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Abstract Parasitic protozoa cause considerable disease in
humans and, due to their intracellular life cycle, induce robust
CD8+ T cell responses. A greater understanding of the factors
that promote and maintain CD8+ T cell-mediated immunity
against these pathogens is likely needed for the development
of effective vaccines. Immunization with radiation-attenuated
sporozoites, the infectious stage of the malaria parasite trans-
mitted by mosquitoes, is an excellent model to study these
questions as CD8+ T cells specific for a single epitope can
completely eliminate parasite infection in the liver. Further-
more, live, radiation-attenuated parasites represent the “gold
standard” for malaria vaccination. Here, we will highlight re-
cent studies aimed at understanding the factors required for the
induction, recruitment, and maintenance of effector and mem-
ory CD8+ T cells against malaria liver stages.
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Introduction

CD8+ T cells are critical for the control of intracellular
pathogens, including viral, bacterial, and protozoan para-
sites. To date, most of our knowledge regarding the anti-
gen presentation requirements, generation, and mainte-
nance of effector and memory CD8+ T cells is based on
non-infectious or viral models that fail to account for the
complexity and antigenic diversity of protozoan parasites.
This knowledge gap is significant considering that para-
sitic protozoa—Plasmodium spp., Toxoplasma gondii,
Leishmania spp., and Trypanosoma cruzi—pose major
threats to human health. Owing to their ability to invade
and replicate within host cells, intracellular pathogens are
susceptible to CD8+ T cell-mediated elimination. Thus,
CD8+ T cells are important for protective immunity
against these pathogens; however, the degree of protection
conferred by these cells depends on the species and the
developmental stage of the parasite. Importantly, protec-
tive immunity against malaria liver stages is mediated, to
a significant extent, by CD8+ T cells specific for the
Plasmodium circumsporozoite (CS) antigen [1, 2]. Here,
we review how CD8+ T cell responses against malaria
parasites are initiated and sustained following a natural
course of infection while drawing parallels to other intra-
cellular pathogens. Furthermore, we will discuss the im-
plications of these findings on the development of whole
parasite vaccines.
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Early host-pathogen interactions in the skin

Many pathogens enter their mammalian host through the skin,
a complex organ that is critical for both physical protection
and host defense. In accordance with its key role in immune
surveillance, the skin supports a diverse community of resi-
dent and migratory immune cells including neutrophils, mac-
rophages, mast cells, dendritic cells (DCs), and lymphocytes
[3, 4]. Host-pathogen interactions in the skin have a tremen-
dous impact on disease outcome and protective immunity.
Consequently, the “skin stage of malaria” has garnered con-
siderable attention within recent years. Malaria infection be-
gins when a female Anopheles mosquito injects Plasmodium
sporozoites into the skin of its host during blood feeding. After
their deposition in the skin, sporozoites glide rapidly (~1–
2 μm/s) before exiting the dermis via blood or lymphatic
vessels [5]. The exquisite motility of malaria sporozoites ap-
pears to limit degradation by skin-resident phagocytes while
promoting progression from the skin site of inoculation to the
liver site of infection [6]. Although some sporozoites enter the
bloodstream and access the liver within minutes after their
inoculation, many take hours to exit the skin [7] and a small
proportion (~0.5–5 %) remain and develop into exoerythro-
cytic forms [8, 9]. The prolonged residence and development
of parasites in the skin likely provides ample chemoattractant
signals for innate leukocytes. Neutrophils are rapidly recruited
to the skin after needle or mosquito bite inoculation of infec-
tious sporozoites and sustain significantly high numbers in the
skin and skin-draining lymph nodes (DLNs) for up to 24 h
post-inoculation [6, 10]. Following the first wave of neutro-
phil recruitment, inflammatory monocytes populate the skin
and DLNs [10]. Despite the dramatic neutrophilic response in
these organs after skin deposition of sporozoites, neutrophil
depletion appears to have no impact on the development of a
protective CD8+ T cell response [10]. Interestingly, neutro-
phils also infiltrate the skin after sham injection, needle inoc-
ulation of salivary gland extract from arthropod vectors, and
uninfected mosquito and sand fly bites [10, 11]. The early
neutrophilic response generated under these conditions is like-
ly a byproduct of a host response aimed at wound repair and
sterilization as neutrophils were recently shown to be recruited
to the skin after sterile laser damage [12].

Although neutrophils and inflammatory monocytes can
contribute to adaptive immunity [13, 14], DCs are critically
involved in both the detection of pathogens in the periphery as
well as the activation and differentiation of Tcells in lymphoid
organs [15]. Skin-derived DCs are a heterogeneous population
of cells that differs in their ability to present antigens to CD4+

and CD8+ T cells [15, 16] and can be broadly defined into the
following three subsets: langerin-positive CD103+ dermal
DCs, langerin-negative CD11b+CD103− dermal DC, and
langerin-positive CD103− Langerhans cells (LCs) [15]. After
intradermal (ID) injection of sporozoites, ~20 % of skin-

deposited sporozoites were found to be closely associated
with CD11b+ myeloid cells in the skin [10]. However, we
recently demonstrated a nonessential role for Langerhans cells
and langerin+ dermal DCs in sporozoite antigen presentation
to CD8+ T cells using a mouse model system that allowed for
the selective depletion of these DC subsets [17]. In addition,
we did not observe appreciable migration of skin DCs to the
DLNs after sporozoite injection into the dermis by mosquito
bite or needle inoculation, nor did we detect a difference in
CD8+ Tcell priming after chemical inhibition of DCmigration
to the DLNs [18]. Nevertheless, the immunological signifi-
cance of malaria parasites that remain and undergo partial
development within the skin is largely unknown. It is possible
that the inflammatory response induced by parasites in the
skin may exert “remote control” over the composition of leu-
kocytes in the DLNs as described following cutaneous inflam-
mation with Complete Freud’s Adjuvant and Keyhole Limpet
Hemocyanin [19]. In support of this, a Th1 chemokine/
cytokine profile was observed in the DLNs 24 h after needle
inoculation of Plasmodium berghei sporozoites [10]. Addi-
tionally, parasite development in the skin may provide late
liver stage antigens and thus contribute to a broader anti-
malaria CD8+ T cell response [20, 21].

Innate and adaptive immunity to malaria parasites
in the DLNs

While many pathogens initiate infection in the skin of their
mammalian host, several pathogens—Plasmodium spp.,
Schistosoma mansoni, Leishmania major, and Toxoplasma
gondii—additionally gain access to the DLNs [5, 7, 22–24],
raising key questions about the fate of parasites in these organs
as well as their contribution to adaptive immunity. These ques-
tions are especially pertinent in the context of a malaria infec-
tion as a significant proportion (~15–20 %) of skin-deposited
sporozoites migrate to the DLNs [5, 7, 25, 26]. Using a model
mimicking natural exposure to sporozoite-infected mosqui-
toes, we previously demonstrated that CD8+ T cells specific
for the malaria CS protein, a leading vaccine candidate, were
primed by DCs in the DLNs of mice [25]. Remarkably, IFN-γ
producing CD8+ T cells were detected in the DLNs within
48 h after immunization by irradiated Plasmodium yoelii-in-
fected mosquito bites, whereas significant responses in the
spleen, liver, and liver-DLNs were not observed until 72 h
post-immunization. Furthermore, animals that had their DLNs
removed prior to sporozoite immunization generated poor CS-
specific CD8+ T cell responses [25]. In agreement with these
findings, Obeid and colleagues demonstrated that CD8+ Tcell
responses generated in the DLNs were sufficient for sterile
protection against live sporozoites [27]. The DLNs were also
found to be the primary site of prolonged antigen presentation
[28]. In these studies, antigen persistence required CD11c+
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LN-resident DCs and macrophages and was critical for the
optimal expansion of protective CD8+ T cell responses direct-
ed against the CS protein [28]. Given the importance of the
DLNs in the generation and maintenance of protective immu-
nity against malaria sporozoites, our laboratory and others
have worked to characterize host-parasite interactions in this
organ.

Sporozoites that gain access to the DLN are first found in
the subcapsular sinus [5, 10, 17], a region of the LN populated
by CD169+ macrophages specialized in trapping pathogens
and initiating adaptive immune responses (reviewed in [29]).
Additionally, sporozoites and parasite-derived antigens were
found in association with CD11c+ DCs 5 to 8 h after sporo-
zoite migration to the DLN [5, 17]. However, the contribution
of these interactions to CD8+ T cell priming was unknown
until recently. Using genetically manipulated malaria para-
sites, as well as antibody-mediated immobilization of sporo-
zoites, we determined that sporozoite access to the DLNs is
required for robust CD8+ T cell responses [17] (Fig. 1). In
further support of a limited role for migratory skin-DCs, static
and dynamic in vivo imaging revealed the formation of CD8+

T cell-DC clusters (a surrogate for antigen presentation) in the
draining LN paracortex as early as 8 h after sporozoite immu-
nization. These early interactions between LN-resident DCs
and CD8+ T cells correlated with T cell activation because we
observed the up-regulation of CD69, an early activation mark-
er, and the production of IFN-γ by CS-specific CD8+ Tcells at
8 and 16 h post-inoculation, respectively. In addition, we pro-
vided direct evidence of antigen presentation by LN-resident
CD8α+ DCs to CD8+ T cells using histo-cytometry, an ana-
lytical microscopymethod that allows for the quantification of
cellular interactions in situ [30, 31]. Moreover, malaria-
specific CD8+ T cell responses were significantly reduced in
Batf3−/− mice that possess substantial defects in their numbers
of CD8α+ DCs [32, 33]. It is worth noting that other studies
have demonstrated a requirement for CD8α+ DCs in the pre-
sentation of Plasmodium blood and liver stage antigens to
CD8+ T cells [34–37]. In summary, the innate and adaptive
immune responses elicited bymalaria sporozoites that migrate
to the DLNs are essential for the induction of CD8+ T cell-
mediated immunity.

Antigen presentation requirements
of sporozoite-specific CD8+ T cells

While it is clear that DCs are critical for the induction of CD8+

T cells, it is well appreciated that DC maturation is needed for
the optimal priming of these cells [38]. DC maturation, their
migration to secondary lymphoid organs, and cross-
presentation of exogenous antigens are greatly enhanced fol-
lowing their recognition of microbial molecular patterns by
pattern recognition receptors (PRRs) such as toll-like

receptors (TLRs) and nucleotide-binding oligomerization do-
main (NOD)-like receptors (NLRs). TLRs recognize a diverse
range of microbe-derived lipids, carbohydrates, peptides, and
nucleic acid structures and elicit different signaling cascades
depending on the engagement of the following intracellular
adaptor proteins: myeloid differentiation factor 88 (MyD88),
MyD88-adaptor-like (MAL), Toll/IL-1 receptor (TIR)
domain-containing adaptor inducing IFN-β (TRIF), and
TRIF-related adaptor molecule (TRAM) [39]. Like TLRs,
NLRs respond to pathogen-associated molecular patterns
(PAMPs), but are additionally capable of responding to en-
dogenousmolecules released during stress or infection such as
ATP, reactive oxygen species, and potassium efflux [40]. The
oligomerization of certain NLRs results in the assembly of the
inflammasome, a large macromolecular complex that is critical
for the maturation of the proinflammatory cytokines
interleukin-1 beta (IL-1β) and IL-18 [40]. Although TLR and
inflammasome agonists from Plasmodium falciparum and
P. berghei blood stage parasites have been characterized [41,
42], neither a sporozoite-derived PAMP, nor its contribution to
protective CD8+ T cell responses, has been described. To ad-
dress this question, we used transgenic P. berghei parasites
expressing SIINFEKL, the H-2Kb-restricted epitope of ovalbu-
min (P. bergheiCS5M) described previously [43], and a panel of
mice deficient in components of PRR signaling.Myd88−/−Trif−/
− and Ipaf−/−Asc−/− mice were both protected against live spo-
rozoite challenge after immunization by irradiated P. berghei
CS5M-infected mosquito bites. In addition, there was no differ-
ence in the magnitude or function of endogenous sporozoite-
specific CD8+ T cells primed in the absence of TLR or
inflammasome (NLRP1, NLRP3, and IPAF)-dependent signal-
ing [18]. Therefore, it is possible that protective CD8+ T cell
responses against malaria parasites require PRR-mediated sig-
naling through compensatory or redundant pathways.

An additional consideration is howDCs acquire, process,
and present malaria antigens to naïve CD8+ T cells. DCs are
especially adept at processing exogenous antigens derived
from apoptotic, necrotic, or pathogen-infected cells in a ma-
jor histocompatibility complex class (MHC) I-restricted
manner via cross-presentation [44]. In contrast to T. gondii
and L. major, Plasmodium sporozoites do not productively
invade DCs, and instead, cross-presentation is required for
the induction of CD8+ T cell responses directed against mo-
lecular determinants in theCSprotein [25, 45]. In subsequent
studies, Cockburn et al. demonstrated thatDCs cross-present
malaria antigens to CD8+ T cells through an endosome-to-
cytosol pathway [43]; however, the mechanism by which
sporozoite antigens are deposited in the cytosol of DCs is
largely unknown. Furthermore, the transporter associated
with antigen processing (TAP)-dependent pathway was also
shown to be critical for the presentation of liver stage anti-
gens by infected hepatocytes [43]. Therefore, both the induc-
tion and effector phases of anti-malaria CD8+ Tcells require
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TAP-mediated delivery of CS epitopes from the cytosol to the
endoplasmic reticulum in DCs and hepatocytes, respectively.

Trafficking and survival of tissue-specific CD8+ T
cells

In order to continue their life cycle in the mammalian host,
sporozoites must invade and replicate within hepatocytes. Im-
portantly, infected hepatocytes present parasite-derived anti-
gens to CD8+ T cells and are susceptible to CD8+ T cell-
mediated killing [1, 25, 46]. Because parasites remain in the
liver for only a short time, intrahepatic CD8+ T cells are prob-
ably key factors in protection against malaria. Therefore, a
better understanding of the mechanisms regulating CD8+ T
cells trafficking and survival in the liver is critical for malaria
vaccine design. During activation, effector T cells can be

“selectively imprinted” to express certain homing receptors
that regulate their migration to peripheral organs [47]. While
this process has been shown to be important for the preferen-
tial homing of effector CD8+ T cells to barrier tissues such as
the intestine and skin (reviewed in [48]), it is unclear whether
parasite-specific T cells are instructed for “liver-homing”
shortly after their priming in lymphoid organs. After sporozo-
ite immunization, CS-specific effector CD8+ T cells were
found in various peripheral organs, such as the liver, lungs,
and kidneys [49], suggesting that the initial homing pattern of
CD8+ T cells is not a stringent process. The promiscuous
trafficking of activated CS-specific CD8+ T cells is likely
due to their simultaneous expression of several inflammatory
chemokine receptors [50–52].

Although the initial trafficking of effector CD8+ T cells
appears to be an indiscriminate process, the local persistence
of memory CD8+ T cells is clearly dependent on specific

Fig. 1 Anophelinemosquitoes inject Plasmodium sporozoites (SPZ) into
the skin of their mammalian host, a tissue populated by epidermal
Langerhans cells and dermal DCs. Sporozoites must enter the
bloodstream to continue their development in the liver; however, a
proportion of inoculated sporozoites (~15–20 %) reach the DLN.
Sporozoites that migrate to the DLN are first found in the subcapsular
sinus in association with CD169+ macrophages. Within the T cell zone,
CD8α+ LN-resident DCs uptake and cross-present SPZ-derived antigens
to naive CD8+ T cells. Following their activation in the DLN, malaria-
specific CD8+ T cells enter the blood circulation and reach peripheral

tissues, including the liver. Antigen-specific CD8+ T cells patrol along
the liver sinusoids before forming large clusters of multiple effector T
cells around an infected hepatocyte. The elimination of parasite-infected
hepatocytes by CD8+ T cells is a cell contact-dependent process that
requires the recognition of cognate parasite-derived peptides presented
by MHC I molecules on infected hepatocytes. Liver-resident memory
CD8+ T cells exhibit a tissue-resident memory T cell phenotype (Trm)
and depend on the chemokine receptor CXCR6 for their long-term
maintenance in this organ
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environmental cues, e.g., chemokines and cytokines. For ex-
ample, the transmembrane chemokine CXCL16 is abundantly
expressed in the liver sinusoids and was shown to be crucial
for the maintenance of hepatic NKT cells during steady state
[53]. Importantly, CXCR6, the chemokine receptor which rec-
ognizes CXCL16, was found to be significantly up-regulated
by liver-resident CD8+ T cells several weeks after sporozoite
immunization [51, 52]. These findings hinted at a potential
role for CXCR6 in the retention of these cells. Indeed, adop-
tive transfer studies usingCxcr6−/−CD8+ Tcells demonstrated
that CXCR6 was dispensable for the early recruitment, but
important for the long-term survival, of memory CD8+ T cells
in the livers of sporozoite-immunized mice [52]. A similar
phenotype was recently observed in an experimental model
of Listeria monocytogenes [54]. Though it is unclear how
CXCR6 expression regulates the survival of CD8+ T cells in
the liver, one possible mechanism is through the up-regulation
of anti-apoptotic molecules such as BCL2. In support of this
notion, Cxcr6−/− effector cells exhibited lower expression of
BCL2 after malaria liver stage infection [52]. It is worth not-
ing that studies in other models have shown that anti-apoptotic
genes are highly expressed by resident CD8+ T cells in the
skin and the brain [55, 56]. Another nonexclusive possibility
is that homeostatic cytokines, such as IL-7 and IL-15, mediate
the lifespan of tissue-resident CD8+ T cells. Recently, the sur-
vival of liver-resident CD8+ T cells was shown to require IL-
15 after immunization with P. berghei sporozoites [57].

Parasite-specific CD8+ Tcells: a unique liver-resident
memory population

While it is clear that environmental cues regulate the survival
of parasite-specific memory CD8+ T cells in the liver, it was
previously unknown whether this population was maintained
through local proliferation or through the migration of mem-
ory cells from the periphery [58, 59]. In the latter scenario, the
CD8+ T cells recovered from the liver would exhibit an over-
lapping phenotype and molecular signature with those recov-
ered from the lymphoid organs. To explore these possibilities,
we used T cell receptor (TCR) transgenic transgenic mice
specific for the H-2Kd-restricted P. yoelii epitope SYVSAEQI
[60] and compared the gene transcription profiles of the clonal
CD8+ T cell population from different tissues [51]. Memory
CD8+ Tcells recovered from the spleen were mostly CD62LHi

and CCR7Hi, a phenotype of the central memory population
(Tcm). In contrast, memory CD8+ T cells residing in the liver
were CD62LLo and CCR7Lo, suggesting that these T cells are
predominantly effector cells (Tem) that have entered non-
lymphoid tissues from the circulation. A comparative tran-
scriptome analysis of resident memory CD8+ T cells in the
spleen versus the liver revealed striking differences between
these T cell populations [51]. A large number of genes

involved in transcription, cell cycle, trafficking, and signaling
were differentially regulated in the liver-resident memory
CD8+ T cell population, and these cells underwent more vig-
orous homeostatic proliferation than their counterparts in the
spleen. Importantly, liver-resident memory CD8+ T cells were
homogenously CD69Hi and expressed lower levels of the tran-
scription factors Eomes and KLF2, consistent with the tissue-
resident (Trm) phenotype recently reported [61]. KLF2 is
known to regulate the expression of S1PR1 and CD62L, two
crucial molecules involved in lymphocyte recirculation. Sub-
sequently, the loss of KLF2 was found to prevent the recircu-
lation of CD8+ T cells and promote the establishment of a
tissue-resident memory population [62]. Hence, the KLF2Lo

memory population observed in the livers of sporozoite-
immunized mice is likely distinct from the circulating Tem
population, suggesting that this population resides in the liver
and is not frequently renewed by lymphoid migrants (Fig. 1).

Protection mediated by local T cells: direct
or indirect killing?

Tissue-resident memory T cells (Trm) are critical for host re-
sistance [63, 64] and have been shown to provide better pro-
tection than other memory populations against vaccinia and
influenza viruses [63, 65]. Although virus-specific Trm can
recruit circulating memory T cells [66], recruited cells likely
contribute a minor role to protection against malaria parasites
because of the brief period in which CD8+ T cells can limit
their development in the liver (2 days inmice). For this reason,
host resistance against malaria liver stages is probably medi-
ated by tissue-resident CD8+ Tcells. Indeed, we observed that
mice with reduced numbers of liver-resident memory CD8+ T
cells were less protected against live sporozoite challenge,
despite having normal numbers of memory CD8+ T cells in
the spleen [52].

Given the short window in which liver stage parasites can
be eliminated, T cells must be poised for an immediate anti-
microbial response. It is well established that CD8+ T cells
recognize pathogen-derived peptides presented by MHC I
molecules on infected cells. Therefore, the elimination of tar-
get cells is generally considered to be a cell contact-dependent
process. In fact, mouse studies using bone marrow chimeras
revealed a requirement for direct peptide recognition between
effector CD8+ T cells and hepatocytes as CD8+ T cells were
unable to eliminate cells bearing a non-cognate MHC class I
molecule [25]. Recently, the elimination of parasitized hepa-
tocytes by effector CD8+ T cells was visualized using intravi-
tal imaging [46]. Strikingly, large clusters of CD8+ T cells
formed around infected hepatocytes (Fig. 1). The initiation
of these T cell clusters was strictly dependent on cognate in-
teractions as CD8+ Tcells specific for an irrelevant antigen did
not initiate clustering around hepatocytes. More importantly,
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T cell clustering required G-protein coupled signaling and
appeared to be crucial for the effective elimination of parasit-
ized hepatocytes because the protective capacity of effector
cells was greatly reduced following inhibition of T cell clus-
tering with pertussis toxin [46]. Together, our in vivo imaging
studies demonstrated that the killing of target cells is a
prolonged process that requires the recruitment of multiple T
cells to the infected hepatocyte. In addition to direct recogni-
tion of infected hepatocytes, malaria-specific CD8+ T cells
mediate protection through the production of several effector
cytokines, including IFN-γ and TNF-α, and to some extent
perforin/granzyme B [67, 68]. Liver-resident memory CD8+ T
cells were found to express higher levels of granzyme B and
IFN-γ transcripts than their counterparts in other organs [51].
However, it is likely that these pathways work redundantly
because CD8+ T cells lacking IFN-γ could still limit parasite
growth [69] and mice lacking perforin and FasL mounted a
protective response against Plasmodium parasites (reviewed
in [70, 71]).

Within the last few years, studies have highlighted the role
of CD8+ T cells not only as efficient cytolytic T cells, but as
“early sensors” of foreign pathogens in lymphocytic
choriomeningitis virus, herpes simplex virus, and vaccinia
virus infection models. In these studies, IFN-γ produced by
tissue-resident T cells triggered local anti-viral responses and
facilitated protection against irrelevant viral antigens [72, 73].
In light of these findings, we tested whether sporozoite-
specific CD8+ T cells could eliminate parasitized hepatocytes
through bystander killing independent of, or in addition to, the
direct killing of target cells. To address these questions, mice
were co-infected with two different P. berghei parasites in
equal ratios, with only one of the strains carrying a CD8+ T
cell epitope recognized by TCR transgenic cells that were
adoptively transferred to these mice. In contrast to what was
observed with viral pathogens, malaria-specific CD8+ T cells
failed to eliminate the irrelevant “bystander” parasites [74]
(Fig. 1). These results suggest that sterile immunity likely
requires the location and killing of every infected cell in a
cell contact-dependent manner. Moreover, they further sup-
port the notion that CD8+ T cells recognize parasite-derived
peptides directly on the surface of hepatocytes.

Because parasite-infected cells are eliminated in a cell
contact-dependent manner involving multiple T cells, it is
not surprising that the number of memory CD8+ T cells need-
ed for protective immunity against malaria parasites far ex-
ceeds what is required for bacterial and viral infections (~100–
1000-fold) [75]. A sufficiently high number of anti-parasite
CD8+ T cells, particularly in the liver, is critical for early
pathogen control since one schizont that escapes
immunosurveillance can give rise to thousands of merozoites.
Thus, early pathogen control in the liver is key to host resis-
tance. These stringent requirements, in part, explain the chal-
lenges of achieving sterile protection against malaria parasites.

CD8+ T cell responses to blood stage malaria

After an obligatory developmental stage within hepatocytes,
Plasmodium parasites develop into merozoites and infect
erythrocytes. Since erythrocytes lack the expression and pro-
cessing machinery of MHC I molecules, CD8+ T cells are not
generally thought to play a major role in controlling malaria
blood stages. Nevertheless, studies have shown that CD8+ T
cell depletion results in the delayed clearance of P. chabaudi
blood stages in mice [76] and blood stage specific CD8+ Tcell
responses have been described in rodents [77] and in
P. falciparum-infected humans [78]. These studies suggest
that CD8+ T cells, to some extent, contribute to protective
immunity against blood stage infection; however, CD8+ T
cells have also been implicated in severe host pathology in
experimental models. For a more detailed review of this topic,
we direct the reader to the article written by Renia and col-
leagues in this special issue.

Implications for malaria vaccine effort

It is well established that live, but not dead, malaria sporozo-
ites can induce protective CD8+ T cell responses after ID and
intravenous (IV) routes of immunization [25, 79]. Our recent
studies demonstrating a requirement for direct parasite access
to the DLNs for CD8+ T cell priming [17] provide an expla-
nation for why ID injection of dead sporozoites, which do not
reach the DLNs [5], elicit poor CD8+ T cell responses [25].
However, the requirement for live sporozoites following an IV
route of immunization is less obvious. To elaborate, sporozo-
ites injected IV have direct access to the spleen and we have
previously shown that CD8+ T cells are first primed here after
IV immunization [60]. Thus, it is possible that motile sporo-
zoites deliver antigens that are efficiently presented by DCs in
the lymphoid organs, e.g., shed or particulate antigens. Anoth-
er possibility is that sporozoite traversal through host cells
deposits antigens in the cytosol while triggering a cytokine
microenvironment that favors CD8+ T cell priming. As with
dead sporozoites, antibody-treated sporozoites injected ID do
not reach the DLNs and fail to prime robust CS-specific CD8+

T cell responses [17, 43]. These findings may have direct
implications for vaccine efforts as they indicate that it might
be difficult to generate CD8+ T cell responses in individuals
with high-titer anti-CS antibodies.

The superior immunogenicity of live versus dead parasites
is not unique to malaria, but was also observed in vaccination
models of Leishmania infantum chagasi and S. mansoni [80,
81]. Furthermore, an experimental model of T. gondii infec-
tion recently revealed that antigens derived from direct infec-
tion, and not through phagocytosis of heat-killed or invasion-
blocked parasites, were critical for optimal CD4+ and CD8+ T-
cell responses [82]. In addition to providing a diverse array of
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antigens, live attenuated parasites more efficiently access tis-
sue and cellular compartments required for the induction of
long-lasting immunity. Therefore, it appears that the strategies
important for parasite infection—cell traversal and cell inva-
sion—may also be critical for immune activation and should
be incorporated into whole parasite vaccine approaches.

Although live, radiation-attenuated parasites represent the
“gold standard” for malaria vaccination and form the rationale
for a whole parasite vaccine [83, 84], there are several techni-
cal limitations to this approach (reviewed in [85]). The recent
success of the IV-administered live, attenuated P. falciparum
sporozoite vaccine is encouraging [83]; however, it remains to
be seen whether large-scale IV vaccination is feasible and if
this vaccine can provide long-term protection in humans. In
addition to whole parasite vaccine approaches, vaccines de-
signed to induce CD8+ T cell-mediated immunity through the
use of attenuated viral vectors or synthetic constructs have
yielded encouraging results in mouse studies but have yet to
demonstrate significant efficacy in human trials. Finally, the
observation that sterile protection against Plasmodium para-
sites requires a large population of intrahepatic memory CD8+

T cells raises several questions as to whether these numbers
can be maintained in vaccinated humans. The demonstration
of prolonged antigen presentation, and the subsequent activa-
tion of naive recent thymic emigrants [28], is promising be-
cause it suggests a potential mechanism by which the memory
CD8+ Tcell populationmay be renewed after vaccination with
non-replicating organisms. Because it is clear that CD8+ T
cells exert their protective function in the liver, further re-
search is required to understand how to recruit and maintain
these cells in this organ.

Conclusions

CD8+ Tcells are critical for protective immunity against several
medically important pathogens, especially the malaria parasite
Plasmodium spp. Through the use of experimental models of
malaria infection, transgenic animals, and high-resolution im-
aging, we have gained valuable insight into the factors regulat-
ing the activation, survival, and effector functions of malaria-
specific CD8+ T cells. Despite these advances, it is clear that
protective immunity against malaria parasites is more stringent
than for other pathogens, requiring the location and elimination
of every infected cell in a cell contact-dependent manner.
Therefore, an important future direction will be to translate
the information obtained from experimental models to the de-
velopment of effective vaccines in humans.
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