,307,364-67,396,900 IL-12 receptor
β chain

rs3790567 Risk [39]

IL12RB1a 19:18,058,995-18,098,986 IL-12 receptor
β chain

rs2305743 Protection [40]

STAT4a 2:191,029,576-191,172,671 T cell maturation
and signaling

rs7574865,
rs11889341,
rs8179673,
rs10181656,
rs6752770,
rs3821236

Risk [7, 11, 18, 43,
44, 45, 46]

Debris clearance, autophagy, and detoxification

DNASE1L3a 3:58,192,626-58,211,003 DNA breakdown
during apoptosis

rs35677470 Risk [18]

ATG5a 6:106,184,476-106,325,820 Autophagosome
elongation

rs9373839 Risk [18]

PPARGa 3:12,287,850-12,434,356 Regulator of adipocyte
differentiation

rs310746 Risk [56]

T cell-associated loci

CD247a 1:167,430,640-167,518,610 Forms the TCR-CD3
complex

rs2056626 Protection [7, 11, 59]

CSKa 15:74,782,084-74,803,198 Tyrosine kinase of
the Src family

rs1378942 Risk [62]

PTPN22 1:113,813,811-113,871,753 TCR signaling
pathway phosphatase

rs2476601 Risk [8, 9, 65]

B cell-associated loci

BANK1 4:101,790,607-102,074,812 B cell receptor-induced
calcium mobilization

rs10516487,
rs3733197,
rs17266594

Risk [67, 68]

BLK 8:11,494,012-11,564,599 B cell receptor signaling
and B cell development

rs2736340,
rs13277113

Risk [69, 70, 71]

TNF pathway and family

TNFAIP3 6:137,867,188-137,883,314 Inhibits NF-kappa B
activation and TNF-
mediated apoptosis

rs5029939 Risk [18, 54, 76]

TNIP1a 5:151,029,943-151,087,660 Regulation of nuclear
factor kappa-B activation

rs2233287,
rs4958881,
rs3792783

Risk [11, 78]

TNFSF4 1:173,183,731-173,207,332 T cell-APC interactions rs1234314,
rs2205960,
rs844644,
rs12039904,
rs844665,
rs844648

Risk [81, 82]

a Locus that reached the genome-wide significance level
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required the addition of seven SNPs to the model to condition
all the HLA signals [18].

Mayes et al. underlined the relevance of the identified amino
acids either in peptide binding groove or in the structure of the
HLA proteins [18]. Indeed, as illustrated in Fig. 1, the classical
HLA alleles that included themost highly associated risk amino
acids for each subtype seemed to cause different amino acid
binding preferences in the corresponding peptide binding
grooves [19, 20]. In addition, the implication that the majority
of the reported SNPs served as expression quantitative trait loci
(eQTLs), that is, that their role was to modulate the expression
of multiple HLA class I and class II genes, suggested novel
functional implications for these selected variants [18, 21].

NON-HLA

In the following sections, we focus on the non-HLA genetic
regions that have been associated with SSc at the genome-
wide significance level and those that did not reach this

threshold but that have been associated with the disease in at
least two different independent studies.

Type I interferon pathway

Type I interferon (IFN) responses induce antiviral immunity.
These responses are initiated by a variety of pattern recogni-
tion receptors, such as Toll-like receptors (TLRs). IFNs mod-
ulate the amount of antigen presented to T cells, induce APC
maturation, and increase natural killer (NK) cell activation
[22]. Moreover, the balance and timing between IFNs and
other stimulation pathways on T cells control the repression
or promotion of T cell antiviral responses [22]. IFNβ is pro-
duced in any kind of cell infected by a virus, while APCs,
especially plasmacytoid dendritic cells (pDCs), are the key
producers of IFNα [22]. In the case of SSc, pDCs have also
been shown to secrete CXCL4, which leads to endothelial-cell
activation and increased responses of TLRs [23]. Further-
more, SSc has been classified as an “IFN signature”AD based
onmultiple lines of evidence that support a deregulation of the

Fig. 1 a Previously reported classical four-digit alleles associated with ACA+ or ATA+ SSc patients and their relation with the amino acid model in
Mayes et al. 2014. b HLA-DRB1 sequence logos for SSc-associated classical alleles
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type I IFN pathway [24]. Increased expression of IFN-
regulated genes in peripheral whole blood cells, peripheral
blood mononuclear cells, and sera of SSc patients have been
described [24]. Regarding genetic findings, several IFN-
related genes have been found to be associated with SSc.

Interferon regulatory factor 5 (IRF5) is expressed by mac-
rophages, dendritic cells (conventional dendritic cells or
cDCs) and pDCs as well as B cells. This protein promotes
IFNα expression, and it is essential in defining an inflam-
matory macrophage lineage [25, 26]. Furthermore, IRF5 is
involved in cell cycle and apoptosis, in microbial infection,
and in inflammation [25, 26]. IRF5 is a common autoim-
munity susceptibility factor and also one of the major non-
HLA gene associations with SSc [24]. Interestingly, the risk
association of this locus with SSc has been reported in dif-
ferent ethnicities, and it reached the genome-wide signifi-
cance level [7, 18, 27, 28]. While initial reports pointed
towards a subtype specific association of this locus with
patients with dcSSc or lung involvement [28, 29], novel
reports show an association with the whole disease [7,
18]. In this line, Carmona et al. observed an additive effect
of three distinct functional haplotype blocks (the haplotype
tagged by rs10488631 is involved in protein stability,
rs2004640 tags a splicing-related haplotype, and
rs4728142 tags a haplotype in the 3′UTR that affects the
expression of the gene) [30]. The IRF5 haplotype structure
was similar to the effect observed in SLE patients [30]. This
genetic resemblance in the IRF5 locus between SSc, SLE,
and other ADs has been confirmed recently using both the
frequentist and the Bayesian approaches [31]. There is ev-
idence that this locus affects the survival of SSc patients,
which suggests that it may influence not just the suscepti-
bility but also the severity of some SSc clinical complica-
tions such as lung involvement [32]. Remarkably, the minor
allele of IRF5 rs4728142, which is the most significant risk
IRF5 variant associated with SSc identified in the GWAS
by Radstake et al., is associated with longer survival in SSc
patients [7, 32].

IRF8 is another member of the IFN regulatory factor family
that has been associated with SSc. This gene was identified as
a genome-wide level SSc susceptibility factor in a phenotype-
directed GWAS analysis by Gorlova et al. [33]. In this study,
the minor allele of IRF8 rs11642873 was less frequent in the
lcSSc subset of patients than in the control group [33]. The
encoded protein has a relevant role in the innate immune re-
sponse carried out by myeloid cells and DCs and is also in-
volved in B cell biology [34].

There is evidence of the association of an additional
locus of this family, IRF7, with a protective effect for
ACA+ SSc [35]. It is noteworthy that IRF7 is consid-
ered the master regulator of type I IFN antiviral immu-
nity [36]. However, this association requires replication
by independent groups.

Interleukin-12 pathway

Interleukin-12 is produced by phagocytes, APCs, and B cells
after infection [37]. The main consequence of IL-12 produc-
tion is the secretion of IFNγ, with the consequent proinflam-
matory effects. IL-12 controls T cell expansion towards a Th1
phenotype to the detriment of the Th2 compartment [37].
Moreover, it has been implicated in the development of
auto-reactive Th1 cells in disease [37]. A variety of IL-12
pathway genes have been associated with ADs [38]. It has
been suggested that ADs can be divided into two clusters
based on their association with the IL-23 receptor (IL23R,
which belongs to the same cytokine family but involved in
Th17 amplification) or to IL12A (which encodes the IL-12
specific subunit, IL-12p35) [38]. This second group charac-
terized by a key role of IL-12 and/or IL-35 would encompass
SSc, which has several IL-12-related loci among its major
genetic associations.

In fact, the rs77583790 rare variant, located upstream the
IL12A locus, showed a genome-wide level risk association
with SSc, and especially with the lcSSc subset in the recent
Immunochip study byMayes et al. [18]. Moreover, the coding
genes for both chains in the IL-12 receptor (IL-12R), IL12RB1
and IL12RB2, have been associated with SSc [39, 40]. Al-
though the functional relevance of the IL12RB2-associated
variants (rs3790567 was found to be the lead SNP) is unclear,
the study by Bossini-Castillo et al. concluded that the ob-
served signal was independent from the nearby IL23R gene
[39]. This evidence supports the above-mentioned hypothesis
of the relevance of IL-12 in SSc. In the case of IL12RB1, the
results in López-Isac et al. point towards the rs436857 pro-
moter SNP as the most plausible causal variant for the region
[40]. The minor allele of rs436857 was a protective variant,
and in silico analysis correlated this allele with a lower expres-
sion of IL12RB1, concordant with a decrease in SSc risk due
to a lower response to IL-12 driven inflammation [40].

The STAT4 locus is another clear example of the IL-12
predominance in SSc. STAT4 is a well-known autoimmunity
susceptibility genetic factor, which encodes a transcription
factor that plays a central role in IL-12 triggered inflammation
[41]. Additionally, type I IFN can directly activate STAT4
which induces the production of IFNγ [42]. Therefore, this
molecule can act as link between the innate and the adaptive
immune responses [42]. In SSc, STAT4 was soon established
as an SSc risk factor by Rueda et al. and then confirmed in
different independent cohorts of European and Asian origin
[43–47]. It should be highlighted that STAT4 reached the
genome-wide significance level in the two SSc GWAS com-
prising white European individuals [7, 11]. Moreover, the
Immunochip study helped to narrow down the associated re-
gion, but the functional basis for this association is still un-
known. STAT4 knock-out mice seem to be protected from
inflammation-driven fibrosis in the SSc bleomycin-induced
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SSc model [48]. In addition, Dieudé et al. reported an effect of
the STAT4 risk variants on pulmonary fibrosis in SSc [44].
Therefore, this locus is considered as a promising therapeutic
target both for SSc and other ADs [41, 49].

Debris clearance, autophagy, and detoxification

One of the most relevant advantages of carrying out well-
powered GWASs or immune-focused studies, in which sever-
al loci are tested without a very stringent pre-selection criteria,
is the generation of new hypothesis that propose mechanisms
that may have been previously overlooked, but that contribute
to the onset or progression of ADs. In this context, the recently
published Immunochip study identified two new SSc genetic
risk factors, DNASE1L3 and ATG5, which included for the
first time debris clearance and autophagy, respectively, as
pathogenic mechanisms for SSc.

DNASE1L3, homologue to DNase I, is a single- and
double-stranded DNA endonuclease expressed by liver and
spleen macrophages [50, 51]. Mutations in the DNASE1L3
gene have been associated with familial forms of SLE, pre-
sumably due to an impaired elimination of the detritus of
apoptotic macrophages, which lead to the production of
auto-antibodies and immune imbalance [51]. This hypothesis
is in line with the association ofDNASE1L3 rs35677470 SNP
with ACA+ SSc patients [18]. The signal in this variant
reached a p value=4.25×10−31, and it is the most significant
non-HLA association with SSc described to date [18]. It
should be noted that the reported variant encodes a non-
synonymous change from arginine to cysteine in the 206th
position of the protein, which abolishes the activity of the
protein, probably due to an alteration in its tertiary structure
[52]. Moreover, the same association was replicated in an
independent Immunochip study in an Australian SSc cohort,
confirming the relevance of this locus in SSc [53]. Further-
more, the described association in the DNASE1L3 seemed to
explain the observed association in the nearby PXK locus,
identified by Martín et al. [54].

In the case of ATG5, involved in the elongation of
autophagosomes, the observed association corresponds to an
intronic region of unknown function, rs9373839 [18]. Au-
tophagy has emerged as an important piece of the immune
response process [55]. Autophagy-related molecules interact
with the immune cells at different levels such as the following:
T and B cell development and function, phagocytosis, antigen
presentation, cytokine secretion, etc [55]. Consequently, the
association of ATG5, with SSc introduces autophagy as a new
area of research and drug target exploration for this condition.

In addition, one of the suggestive loci in Allanore et al., the
PPARG (peroxisome proliferator-activated receptor gamma)
gene, was confirmed in a later SSc meta-GWAS and replica-
tion by López-Isac and collaborators [11, 56]. The risk variant
identified in this gene, the rs310746 SNP, did not reach the

genome-wide significance level in the overall analysis, but it
was confirmed in the replication phase [56]. Thus, it is possi-
ble that this gene, involved in the peroxisome detoxification
system with clear implications in fatty acid metabolism, has a
role in SSc. Remarkably, as pointed out by López-Isac et al.,
this molecule also has an antifibrotic effect and has been found
to affect dermal fibrosis in the SSc bleomycin mouse model
[56, 57].

T cell-associated loci

According to the evidence, the T cell compartment is a key
component of SSc pathogenesis. These lymphocytes appear in
fibrotic zones and show altered phenotype and numbers [58].
Therefore, it is not surprising that several genes expressed by
T cells belong to the SSc genetic network.

In fact, CD247, the encoding gene for the ζ-chain of the T
cell receptor (TCR), was identified as a novel SSc susceptibility
factor in the first GWAS in European descent SSc patients [7].
The protective association of rs2056626 observed by Radstake
et al. was independently replicated in European cohorts, which
confirms the implication of the TCR modulation in the disease
[7, 59]. On the other hand, the same signal was not observed in
Chinese individuals, underlining the high influence of ancestry
and the heterogeneity between patients in SSc [60].

The tyrosine-protein kinase CSK (or C-Src kinase or C-
terminal Src kinase) is an AD genetic marker that is involved
in the inactivation of the Src-family kinases, which participate
in signaling cascades such as the TCR pathway, B cell signal-
ing, and skin fibrosis [61, 62]. Interestingly, the rs1378942
SNP, which maps in a CSK intron, was identified in a GWAS
follow-up study by Martin et al. as a variant associated with
increased SSc risk [62].

Furthermore, the lymphoid tyrosine phosphatase (LYP)
encoded by PTPN22 can exert its negative regulation over the
TCR activation only when it is separated from CSK [63]. In-
terestingly, a non-synonymous variant in PTPN22, known as
C1858T, R620W, or rs2476601, has been associated with mul-
tiple ADs and prevents this protein-protein interaction [64]. Of
note, a meta-analysis of several SSc cohorts showed that this
variant, but not another AD-associated functional SNP
(rs33996649), has an impact on SSc susceptibility [65].

B cell-associated loci

SSc is characterized by immune imbalance in which also B
cells react in a pathogenic manner [66]. B cells are responsible
not only for auto-antibody production, but for cytokine release
that activates the immune response. BANK1 (B cell scaffold
protein with ankyrin repeats 1) was the first B cell marker gene
to be associated with SSc. The association of this locus, de-
spite being modest, has been proven to be consistent in differ-
ent studies [18, 67, 68]. What is more, BANK1 has been
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reported to have additive effects with STAT4, IRF5, and with
an additional B cell marker, BLK (B lymphocyte kinase) [67,
69]. The association in this locus is again modest, but consis-
tent in different European and Asian cohorts [18, 69–72].

TNF pathway and family

Abnormal levels of TNFα in SSc patient sera, leucocytes,
bronchoalveolar lavage fluid, and skin have been long report-
ed [73]. Moreover, TNFα inhibitors have been suggested as
possible treatment for SSc patients [74]. Thus, it is not surpris-
ing that several TNFα pathway genes have been reported to
be associated with SSc.

TNFAIP3, also known as A20, inhibits the proinflammato-
ry NF-κβ signaling after TNFα activation [75]. Moreover,
TNFAIP3 is also involved in apoptosis, IRF activation in re-
sponse to pathogens, and even in autophagy [75]. Several
studies have addressed the association of this locus with
SSc. Initially, the TNFAIP3 locus was found to be related to
SSc and especially to its severe phenotypes (dcSSc and pul-
monary involvement) [76]. Then, a peak of association in this
region was replicated in the Immunochip study by Mayes
et al. [18]. Furthermore, this gene has been found to be asso-
ciated with polyautoimmunity in SSc patients, and it has been
identified as a shared locus between SLE and SSc in pan-
meta-GWAS reports including both conditions [54, 77].

TNIP1 encodes the TNFAIP3-interacting protein 1, which
regulates TNFAIP3, the previously described TNF-induced
NF-κβ pathway inhibitor. Allanore et al. reported for the first
time the association of TNIP1 with SSc in a GWAS [11]. The
association of three highly linked SNPs in TNIP1 (rs2233287,
rs4958881, and rs3792783) as SSc risk factors was indepen-
dently replicated by Bossini-Castillo et al., and this locus was
reinforced as a genome-wide level genetic factor in the meta-
analysis [78].

TNFSF4 is a costimulatory molecule of the TNF family,
also known as OX40L. The binding of this ligand, expressed
on activated APCs and endothelial cells, to its receptor
(CD134 or OX40) promotes T cell and B cell proliferation
and survival [79]. Polymorphisms in the TNFSF4 gene have
been found to be associated with ADs [80], including SSc.
Several SNPs located in the TNFSF4 promoter have been
reported to be associated with SSc [81, 82]. However, contro-
versial phenotype specific associations were reported in both
studies. A later meta-analysis including a new cohort, con-
firmed an especially strong association of rs2205960 with
the ACA+ subset of patients [83].

Conclusion

International collaboration has allowed the analysis of the ge-
netic basis of SSc in powerful and reproducible studies.

Furthermore, the implementation of new genotyping plat-
forms and innovative biocomputational and statistical
methods have provided the scientific community with increas-
ing numbers of identified loci and new insights into the rela-
tionships that connect them. Genetic evidence supports a key
role of the immune system in SSc predisposition, particularly
with the IFN type I and IL-12 pathways and the deregulation
of several immune cell compartments. Nevertheless, future
approaches including even larger cohorts, deep clinical char-
acterization and longitudinal measures of the individuals, or
integrative analyses of genomic, epigenomic, transcriptomic,
and proteomic data (systems biology) will help to establish the
pathogenic mechanisms that result in the onset and progres-
sion of SSc. These advances would be especially valuable in
understanding the most severe clinical outcomes, such as lung
involvement, which remain widely unexplained. Eventually,
this knowledge would lead to the validation of SSc bio-
markers, the selection of drug targets, and the development
of precision medicine.
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