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Abstract Cells have a number of mechanisms to maintain
protein homeostasis, including proteasome-mediated degrada-
tion of ubiquitinated proteins and autophagy, a regulated pro-
cess of “self-eating” where the contents of entire organelles
can be recycled for other uses. The unfolded protein response
prevents protein overload in the secretory pathway. In the past
decade, it has become clear that these fundamental cellular
processes also help contain inflammation though degrading
pro-inflammatory protein complexes such as the NLRP3
inflammasome. Signaling pathways such as the UPR can also
be co-opted by toll-like receptor and mitochondrial reactive
oxygen species signaling to induce inflammatory responses.
Mutations that alter key inflammatory proteins, such as
NLRP3 or TNFR1, can overcome normal protein homeostasis
mechanisms, resulting in autoinflammatory diseases. Con-
versely, Mendelian defects in the proteasome cause protein
accumulation, which can trigger interferon-dependent
autoinflammatory disease. In non-Mendelian inflammatory

diseases, polymorphisms in genes affecting the UPR or au-
tophagy pathways can contribute to disease, and in diseases
not formerly considered inflammatory such as neurodegener-
ative conditions and type 2 diabetes, there is increasing evi-
dence that cell intrinsic or environmental alterations in protein
homeostasis may contribute to pathogenesis.

Cells must maintain a delicate balance between the demands
for protein synthesis and the need to avoid accumulation of
incompletely processed or unfolded proteins that can accumu-
late under normal conditions and evenmore sowhen cells face
a variety of stresses. The unfolded protein response (UPR) is
an evolutionarily conserved mechanism to maintain cellular
homeostasis by preventing the accumulation ofmisfolded pro-
teins in the endoplasmic reticulum (ER). Disturbed protein
folding in the ER is primarily detected by three transmem-
brane (TM) proteins: activating transcription factor 6
(ATF6), inositol-requiring transmembrane kinase/
endonuclease 1 (IRE1), and pancreatic ER kinase (PERK).
The combined action of these sensors reduces global protein
synthesis while upregulating the production of chaperone pro-
teins that can stabilize misfolded proteins. Apart from ER
homeostasis, the UPR can modulate other biological func-
tions, including apoptosis, protein secretion, and as we will
discuss further, inflammatory responses [1, 2].

A series of molecular changes are initiated in response to
cellular stressors in order to minimize damage caused by un-
favorable environmental conditions, such as temperature
changes, toxins (e.g., bacterial, chemical), radiation, mechan-
ical damage, nutritional status as well as incompletely folded
proteins intracellularly (Fig. 1). The UPR serves the adaptive
purpose of protecting the cell by activating a series of mech-
anisms including the induction of molecular chaperones to
assist with correct folding—e.g., heat shock proteins and
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foldases. Interestingly, there are a number of connections be-
tween the UPR and inflammatory signaling pathways. IRE1
initiates a transcriptional response to ER stress through trig-
gering alternative splicing of the mRNA encoding the XBP-1
bZIP-family transcription factor to remove a 26 nucleotide
unconventional intron and allow translation of the functional
transcription factor. Independently of XBP-1, IRE1 can also
activate the JNK kinase pathway, a well-known mediator of
cellular stress that can activate pro-inflammatory gene tran-
scription [3]. Partial activation of the UPR mediated by IRE1
can also be triggered by activation of the innate immune re-
ceptors, toll-like receptor (TLR) 2 and TLR4, which results in
activation of pro-inflammatory genes. When all reparative
UPR mechanisms are overcome, apoptosis can be triggered
through PERK and ATF6, which may dampen the inflamma-
tory response to cells dying due to overload of misfolded
proteins.

The major degradation mechanisms for misfolded/
unfolded proteins outside the secretory pathway include the
ubiquitin-proteasome and autophagy-lysosome systems. Ad-
dition of K48-linked polyubiquitin tags proteins for rapid
elimination by the proteasome. Autophagy involves encapsu-
lation of protein aggregates and organelles within

double membrane structures called autophagosomes.
Autophagosomes fuse with lysosomes resulting in the degra-
dation of their cargo. A number of abnormalities of the UPR,
proteasome, and autophagy-lysosome pathways have been
implicated in the pathogenesis of several diseases, including
neurodegenerative and cardiovascular disease [4, 5]. In this
review, we will discuss the role of misfolded proteins and
altered protein homeostasis in autoinflammatory diseases,
which has emerged as a theme in the pathogenesis of these
diseases over the last few years [6].

Autoinflamamatory diseases linked to disorders
in protein misfolding

Autoinflammatory disease is defined as self-directed inflam-
mation distinguishable from autoimmune disease by the ab-
sence of high-titer autoantibodies or antigen-specific T cells
and involvement of tissue-specific factors [7]. Although orig-
inally conceptualized as distinct disease states of aberrant in-
nate and adaptive immunity respectively, it is now widely
accepted that the two categories exist along a continuum, with
monogenic autoinflammatory and autoimmune diseases at

Fig. 1 Effects of protein misfolding that can lead to disease. Misfolded
proteins are potentially highly dangerous and may accumulate leading to
cell toxicity or inappropriate/excessive cell signaling. Cells therefore
attempt to restore protein homeostasis by activating one or more of
three major branches of the UPR; IRE1a, PERK, and/ or ATF6; which
regulate genes involved in protein production, degradation, and/or
refolding. Failure of these mechanisms often results in cell apoptosis;

however, chronic UPR activation may promote pathological innate
immune activation and defective autophagy. Key: TRAPS tumor
necrosis factor receptor-associated periodic syndrome, IRE1α inositol-
requiring enzyme 1-alpha, UPR unfolded protein response, PERK
protein kinase-like endoplasmic reticulum kinase, ATF6 activating
transcription factor 6, XBP1 X-box binding protein 1, HLA-B27 human
leukocyte antigen B27, RA rheumatoid arthritis
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opposite extremes of the spectrum [8]. Various pathological
mechanisms are implicated in the monogenic autoimmune
diseases described to date, including inappropriate
inflammasome activation, proteasome deficiency, generation
of harmful reactive oxygen species (ROS), and, more recently,
the UPR and autophagy processes [9]. These latter inter-
connected cellular environmental responses are currently only
described in a select number of autoinflammatory diseases
(Table 1), the most notable being tumor necrosis factor
(TNF) receptor-associated periodic syndrome (TRAPS).

TRAPS is an autosomal dominant monogenic
autoinflammatory disease characterized by periodic fevers,
abdominal pain, arthralgia, myalgia, migratory dermatitis

and periorbital edema and raised inflammatory markers due
to loss of function mutations in the TNF receptor 1 (TNFR1)
gene located on Ch12p13.31 [9–11]. The TNFR1 is a
homotrimeric receptor complex composed of an extracellular
binding domain comprised of four cysteine-rich domains
(CRDs), a transmembrane domain, and an intracellular death
domain [9]. Currently, 141 TNFR1 mutations are registered
on the INFEVERS database for TRAPS, most being mis-
sense mutations affecting exons 2–4 which form the CRDs
[12]. TRAPS disease-causing mutations are clinically het-
erogeneous. Mutations in the CRDs are often associated
with severe disease, such as the T50M and C88R muta-
tions, whereas other mutations may be less severe; for

Table 1 Diseases associated with defects in protein homeostasis. For each disease, the genes and protein homeostasis pathways which have been
implicated in pathogenesis are listed

Causative/
associated gene

UPR
activation

Defective
autophagy

Defective
proteasome

Oxidative stress/ROS

Monogenic autoinflammatory diseases

TNF receptor-associated periodic
syndrome (TRAPS)

TNFRSF1A ✓ ✓ ✓

Familial Mediterranean fever (FMF) MEFV ✓ ✓

Sideroblastic anemia with
immunodeficiency, fevers,
and developmental delay (SIFD)

TRNT1 ✓ ✓

Mevalonate kinase deficiency (MKD) MVK ✓ ✓

Proteasome-associated autoinflammatory
syndromes: JMP, NNS, CANDLE, JASL

PSMB8 ✓ ✓

Polygenic inflammatory diseases

Inflammatory bowel disease (IBD):
HLA-B27 associated and Crohn’s disease

ATG16L ✓ ✓ ✓

Crystal arthropathies: gout and calcium pyrophosphate
dehydrate (CPPD)

✓ ✓

Rheumatoid arthritis (RA) ✓ ✓ ✓

Diseases with an inflammatory component

Type 2 diabetes (T2D) IAPP, APP ✓ ✓ ✓

Alzheimer’s disease (AD) APOE, APP, ADAM10 ✓ ✓ ✓

Parkinson’s disease (PD) PS1, PS2, LRRK2,
SNCA, Parkin, DJ-1, PINK1,
HTRA2

✓ ✓ ✓ ✓

Amyotrophic lateral sclerosis (ALS) SOD1, TDP-43, PDI ✓ ✓ ✓

Huntington’s chorea HTT ✓ ✓

Age-related macular degeneration (AMD) ✓ ✓ ✓

Malignancy (e.g., multiple myeloma) ✓ ✓ ✓ ✓

Cardiovascular diseases ✓ ✓ ✓

Chronic pancreatitis ✓ ✓

TNFRSF1ATNF receptor super family, member 1A; MEFV: Familial Mediterranean fever gene; TRNT1 tRNA nucleotidyltransferase, CCA-adding 1;
JMP joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced childhood-onset lipodystrophy;NNSNakajo-Nishimura syndrome;
CANDLE chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature; JASL Japanese autoinflammatory syndrome with
lipodystrophy; MVK mevalonate kinase; PSMB8 proteasome subunit beta type 8; IAPP islet amyloid polypeptide; APP amyloid precursor protein;
APOE apolipoprotein E; ADAM10A disintegrin and metalloproteinase domain 10; PS1 preselenin 1;PS2 preselenin 2; LRRK2 leucine rich repeat kinase
2; SNCA synuclein alpha; PARKIN aka Parkinson protein 2 (PARK2); PINK PTEN-induced putative kinase 1; DJ-1 oncogene DJ1, aka Parkinson
protein 7 (PARK7); HTRA2 HTRA serine peptidase 2; SOD1 superoxidase dismutase 1; TDP-43 transactive response DNA binding protein 1; PDI
protein disulfide isomerase; HTT huntingtin
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example, R92Q and P46L variants may be associated with
mild disease or can be clinically asymptomatic and have a
1–5 % prevalence in the population [13]. Although the
inflammatory features of disease suggests that TRAPS-
linked TNFR1 mutations should be gain-of-function,
knock-in mice homozygous for TRAPS mutations do not
manifest a TRAPS disease phenotype but are resistant to
lipopolysaccharide (LPS)-induced septic shock [14]. In
keeping with these reports, the majority of TRAPS-causing
mutations observed to date are heterozygous, suggesting
that expression of both the functional and mutant receptor
is required for TRAPS pathogenesis [9].

There are a number of mechanisms by which the mutated
TNFR1may lead to inflammatory disease [9, 13]. The TNFR1
is present physiologically in both the soluble (sTNFR1) and
membrane (mTNFR1) bound form, both of which are de-
creased in TRAPS patients [15–20]. These observations sug-
gest either defective receptor shedding or defective trafficking
of mutant receptors to the cell surface. Most probably, the
latter mechanism plays a significant role in TRAPS pathogen-
esis, given that accumulation of mutant TNFR1 can be found
in the ER of mutant TNFR1 transfected cell lines associated
with increased ER stress [20]. It has been postulated that TNF
release stimulated by UPR activation may then signal through
the wild-type TNFR1, generating an autocrine positive feed-
back loop enhancing TNF production [21, 22]. It is also con-
ceivable that mutant intracellular TNFR1 may still stimulate
TNF production by activation of their intracellular death do-
mains independent of receptor-ligand binding, particularly as
this domain is rarely mutated in TRAPS. However, clear ev-
idence for such a mechanism is lacking [18].

Upregulation of UPR response genes has been reported in
TRAPS patients. A study of 16 TRAPS patients with different
mutations, 22 healthy controls (HC) and HEK293 wild-type
and mutant transfectants, detected increased splicing of X-box
binding protein 1 (sXBP1), a key UPR transcription factor,
alongside increased protein kinase (PK)-like endoplasmic re-
ticulum kinase (PERK) phosphorylation in TRAPS patient
monocytes and in HEK293 mutants compared with HC and
wild-type HEK293 cells [23]. Intriguingly, six other UPR
genes tested were not differentially upregulated, and activa-
tion of UPR genes downstream of sXBP1 was not observed
between TRAPS and peripheral blood mononuclear cells
(PMBCs) from human controls. Instead, the authors proposed
amechanism of non-canonical XBP1 splicing induced by LPS
ligand acting on its receptor, TLR4, and TRAPS monocytes
are hyper-responsive to LPS. These results are consistent with
previous studies which identify a role for sXBP1 in TLR re-
sponses [24]. Interestingly, XBP1 binding sites were also
identified in the TNF and IL-6 gene promoters [24];
thus, XBP1 in TRAPS could also contribute to pro-
inflammatory cytokine production independent of canon-
ical UPR pathways.

Oxidative stress has also emerged as another trigger of
enhanced inflammatory responses in TRAPS. Increased IL-6
production in response to LPS stimulation in cells with TRAP
S-associated TNFR1 mutations could be reversed with anti-
oxidant treatment [23]. Increased reactive oxygen species
(ROS) was observed in TRAPS patient cells and cells
transfected with TRAPS-associated TNFR1 at baseline and
after stimulation with LPS [25]. Specific inhibition of mito-
chondrial ROS (mtROS), but not nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidases (NOX), reduced pro-
inflammatory cytokine production. Increased MAPK activity,
possibly through inactivation ofMAPK phosphatases through
oxidation of their catalytic cysteine residues, contributed to
enhanced transcription of inflammatory genes [25]. Enhanced
activation of NF-κB has also been observed in TRAPS patient
cells [26]. Upon activation, NF-κB translates to the nucleus,
where it upregulates target gene expression, including genes
involved in the production of the pro-inflammatory cytokines,
interleukin (IL)-1β, IL-6, and TNF. The importance of IL-1β
in TRAPS pathogenesis is reflected in the strong clinical re-
sponse of TRAPS patients to IL-1β antagonists [27]. The
increased IL-6 production in response to LPS in TRAPS cells
[23, 25] also raises the possibility that IL-6 antagonists may
also have therapeutic benefit in TRAPS.

Defective autophagy has also been reported in TRAPS
monocytes. In one study, autophagy, but not proteasome inhi-
bition, increased intracellular mutant and wild-type TNFR1
intracellular aggregation [28]. Moreover, rescue of TNFR1
membrane localization using geldanamycin restored normal
ultra-structural appearance in TRAPS monocytes and mem-
brane localization of TNFR1 [28]. This rescue was reversed
by the autophagy inhibitor 3-methyladenine (3-MA), suggest-
ing that autophagy defects could be responsible for the failure
to clear intracellular mutant TNFR1 aggregates in TRAPS
monocytes [28]. Autophagy is also important for the degrada-
tion of p62, a protein involved in various processes including
ubiquitination, and intracellular aggregate formation [29, 30].
Increased levels of p62 protein, but not mRNA, are reported in
certain TRAPS mutations, suggesting defective clearance of
p62 by autophagy rather than increased expression of p62
genes [28]. p62 is involved in both caspase 8 activation and
apoptosis and also in receptor-interacting protein (RIP) acti-
vation, resulting in RIP-dependent I kappa B kinase (IKK), I
kappa beta (IκB), and ultimately NF-κB activation [29]. How-
ever, p62 also increases ubiquitination and Nod-like receptor
protein 3 (NLRP3) inflammasome degradation, which would
be expected to have anti-inflammatory effects and promote the
clearance of intracellular TNFR1 aggregates. One hypothesis
to explain this paradox is that p62-mediated activation of RIP
mitigates these beneficial effects [29]; however, this re-
mains to be validated experimentally and, altogether,
any potential role for autophagy in TRAPS, either inde-
pendent or via its effects on p62, remains to be clearly
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defined. Nonetheless, current observations point towards
a complex model for TRAPS pathogenesis whereby au-
tophagy, the UPR, and ROS-mediated inflammatory
pathways operate synergistically to enhance pro-
inflammatory cytokine production.

Protein misfolding may also play a role in other
autoinflammatory diseases which do not directly involve
nod-like receptors (NLRs) (Table 1). Mevalonate kinase defi-
ciency (MKD) is a monogenic disease associated with a defect
in isoprenoid synthesis with both autoinflammatory and auto-
immune features. MKD patients exhibit periodic fevers and
hyper IgD, and PBMCs hypersecrete IL-1β. The ER stress in
MKD has been linked to defective mitophagy, and neutraliza-
tion of mtROS inMKD reduces inflammasome activity. Inter-
estingly, MKD cells were resistant to reduction in IL-1β pro-
duction by the autophagy activator rapamycin, suggesting that
the isoprenoid MKD defect may activate the inflammasome
throughmechanisms not regulated by autophagy [31]. Genetic
defects in the proteasome itself have been recently found to
cause autoinflammatory disease. Loss of function mutations in
PSMB8, which encodes the β5i immunoproteasome subunit,
have been associated with a clinical syndrome characterized
by systemic inflammation, neutophilic lipodystrophy, and, in
older patients, cardiac and hematologic abnormalities [32–34].
Although the immunoproteasome plays a role in processing
peptides for antigen presentation to T cells, most of the abnor-
malities found in this syndrome are in innate immunity. Inter-
estingly, rather than IL-1β, type I interferon-induced gene
expression and target proteins are highly induced in this syn-
drome, perhaps because accumulation of unfolded protein
fragments normally degraded by the proteasome induce an
interferon response [35, 36].

A role for autophagy in regulating IL-1β secretion
and IL-1β-related autoinflammatory diseases

The secretion of pro-inflammatory cytokine, IL-1β requires
transcriptional activation of the IL-1β gene and compo-
nents of the NLRP3 inflammasome: a complex of the
NLRP3 protein, also known as cryopyrin; caspase-1;
apoptosis-associated speck-like protein containing a CARD
(ASC) and CARDINAL, a CARD containing protein.
Caspase-1 cleaves IL-1β into its active form. Innate im-
mune stimuli acting through extracellular TLRs and the
intracellular NLRs are major activators of transcription of
NLRP3 inflammasome components. Diverse particulate
stimuli including crystalline forms of uric acid,
cholesterol, and ATP acting through membrane receptors
and dATP acting directly on the NLRP3 protein are
critical for formation of an active inflammasome and
allowing IL-1β release from the cell, an event which is
also linked to cell death [37, 38]. Activated inflammasomes

are visible as microscopic “specks” within the cytosol, and
structural studies have shown that they can polymerize into
large oligomers with potentially thousands of subunits [39].
Gain-of-function mutations in the NLRP3 gene cause de
novo and inherited autoinflammatory diseases collectively
known as cryopyrin-associated periodic syndromes (CAPS)
[40]. Pathogenic mutations, predominantly found in exon 3,
affect the nucleotide binding domain (NBD) within NLRP3
leading to spontaneous oligomerization and a reduced re-
quirement for the second stimulus, ATP, for IL-1β secretion
after activation by innate immune stimuli [41]. NLRP3 mu-
tations lead to a spectrum of diseases ranging from the
relatively mild familial cold autoinflammatory syndrome
(FCAS), through Muckle-Wells syndrome (MWS), which
includes cochlear inflammation leading to hearing loss, to
the neonatal-onset multisystem inflammatory disease
(NOMID), in which multi-organ inflammation including
sterile meningitis can lead to neurological impairment and
can be fatal without treatment [42–46]. It has recently be-
come apparent that autophagy plays a physiological role in
disposing of the components of the activated NLRP3
inflammasome through targeting of ubiquitinated compo-
nents to the inflammasome and recruitment of the autoph-
agy adapter p62 [47–49]. These studies reveal a physiolog-
ical function for autophagy in controlling inflammation.
Although CAPS patients can be successfully treated with
IL-1 receptor (IL-1R) antagonists [50, 51], whether activa-
tion of autophagy would be another avenue for treatment
remains an open question.

Recently, activating mutations in the gene coding for
another NLR, NLRC4, have been associated with an
autoinflammatory disease that differs from CAPS [52,
53]. Patients with these NLRC4 mutations exhibited
early-onset spontaneous fevers, gastrointestinal (GI) in-
flammation, urticaria, splenomegaly, and malaise. These
symptoms are consistent with macrophage activation
syndrome (MAS), a severe systemic inflammatory dis-
ease involving decreased erythrocytes, leukocytes and
platelets, abnormal natural killer (NK) cell function, el-
evated levels of triglycerides and ferritin and recurrent
fevers. Overexpression of the NLRC4 mutants resulted
in constitutive activation of the inflammasome and
caspase-1 leading to elevated levels of IL-1β and IL-
18. In contrast to CAPS but like MAS, monocytes and
macrophages with the NLRC4 mutations showed hyper-
secretion of IL-18 [52]. Romberg et al. showed that
NLRC4 mutant macrophages also exhibited increased
apoptosis [53]. Treatment with IL-1 blocking agents re-
sulted in partial amelioration of symptoms [52]. Given
the role of autophagy in regulating IL-1β secretion, it
could be a potential additional therapeutic target in
treating the autoinflammation in patients with disease
due to NLRC4 mutations.
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Protein misfolding and proteotoxic stress
in non-Mendelian inflammatory diseases

Increasing evidence suggests that in polygenic inflammatory
diseases, autoinflammation may be triggered by misfolded
proteins, defects in the UPR, or protein degradation
pathways. Ankylosing spondylitis (AS) is a prototypic
spondyloarthropathy involving immune dysregulation, chron-
ic inflammation, and a strong genetic predisposition. Many
genes confer susceptibility to AS, but the HLA-B27 class I
allele has by far the strongest association, with over 90 % of
AS patients carrying this allele. Rather than functioning in its
classical role to present specific peptides to CD8+ T cells,
evidence has been accumulating to implicate misfolding of
HLA-B27 heavy chain as a pathogenic factor in AS. HLA-
B27 molecules tend to misfold [54, 55], and after induction of
class I expression with cytokines such as interferons, HLA-
B27 can induce ER stress and activate the UPR leading to
production of IL-6, TNF, IL-23, IFN-β, and possibly IL-1α
[56, 57]. In AS patients, ileal biopsies revealed abundant
misfolded/unfolded MHC class 1 heavy chains co-localizing
with the E3 ubiquitin ligase, synoviolin/HRD1 [58]. Studies
using rodent models of AS showed that activation of UPR in
macrophages led to increased levels of IL-23 and upregulation
of Th-17 in CD4+ T cells within inflamed tissue [59]. Other
studies have implicated autophagy defects in the hypersecre-
tion of IL-23 in the gut but not in synovium or PBMCs from
HLA-B27+ patients with AS [58, 60]. Systemic overexpres-
sion of IL-23 in mice leads to IL-17 production by innate-like
Tcells present in the enthesis, the bone-tendon interface where
much of the inflammation begins in AS, leading to a striking
phenocopy of many of the clinical features of AS [61]. Taken
together, these data implicate HLA-B27 misfolding with the
induction of the UPR as a pathogenic factor in AS upstream of
inflammatory cytokine production.

Polymorphisms in the autophagy regulatory gene,
Atg16L1, have been associated with Crohn’s disease, a sub-
type of inflammatory bowel disease [62]. ATG16L1 deficient
macrophages produce excessive amounts of cytokines after
stimulation with LPS [63]. Partial deficiency of Atg16L1
can lead to reduced production of antimicrobial peptides by
Paneth cells in the intestine, impairing antimicrobial immunity
which may predispose to intestinal inflammation [64]. The ER
stress signal transducing protein XBP1 is critical in regulating
the survival of Paneth cells. In the DSS-induced colitis model,
conditional deletion of Xbp1 in the intestinal epithelium re-
sulted in Paneth cell disappearance and increased susceptibil-
ity to colitis due to impaired production of antimicrobial pep-
tides [65]. These genetic and functional data build a strong
case that in the intestine, autophagy and the UPR are impor-
tant for the survival and function of Paneth cells, and when
these processes are defective, inflammatory bowel disease can
ensue due to defects in control of commensal intestinal flora.

Gout is a crystal arthropathy characterized by the deposi-
tion of monosodium urate (MSU) crystals in joints and tissues,
leading to inflammation and significant morbidity. Uric acid
released by dying cells interacts with extracellular sodium to
formMSU,which acts as a danger signal. The phagocytosis of
cell debris combined with the MSU signal induce maturation
and activation of dendritic cells [66], possibly also caused by
MSU interactions with CD14, an adaptor molecule for TLR2
and TLR4 [67]. MSU and calcium pyrophosphate dehydrate
(CPPD) crystals can induce activation of the NLRP3
inflammasome resulting in production of IL-1β [68–70]. In
addition to activating the NLRP3 inflammasome, MSU crys-
tals can also activate autophagosome formation and impair
proteasome function resulting in p62 accumulation. Inhibition
of autophagy through siRNA against ATG16L1 was shown to
increase caspase-1 activation and IL-1β production [71]. Pe-
ripheral neutrophils from healthy patients treated with MSU
crystals or synovial fluid from patients with active gout lead to
neutrophil extracellular trap (NET) formation. MSU-induced
NET formation was dependent on IL-1β and phagolysosomal
fusion [72, 73]. Combined with the previously discussed find-
ings that autophagy helps to terminate activation of the
NLRP3 inflammasome, these results suggest that autophagy
may help to control inflammation in environmentally trig-
gered IL-1β-related autoinflammatory diseases, such as gout.

Rheumatoid arthritis (RA) is a polygenic autoimmune dis-
ease with a significant inflammatory component. There have
been a number of interesting connections identified in RA
between aberrant UPR and increased inflammatory responses.
As in TRAPS, synovial macrophages, synovial fibroblasts,
and PBMCs from RA patients were found to have increased
Xbp1 splicing but not increased expression of classical UPR
response genes, leading to increased production of pro-
inflammatory cytokines, IL-6 and TNF [74, 75]. Endogenous
TLR ligands which have been found in the joint, such as
SNAPIN, may act to induce this aberrant Xbp1 splicing and
sustain inflammatory responses [76].

Proteotoxic stress in the pathogenesis of diseases not
formerly considered inflammatory

The proteotoxic effects of amyloid-like deposits are a hall-
mark of many diseases, including type II diabetes (T2D) and
neurodegenerative diseases such as Parkinson’s disease,
Alzheimer’s disease, and age-related retinal degeneration. In-
teresting links have been made between insulin insensitivity,
obesity, ER stress, and chronic inflammation in the pathogen-
esis of T2D [77–80]. T2D is a multifactorial disease charac-
terized by insensitivity of target organs such as skeletal mus-
cle, liver and adipose tissue, to the effects of insulin. Obesity
develops because insulin resistance leads to increased lipoly-
sis and abnormal fat deposits, decreased glucose uptake in
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skeletal muscle, and enhanced gluconeogenesis in the liver.
Adipose tissue, which consists of preadipocytes, adipocytes,
and vascular cells, has important endocrine functions includ-
ing the secretion of adipokines (TNF, IL-6, leptin,
adiponectin, and more) and monocyte chemoattractant protein
1 (MCP-1) [80, 81]. During inflammation, infiltrating macro-
phages are found in adipose tissue. Studies show that markers
of ER stress and UPR are elevated in tissues from diabetic
and/or obese humans and rodents [78, 82–84]. The enormous
adipocyte size, accumulation of lipids, and increased cellular-
ity of adipose tissue in obesity are thought to contribute to
local tissue hypoxia [85]. Hypoxia induces ER stress and
PERK-dependent eIF2α phosphorylation leading to protein
synthesis inhibition [86]. In hypertrophic adipocytes, ER
stress upregulates UPR proteins, including CHOP and
GRP78, the inflammatory and apoptotic pathways [78, 87].
Analysis of Xbp1+/− mice on a high-fat diet revealed persis-
tent hyperinsulinemia, hyperglycemia, elevated C-peptide,
and suppression of insulin signaling in adipocytes [78]. Thus,
ER stress may reinforce insulin resistance and may lead to
pro-inflammatory cytokine secretion by adipocytes. TNF
and IL-6 have been shown to activate ER stress in adipocytes,
and subclinical inflammation has been observed in T2D and
insulin resistance states [88]. Obese mice lacking either TNF
or its receptors, TNFR1 and TNFR2, showed decreased insu-
lin resistance and low blood levels of free fatty acids [88]. In a
study of patients with obesity-induced insulin resistance, adi-
pose tissue expression of TNF and IL-6 mRNA was signifi-
cantly elevated, and in vitro stimulation of human adipocytes
with TNF caused increased PPARβ/δ mRNA production but
decreased its target genes and DNA binding activity in a
NF-κB dependent manner [89]. In skeletal muscle cells,
PPARβ/δ agonism inhibited palmitate-induced ER stress
and significantly decreased levels of pro-inflammatory cyto-
kines, TNF and IL-6, in an AMPK-dependent manner [90].
The inflammatory environment in T2D could be abro-
gated by increased activity of PPARβ/δ target genes
such as SIRT1 [91, 92].

Emerging evidence suggests that IL-1β may also play an
important role in T2D pathogenesis. Pancreatic β cells secrete
insulin and islet amyloid polypeptide (IAPP), a major compo-
nent of extracellular amyloidβ aggregates which are frequent-
ly found in the pancreas of diabetic patients. In primed den-
dritic cells, IAPP oligomers can activate the NLRP3
inflammasome leading to production of IL-1β [93]. IL-1β
secretion was significantly decreased with exposure to inhib-
itors of caspase-1, glucose metabolism, and lysosomal acidi-
fication. Glyburide, a sulfonylurea used in T2D treatment,
also inhibited IL-1β production [93]. Soluble IAPP oligo-
mers, and not the higher order fibrils, appear to be critical
for IL-1β production. One rodent model of islet amyloid de-
position is the transgenic mouse expressing human IAPP
(IAPP-TG) on a high-fat diet for 1 year [94]. Pancreatic islets

from IAPP-TG mice showed regions of decreased insulin,
abundant amyloid β deposits, and increased intracellular IL-
1β. The amyloid β protein co-localized with IL-1β within
IAPP-TG islets. However, there was no significant difference
in the proportion ofmacrophages in islets from IAPP-TGmice
versus wild-type controls. A functional analysis of phagocytes
isolated from pancreatic islets in IAPP-TGmice could provide
definitive proof of which cells (beta cells, macrophages, or
dendritic cells) produce IL-1β. Studies using IL-1 antagonists
have been shown to ameliorate insulin resistance and obesity
[95, 96], and this collectively suggests an autoinflammatory
component in T2D.

Proteotoxic stress and inflammation have been found to
play an increasingly essential role in the initiation and/or pro-
gression of neurodegenerative diseases. Parkinson’s disease
(PD) is characterized by chronic inflammation, neurotoxicity,
progressive loss of dopaminergic neurons culminating in a
movement disorder, and progressive dementia. PD pathogen-
esis involves genetic abnormalities, protein misfolding, defec-
tive mitophagy, and neuroinflammation. Loci multiplication
and mutations in the α-synuclein gene, SNCA, predispose to
autosomal dominant PD [97–99]. However, most patients
have sporadic forms of PD in which aging and inefficient
proteasome degradation results in accumulation of α-
synuclein and inflammation [100–104]. Misfolded α-
synuclein accumulates into cytoplasmic protein aggregates
called Lewy bodies in presynaptic neurons [105, 106]. Addi-
tional components of Lewy bodies include ubiquitin, the E3
ubiquitin ligase, Parkin, and the α-synuclein interacting pro-
tein, synphilin-1. Synphilin-1 can be ubiquitinated by Parkin
leading to its degradation [107].

In a rat model of PD, overexpression of humanα-synuclein
in the substantia nigra leads to ER stress and upregulation of
the UPR response. The study showed a trend towards in-
creased splicing of XBP1, with significantly increased levels
of ATF4, pATF6, and CHOP, indicating activation of the
PERK and ATF6 pathways and their culmination in apoptosis
[108]. Overexpressed human α-synuclein was found to asso-
ciate with GRP78/BiP leading to its effective removal and
prevention of neuronal apoptosis [108]. In addition to the pro-
teasome and UPR, autophagy has been implicated in the deg-
radation of α-synuclein and PD pathogenesis [109, 110]. Ag-
ing neurons exhibit increasingly impaired chaperone-
mediated autophagy (CMA). Interestingly, CMA has been
shown to degrade α-synuclein [103]. However, the mutant,
oligomeric or dopamine-treated α-synuclein prevents its
CMA-mediated degradation by blocking uptake into lyso-
somes [111, 112]. Winslow et al. showed that α-synuclein
overexpression inhibited autophagosome formation in au-
tophagy [113]. Defective mitochondria accumulate in aging
neurons leading to neuronal toxicity and loss. Mitophagy is
another form of autophagy that selectively degrades these de-
fective mitochondria. Parkin reduces ER stress-mediated
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mitochondrial damage by preventing excessive fragmentation
and induction of autophagy [114]. Caspase-1 cleavage and
Parkin activation could generate a positive feedback loop
whereby increased ER stress leads to increased caspase-1 me-
diated cleavage of Parkin. Thus, the protective effects of
Parkin are suppressed [115]. Neuroinflammation observed in
PD is attributed to activated microglia, which are abundant in
the postmortem brains of PD patients [116, 117]. CSF and
brain tissue from PD patients have elevated TNF and IFN-γ
levels [118, 119]. Rodent models of chronic LPS infusion lead
to brain inflammation with subsequent delay and selective
degeneration of dopaminergic neurons [120]. Peripheral LPS
administration resulted in TNF production, which crosses the
blood-brain barrier via TNF receptors, leading to neuroinflam-
mation [121, 122]. The microglia in PD express pro-
inflammatory cytokines, such as IL-1β, TNF, nitric oxide
(NO), and ROS [120, 123–125]. These studies suggest that
the establishment and maintenance of an inflammatory micro-
environment and failure of protein degradation pathways may
together speed the destruction of dopaminergic neurons in PD.

Alzheimer’s disease (AD) is characterized by the progres-
sive accumulation of extracellular amyloid β plaques, intra-
cellular neurofibrillary tau, neuroinflammation, extensive
neuronal cell death, and dementia [126]. Increased expression
of GRP78 was found in brain tissue of AD patients at the early
pathological stage of AD compared to controls without de-
mentia [127]. In addition, neurons from AD patients have
increased phosphorylated PERK, IRE1α, and eILF2α [128,
129]. The activated UPR was enhanced in neurons with a
diffuse pattern of phosphorylated tau [128], suggesting that
the UPR activation requires tau but precedes formation of
neurofibrillary tau tangles. Microglia and infiltrating mononu-
clear phagocytes are recruited to amyloid β plaques, become
activated and phagocytose amyloid β leading to activation of
the NLRP3 inflammasome and production of pro-
inflammatory cytokines, specifically IL-1β [130–134]. AD
patients and rodent models showed increased IL-1β expres-
sion in microglia isolated from amyloid β plaques and in-
creased CSF levels of IL-1β [135]. Studies show that like
PD, autophagy may prevent the accumulation of amyloid β
plaques in AD. Brain tissue from AD patients shows de-
creased levels of Beclin-1 and mice deficient in Beclin-1 ex-
hibited amyloidβ accumulation and neurodegeneration [136].
Lentiviral expression of Beclin-1 in these mice significantly
decreased the amyloid β-meditated pathology [136]. Thus,
inefficient UPR combined with dysfunctional autophagy lead
to failed clearance of misfolded protein aggregates, subse-
quent activation of microglia, and significant neuroinflamma-
tion in AD.

Age-related macular degeneration (AMD) is characterized
by progressive destruction of retinal photoreceptors in the
macula and retinal pigment epithelium (RPE) resulting in
blindness [137, 138]. AMD is associated with multiple risk

factors including age, race, genetic susceptibility, smoking,
obesity, and high blood pressure [137, 139–141]. Proposed
mechanisms of AMD pathogenesis include chronic oxidative
stress, ER stress, light damage, increased polyunsaturated fat-
ty acids, abnormal phagocytosis, complement activation, and
inflammation [142–152]. In human RPE, induction of oxida-
tive stress by H2O2 or photooxidation led to proteasome inhi-
bition and accumulation of polyubiquitinated proteins and ag-
gregates [152]. Under conditions of proteasome inhibition, the
CMA pathway plays an important role in the removal of ac-
cumulated proteins [153]. Interestingly, inhibition of both the
proteasome and CMA resulted in increased cell death. Thus,
retinal cells require protective measures to ensure cell surviv-
al. In a murine model of light-induced retinal degeneration,
Xbp1 deficiency caused a decrease in antioxidant genes, su-
peroxide dismutase (SOD) 1, SOD2, and glutathione syn-
thase. In addition, increased oxidative stress and susceptibility
to oxidative damage were observed. This study showed that
XBP1 has an antioxidant function that may facilitate cell sur-
vival and prevent retinal degeneration in AMD [154].

The early stage of macular degeneration in AMD is char-
acterized by local inflammation leading to deposition of
drusen, an extracellular debris-like material that accumulates
beneath RPE cells and Bruch’s membrane [155]. Studies show
that drusen contains oxidized proteins, complement and amy-
loid β. Oxidative stress causes modifications in drusen pro-
teins that may facilitate the formation of drusen. Complement
pathway dysregulation is thought to play a critical role in the
formation of drusen [142, 144, 148]. An analysis of drusen
components showed an abundance of regulatory proteins of
the common complement pathway. In addition, RPE cells
overlying drusen had increased cytoplasmic levels of comple-
ment inhibitors. Similar to T2D and Alzheimer’s disease,
drusen consists of amyloid beta, a pro-inflammatory molecule
that also activates complement [142] and the NLRP3
inflammasome [130, 132]. Drusen components, complement
C1q and oxidized lipids, activate the NLRP3 inflammasome
resulting in increased production of the pro-inflammatory cy-
tokines, IL-1β and IL-18 [156]. IL-18 is thought to protect
against AMD by inhibiting vascular endothelial growth factor
(VEGF) and thus preventing the pathological neovasculariza-
tion in wet AMD. These studies show that drusen biogenesis
and maintenance is dependent on an inflammatorymilieu with
autoinflammatory features.

The interplay of the UPR and various metabolic pathways
has raised the possibility that targeted intervention at key
points in specific metabolic pathways could be effective in a
range of autoinflammatory pathologies. sXBP1 is a direct
transcriptional activator of the hexosamine biosynthetic
(HBP) pathway, via sXbp1-dependent transcription of genes
coding for key, rate-limiting enzymes [157]. This UPR-HBP
axis is triggered in a variety of stress conditions, including
ischemia-reperfusion (I/R) injury, where acute stimulation of
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sXbp1 confers robust cardio-protection in part via induction of
HBP. A separate study of I/R injury showed that ischemic
accumulation of succinate controls reperfusion injury through
mtROS [158]. Therefore, limiting succinate accumulation has
marked potential for management of a range of conditions,
including autoinflammatory diseases resistant to standard
therapies, as well as more widespread conditions, where dys-
regulation of the UPR underlies pathogenesis. Blockade of
XBP1 splicing by inhibition of IRE1α has shown promise in
the treatment of myeloma [159]. Collectively, these studies
reveal that the effects of sXbp1 are very context dependent
and that the UPR may play a key role to protect cells under
stress in addition to the more publicized contribution to caus-
ing disease.

Conclusions and implications for future therapies

The diverse diseases arising from protein misfolding, defec-
tive clearance, and autoinflammation form a continuum in
which cumulative cellular stress results in significant pathol-
ogy and, in some cases, severe disease and death. In TRAPS
and MKD deficiency, accumulation of mutant proteins leads
to ER stress, UPR activation, abnormal signaling, and
autoinflammation. In CAS and MAS, NLRP3 and NLRC4
mutants undergo improper oligomerization with constitutive
activation of the inflammasome that results in IL-1β and IL-
18 hypersecretion. In spondyloarthropathies, abnormal UPR
activation leads to overproduction of pro-inflammatory cyto-
kines. Interestingly, the UPR and autophagy have dual roles in
both promoting and controlling inflammation. Autophagy
gene polymorphisms and XBP1 deficiency lead to impaired
integrity of Paneth cells, resulting in IBD. Furthermore, the
protective functions of XBP1 are demonstrated in I/R injury
and multiple myeloma. In T2D and AMD, accumulating ex-
tracellular amyloid deposits may be phagocytosed by
macrophages/microglia leading to inflammasome activation
and increased IL-1β production. Intracellular aggregates of
proteins such as α-synuclein accumulate in PD and AD due
to marked impairment of protein disposal mechanisms.

The advances in our understanding of the pathogenesis of
autoinflammatory diseases and recognition that other diseases
have an autoinflammatory component related to altered pro-
tein homeostasis have underlined the pressing need for devel-
opment of novel therapies for these conditions and raised the
possibility that these therapies may also treat a wider spectrum
of diseases. The goals of such therapies include effective pre-
vention of protein accumulation, enhancement of clearance
mechanisms, suppression of ROS, and inflammation. Protein
misfolding within the ER leads to activation of the UPR, thus
therapies focused on augmenting the UPR could be highly
beneficial. However, given the potential for an activated
UPR to lead to inflammation and increased disease severity,
tight regulation is essential to the success of any

pharmacological strategy. In diseases with aberrant ROS pro-
duction and oxidative stress like AMD and TRAPS, useful
therapies may include antioxidants as adjunct therapies
[158]. Patients with autoinflammatory diseases who are treat-
ed with cytokine blockade show significant attenuation in
symptoms and disease progression. IL-1 blockade is effective
in treating CAPS, gout and T2D. TNF blockade therapy re-
sulted in limited success in TRAPS patients. Since proteasome
degradation and autophagy are anti-inflammatory, possible
interventions may involve enhancing these pathways to effec-
tively reduce NLRP3 activation and inflammation. Small mol-
ecules that can directly block the NLRP3 inflammasome and
related signaling pathways have recently shown promise in
pre-clinical studies [160, 161]. Clinical trials of agents de-
signed to modulate proteotoxic stress and the inflammasome,
in combination with traditional therapies, will determine the
therapeutic impact of these new insights into the connections
between protein homeostasis and autoinflammation.
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