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Abstract Increased incidence of fungal infections in the
immunocompromised individuals and fungi-mediated al-
lergy and inflammatory conditions in immunocompetent
individuals is a cause of concern. Consequently, there is a
need for efficient therapeutic alternatives to treat fungal
infections and inflammation. Several studies have demon-
strated that antibodies or immunoglobulins have a role in
restricting the fungal burden and their clearance. However,
based on the data from monoclonal antibodies, it is now
evident that the efficacy of antibodies in fungal infections
is dependent on epitope specificity, abundance of protec-
tive antibodies, and their isotype. Antibodies confer pro-
tection against fungal infections by multiple mechanisms

that include direct neutralization of fungi and their anti-
gens, inhibition of growth of fungi, modification of gene
expression, signaling and lipid metabolism, causing iron
starvation, inhibition of polysaccharide release, and bio-
film formation. Antibodies promote opsonization of fungi
and their phagocytosis, complement activation, and
antibody-dependent cell toxicity. Passive administration
of specific protective monoclonal antibodies could also
prove to be beneficial in drug resistance cases, to reduce
the dosage and associated toxic symptoms of anti-fungal
drugs. The longer half-life of the antibodies and flexibil-
ities to modify their structure/forms are additional advan-
tages. The clinical data obtained with two monoclonal
antibodies should incite interests in translating pre-
clinical success into the clinics. The anti-inflammatory
and immunoregulatory role of antibodies in fungal inflam-
mation could be exploited by intravenous immunoglobulin
or IVIg.
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Background

Fungi are among the most common microbes encountered by
mammalian hosts. Approximately, 1–10 fungal spores are
ingested in each breath, making it a natural route of infection
for most filamentous fungal pathogens. Medically important
fungi include Aspergillus , Blastomyces , Candida ,
Coccidioides, Coccidioides, Cryptococcus, Histoplasma,
Malassezia, Paracoccidioides, and Pneumocystis [1–3]. Fun-
gi are experts in sensing their surrounding environment and
respond suitably to the different fluctuating environmental
factors. Due to their acclimatization capabilities, fungi can
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interact with plants, animals, and humans and establish sym-
biotic, commensal, latent, or pathogenic relationships. For
example, Candida albicans are commensal organisms in
humans until the host becomes immune deficient, which can
lead to life-threatening disease [4]. Omics-based approaches
have revealed a link between fungal metabolism, morphogen-
esis, and response to stress during adaptation to the host
environment. These processes not only enhance fungal viru-
lence but also provide opportunities for identifying potential
therapeutic targets [5].

Many fungal pathogens as well as commensal fungi have
co-evolved with their mammalian hosts over millions of years.
This shows that fungi have developed effective and complex
strategies to antagonize immune responses in the host. One
recent report shows that airborne fungal spores of Aspergillus
fumigatus evade the innate immune recognition and immune
responses by expressing surface “rodlet layer” [6, 7]. This layer
is composed of hydrophobic RodA protein covalently bound to
the conidial cell wall through glycosylphosphotidylionositol
remnants. RodA extracted from the conidia of A. fumigatus
was immunologically inert and did not induce dendritic cell
(DC) or alveolar macrophage maturation and activation. The
disruption of this “rodlet layer” chemically (using hydrofluoric
acid), genetically (ΔrodA mutant), or biologically
(germination) resulted in a conidial morphotype that induce
immune activation. These observations show that the fungal
pathogens have immune evasive mechanisms.

Innate immune responses are the first line of defense
against fungal infections that lay the foundation for the long
lasting, more specific, and effective adaptive immune re-
sponses. The fungal pathogen-associated molecular patterns
(PAMPs) such as heat-shock protein 60 (Hsp60), β-glucans,
phospholipomannan, O-linkedmannans, zymosan, and fungal
DNA are recognized by various pattern recognition receptors
that include toll-like receptors (TLRs) (such as TLR 2, 4 and
TLR 9) and C-type lectin receptors (such as Dectin-1 and DC-
SIGN) [8–10]. These detection mechanisms are also
complemented by other defense mechanisms such as micro-
bial antagonism, defensins, collectins, and complement
system.

The detection of fungal pathogens by phagocytes especial-
ly macrophages and DCs initiate downstream intracellular
events that activate immune responses resulting in efficient
clearance of fungi through phagocytosis and direct pathogen
killing. Neutrophils play a key role in clearing hyphae, the
tissue-invasive form of molds. DCs migrate to secondary
lymphoid tissues and polarize diverse CD4+ T cell (T helper,
Th) responses including Th1, Th2, Th17, and regulatory T
(Treg) cell responses. This has been shown in case of
Histoplasma capsulatum, Cryptococcus neoformans,
C. albicans, and A. fumigatus. The Th cells in turn direct B
cells to produce antigen-specific antibodies that mediate hu-
moral immunity.

Role of humoral immune response in the protection
against fungal infections: data from experimental models

Antibodies or immunoglobulins (Igs) are glycoproteins and
one of the vital components of the immune system. Five classes
or isotypes of antibodies have been identified that include IgG,
IgM, IgA, IgE, and IgD and their prevalence in the blood is in
the order of IgG>IgA>IgM>IgD>IgE. Further, IgG is divided
into four subclasses such as IgG1, IgG2, IgG3, and IgG4 in
human and IgG1, IgG2a, IgG2b, and IgG3 in mice. IgA is the
most abundant antibody at the mucosa and is divided into IgA1
and IgA2. Studies to prove the beneficial effects of antibodies
in the protection against fungal infections have mostly came
from in vivo studies in experimental models. These data sug-
gest that antibodies provide protection against fungal infections
via several and possibly interdependent mechanisms. In fact,
antibodies are well known effector molecules of the adaptive
immune system and neutralize the pathogens and their derived
molecules in part through activation of the complement. In
addition, they also exert regulatory role in the activation of
innate immune cells by signaling via diverse Fc receptors.
However, initial studies to understand the role of antibodies
in anti-fungal immunity were largely inconclusive. These in-
conclusive reports could be due to occurrence of insufficient
proportion of protective antibodies in the serum that are capable
of clearing fungal infection. On the other hand, there could be
inhibitory antibodies that neutralize the effect of protective
antibodies [11, 12].

Several reports demonstrated that natural antibodies have an
important role in the defense against fungal infection. In fact,
administration of normal mice serum to μMTmice was shown
to restrict the fungal growth in various models [13–16]. Natural
antibodies are polyreactive, generally germ-line encoded, and
are characterized by low to medium affinity. Natural antibodies
belong to IgM, IgA, and IgG classes and are produced mainly
by B1 cells [17–23]. A substantial fraction of serum antibodies
from naive mice recognize fungal antigens including those
derived from C. albicans [24, 25]. Further, passive administra-
tion of a monoclonal natural IgM antibody 3B4 recognizing
self-antigen keratin and germ tubes of C. albicans protected
mice from C. albicans-induced death. The anti-fungal mecha-
nisms of this natural antibody include direct suppression of
germ tube formation and enhancing the macrophage-mediated
phagocytosis of candida by opsonization [24, 26] (Fig. 1). In
line with these observations, murine studies have shown that
administration of opsonizing antibodies results in protection
against invasive candidiasis [27, 28] although beneficial effects
could not be observed in vaginal candidiasis [29].

Natural IgMare important for the resistance toC. neoformans
and Pneumocystis murina in mice by diverse mechanisms. It
was proposed that natural IgM enhance the recruitment of
macrophages to the site of infection and phagocytosis of fungi,
guide the recognition of fungal antigens by DCs and their
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migration to draining lymph nodes, and support B cell class-
switch by helping differentiation of Th2 cells [30, 31]. In line
with these observations, mice with X-linked immunodeficiency
that have significantly lower levels of IgM displayed higher
susceptibility to C. neoformans infection [32].

B cell depleted mice show higher susceptibility to systemic
candidiasis [33]. Systemic challenge ofC. albicans in athymic
mice [34], severe combined immunodeficiency (SCID) mice
[35], and antibody deficient CBA/N mice lacking Lyb-5 B
cells [36] showed that humoral immune responses play an
important role in conferring protection against systemic can-
didiasis. Further, studies in germ-free B cell knockout (JHD μ
KO) mice have shown that these mice are susceptible to
experimental systemic candidiasis but resistant to mucosal
and systemic candidiasis of endogenous origin [37]. These
JHD mice lacked circulating B cells or secretory antibodies
due to disruption of the immunoglobulin gene JH that arrests B
cell development in the bone marrow. After oral immuniza-
tion, these mice developed protective immunity to intravenous
challenge. However, the mice showed colonization of
C. albicans in the gut, indicating that the mode of infection
does influence the outcome of immune responses by the host.

A report by Romani and colleagues reveals that antibodies
have a critical role in the generation of memory anti-fungal
immunity [16]. By evaluating the susceptibility of wild-type

and B-deficient (μMT) mice to C. albicans or A. fumigatus
infections by intravenous or intra-tracheal route respectively,
they found that μMT mice could efficiently limit the fungal
growth both upon primary and the secondary infections. Their
results thus point out that Th1 cells are important to mediate
protective immunity to these two fungal pathogens. However,
μMT mice were incapable of surviving the re-infection with
C. albicans. These results thus indicated that although the
resistance to Aspergillus is independent of B cells and anti-
bodies, protection against Candida appears to be mediated
both by antibody-dependent and independent mechanisms
[16]. Administration of normal mice serum to μMT mice
further restricted the fungal growth, thus confirming that
antibodies do have a role in restricting the fungal burden and
in the clearance of pathogens, but as discussed later, their
efficacy might be dependent on epitope specificity, abundance
of protective antibodies, and their isotype.

The findings of Romani and colleagues also suggest that
the functions of antibodies in the protection against fungal
infections might go beyond neutralization of pathogens,
opsonization, antibody-dependent cytotoxicity, or preventing
adherence [16, 38] (Fig. 1). Thus, they identified a novel
mechanism through which antibodies might participate in
the protective immunity to Candida infections. It is known
that circulating antibodies and B cells have remarkable ability

Fig. 1 Multi-faceted functions of antibodies in the protection against
fungal infections and fungi-mediated inflammatory conditions.
Antibodies confer protection against fungal infections by multiple
mechanisms that include direct neutralization of fungi and their
antigens, inhibition of growth of fungi, modification of gene
expression, signaling and lipid metabolism, causing iron starvation,

inhibition of polysaccharide release, and biofilm formation. Antibodies
promote opsonization of fungi and their phagocytosis, complement
activation, and antibody-dependent cell toxicity. Growing evidences
also indicate that antibodies have a key role in immunomodulation and
in preventing inflammation-mediated tissue damage
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to modulate the immune responses by regulating the functions
of antigen-presenting cells such as DCs [39–46]. Romani and
colleagues reported that the inability of μMT mice to survive
re-infection with C. albicans was associated with failure to
generate IL-10-producing CD4+CD25+ Tregs. Interestingly,
anti-fungal opsonizing antibodies could restore IL-10 produc-
tion in DCs, indicating that antibodies could limit the exag-
gerated inflammatory responses to fungal infections and
might educate the DCs for the development of long lasting
anti-fungal immunity [16] (Fig. 1).

In experimental paracoccidioidomycosis, a chronic granu-
lomatous disease caused by thermally dimorphic fungi
Paracoccidioides brasiliensis, circulating normal antibodies
were shown to control P. brasiliensis growth and organization
of the granulomatous lesions by regulating the infiltration of
inflammatory cells [47].

Several reports also demonstrate that protective anti-fungal
antibody responses could be induced in mice by vaccination
with appropriate fungal antigens. Thus, vaccination with a
liposomal-mannan admixture mediated antibody-dependent
protection against C. albicans [14]. Importantly, synthetic
glycopeptide vaccines that combine β-mannan and peptide
epitopes (corresponding to those proteins expressed during
human candidiasis and their cell wall association) also in-
duced high titred antibodies to β-mannan and test antigens
that include fructose-bisphosphate aldolase-Fba,
methyltetrahydropteroyltriglutamate-Met6, and hyphal wall
protein-1. In addition, these antibodies rendered protection
against experimental disseminated candidiasis following DC
vaccination approach [48]. Further, passive transfer of im-
mune sera either from peptide (Fba)-vaccinated mice or
glycol-peptide ([β-(Man)3]-Fba)-vaccinated mice, conferred
protection in naïve mice [49, 50]. Similarly, vaccination with
other antigens was also shown to elicit protective antibody
responses. A glycol-conjugate vaccine consisting of laminar-
in, a β-glucan from Laminaria digitata, and diphtheria toxoid
CRM197 (Lam-CRM conjugate) protected mice against
A. fumigatus and C. albicans by eliciting anti-β-1,3-glucan
antibodies [51, 52]. Intravaginal immunization with secreted
aspartic proteases family (Sap2t) of C. albicans elicited protec-
tive mucosal IgG and IgA antibodies to Sap2t. Passive transfer
of these antibodies or anti-Sap2t IgM and IgG monoclonal
antibodies protected mice against vaginal candidiasis [53]. A
virosomal vaccine containing Sap2t also induced similar im-
mune responses and protection against vaginal candidiasis
[54]. In line with these reports, immunization with purified or
recombinant major surface glycoprotein of Pneumocystis
carinii elicited protective humoral and cellular responses in rats
[55]. These data thus suggested that abundance of protective
antibodies is the key factor that determines the role of antibod-
ies in the protection against fungal infections.

DNA vaccination strategy was also explored for eliciting
protective antibody response to fungal pathogens.

Pneumocystis pneumonia infection is the most prevalent re-
spiratory pathogen of AIDS patients, and the options for
immunotherapy have been limited given the poor CD4+ T cell
immune responses. DNA vaccination with a Pneumocystis
antigen, kexin linked to CD40 ligand, induced strong antibody
response inmice, and that B cells or IgG from vaccinatedmice
were highly protective upon adoptive transfer [56, 57]. This
approach is highly desirable for patients who have CD4+

deficiency or dysfunction as this method could induce protec-
tive humoral responses independent of CD4+ T cells.

Demonstration of protective role of antibodies in fungal
infections by using monoclonal antibodies

As relative abundance of protective-specific antibodies was
postulated as one of the factors that determine the protection
afforded by circulating antibodies, various groups have eval-
uated this hypothesis by using monoclonal antibodies
(MAbs). Most of the protective antibodies described to date
recognize surface molecules that include, but not limited to,
glucans, mannans, and glucuronoxylomannans. In addition,
proteins and glycolipids could also induce protective antibod-
ies upon immunization.

By using C. neoformans capsular glucuronoxylomannan-
specific murine MAbs, Casadevall and colleagues compared
the protective capacities of various isoforms of antibodies
upon passive transfer to lethally infected mice. They found
that on a weight basis, IgA isotype antibody was most effec-
tive as compared to IgG1>IgM>IgG3. However, IgA has a
shorter half-life than IgG1 in the circulation and hence more
IgA antibodies would be required for the protective effects.
Therefore, authors further performed the experiments by using
antibody concentrations that closely mimics in vivo situation
and found that IgG1was more effective than IgA in conferring
the protection against challenge [15]. In addition, other reports
also confirmed the therapeutic potential of murine IgG1 MAb
to capsular polysaccharide (CNPS), IgM MAb that binds to
melanin, and murine IgG2b MAb to glucosylceramide and β-
glucan (laminarin) of C. neoformans [58–61].

The subclass of IgG also plays an important role in the
protection against C. neoformans. The relative efficacy of IgG
subclass antibodies was in the order of IgG1, IgG2a, and
IgG2b≫IgG3. Switching from IgG3 to IgG1 converted a
non-protective glucuronoxylomannan-reactive MAb into a
protective antibody [62, 63]. Thus, these data indicated that
by simple isotype/subclass switching, a non-protective anti-
body could be converted into a protective antibody and hence
suggesting that those non-protective antibodies reported for
fungal infections should be re-examined for the isotype. These
C. neoformans protective glucuronoxylomannan-specific IgG
MAbs seem to work in cooperation with nitric oxide, and both
Th1 and Th2 cytokines [64, 65]. In addition, binding of
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protective glucuronoxylomannan-reactive 18B78 IgG MAb
and IgM MAbs (12A1 and 13F1) to C. neoformans also
modifies the gene expression of the fungi, phosphorylation
of proteins, and lipid metabolism [66] (Fig. 1). The comple-
ment component C3 was found to be dispensable for the
protection by these IgGs [67]. In addition, mouse background
was also shown to influence the protection given by IgG
subclass antibodies [68] thus underscoring the complex rela-
tionship between the cellular and humoral components of the
immune system. Further studies from the same group revealed
that epitope specificity of the MAbs is the critical factor that
determines the serotype-specific protection rendered by the
anti-C. neoformans MAbs and to confer protection against
distinct serotypes of C. neoformans [69].

Han et al. showed that transfer of β-1, 2-mannotriose
[β-(Man)3]-specific IgM MAbs enhance the resistance to
disseminated candidiasis in normal, SCID, and neutropenic
mice, and to vaginal infection [14, 70, 71] and was dependent
on the specificity of the antigens but independent of isotype
(IgM or IgG3) of antibodies [72]. Structural analysis revealed
that internal saccharide residues dominate recognition of
β-(Man)3 by IgG3 MAb [73]. β-mannan-specific IgM MAb
could also reduce the dose of amphotericin B when used in
combination in experimental candidiasis [74]. In contrast to
C. neoformans-specific MAbs, complement was found to be
essential for the protection by C. albicans β-mannan-specific
IgM and IgG3 MAbs and was associated with enhanced
phagocytosis and killing of the yeast cells by phagocytic cells
[75, 76] (Fig. 1). These results thus suggest that the mecha-
nisms of anti-fungal antibodies might also depend on the
fungal species and epitope specificity of the antibodies and
that a generalized mechanism cannot be drawn.

An IgM MAb C7 that reacts with Als3p and enolase of
C. albicans cell wall exerted three anti-candida actions such as
candidacidal activity and inhibition of both adhesion and
filamentation [77]. Subsequently, it was found that the
candidacidal activity of this MAb was linked to interference
with iron acquisition by C. albicans [78] (Fig. 1). Of note,
MAb C7 also showed reactivity against several species of
Candida as well as in C. neoformans, Scedosporium
prolificans, and A. fumigatus thus pointing towards broad-
spectrum activities of this antibody [78].

Compared to Candida and Cryptococcus, studies on the
development of therapeutic MAbs to A. fumigatus are limited.
An A. fumigatus-specific IgG1MAb directed against cell wall
glycoprotein of A. fumigatus exhibited protection against ex-
perimental aspergillosis in mice and significantly reduced the
fungal load in the kidneys. The protection by this MAb might
be due to its effects on germination of A. fumigatus [79]. The
same group also developed an IgM MAb against
immunodominant catalase B of A. fumigatus that exerted
anti-A. fumigatus activities in vitro [80]. In a murine pulmo-
nary aspergillosis model, A. fumigatus-specific IgM MAb-

alliinase conjugate enhanced survival of immunosuppressed
mice by causing specific killing of A. fumigatus without
damaging the lung tissue [81].

IgG2a and IgG2b MAbs to gp43 of P. brasiliensis were
shown to reduce fungal burden and was associated with the
enhanced phagocytosis of P. brasiliensis by macrophages lead-
ing to increased nitric oxide production [82]. Prophylaxis pas-
sive intranasal administration of anti-glycoprotein A IgM or
IgG1 switch variant MAb protected against murine P. carinii
[83]. Further studies revealed that complement was required for
the protection conferred by anti-P. carinii IgG1 antibodies [84].

Passive transfer of cell surface histone-like protein-specific
IgM MAbs protected the mice against H. capsulatum by
altering the intracellular fate of the fungus in the macrophages
in a complement receptor 3-dependent process [85, 86]. This
protection was associated with the enhanced IL-4, IL-6, and
IFN-γ in the lungs either on day 2 or day 7 post-infection.
Similar to this report, passive transfer of H. capsulatum
Hsp60-specific protective IgG1 and IgG2a MAbs significant-
ly sustained the survival of mice infected withH. capsulatum.
Administration of these MAbs could alter the pathogenesis of
H. capsulatum by modulating its intracellular fate and by
significantly boosting Th1 cytokine responses such as IL-2,
IL-12, IFN-γ, and TNF-α but not IL-4 in various organs either
at day 7 or day 14 post-infection [87]. Thus, enhancement of
Th1 cytokine responses and modulation of intracellular fate of
the fungus seems to be common factors associated with pro-
tection rendered by H. capsulatum MAbs. However, the reg-
ulation of cytokine responses might be dependent either on
isotype of MAb or time-point of analysis.

Role of antibodies in the protection against fungal
infections: data from human studies

Normal human serum or repertoire contains natural antibodies
to various pathogens. Candidal mannan-specific human IgG
antibodies from normal human serum were shown to mediate
classical complement pathway initiation [88]. Affinity-
purified natural mannan-specific human IgG displayed
prozone-like effect and hence therapeutic use of monoclonal
version of these natural IgGs requires careful dose titration
studies [89]. A full-length human recombinant anti-mannan
IgG1 (M1g1) was generated from anti-mannan Fab that was
isolated from a phage Fab display combinatorial library con-
taining Fab genes of bone marrow lymphocytes [90]. M1g1
activated the complement pathway, enhanced phagocytosis
and phagocytic killing ofC. albicans bymurine macrophages,
and rendered resistance to disseminated candidiasis in mice
[90]. The complement activation and deposition of C3 on
C. albicans by M1g1 could be independent of Fc-region as
Fab fragments could activate alternative pathway to initiate
C3 deposition [91]. Natural antibodies that react with candida

Semin Immunopathol (2015) 37:187–197 191



antigens are also part of the mucosal immunoglobulin reper-
toire wherein IgA from saliva were shown to recognize
Candida antigens such as phosphoglycerate kinase and
fructose-bisphosphate aldolase [92].

Confirming the experimental studies on the role of immu-
noglobulins and B cells in the protection against fungal infec-
tion, a primary hepatic invasive aspergillosis with progression
has been reported in a patient following rituximab therapy for
a post-transplantation lymphoproliferative disorder [93]. This
report was further substantiated by another report wherein
rituximab therapy was significantly associated with increased
risk for invasive aspergillosis in patients with lymphoprolif-
erative diseases after autologous hematopoietic stem cell
transplantation [94].

Though, many breakthrough studies have dissected the role
of antibodies in anti-fungal immunity, the translation of these
pre-clinical studies to patients is still under progress. The
presence of specific antibodies in patients with progressive
fungal infections has provided evidence against a protective
role of antibodies in fungal infections. Also, it has been shown
that naturally acquired antibodies develop during infancy to
C. albicans and in early childhood to C. neoformans [95].
However, the individuals still could not fight against fungal
infections, indicating that the presence of antibodies does not
necessarily prevent fungal infections. Based on the reports from
the experimental studies, it is now clear that these patients’ data
might not reveal fundamental incapacity of antibodies to pro-
tect against fungal infections but rather point towards inade-
quate amounts of protective antibody and/or the concurrent
presence of both protective and non-protective antibodies. In
fact, higher levels of IgG protective antibodies including those
against Met6p, Pgk1p, and Hsp90 are associated with good-
prognosis in invasive candidiasis patients [96]. Another report
indicated that patients who survived candidiasis display ampli-
fied antibody reactivity towards C-terminal epitope of mp58
mannoprotein [97]. Nevertheless, an absence of relationship
between hypogammaglobulinemia and susceptibility to fungal
infections in general (with the exception of case studies) sug-
gests that cellular responses have a major role in the protection
against fungal infections and that antibodies might play a
supportive role by reducing the fungal burden and by shaping
the immune responses. Therefore, further research is warranted
to understand the natural antibody responses to fungal patho-
gens in humans.

As passive administration of specific protective antibodies
showed promising results in experimental models, two anti-
bodies have entered clinical trials in recent years.

Patients with cryptococcosis elicit specific antibodies to
glucosylceramide and, affinity purified, these antibodies exhibit
inhibitory activity on cell budding and fungal growth of
C. neoformans [98]. Human IgM MAb specific to
glucuronoxylomannanprolonged the survival ofC.neoformans-
infected mice [99]. Based on these experimental data, a murine-

derived anticryptococcal IgG1κ MAb 18B7 reacting to
glucuronoxylomannan entered phase I, multi-institution, open-
label, non-randomized, dose-escalation study in HIV-infected
subjects who had been successfully treated for cryptococcal
meningitis [100]. Pre-clinical study has demonstrated that
MAb 18B7 recognizes all four serotypes of C. neoformans,
opsonizes C. neoformans serotypes A and D, increases the
anti-fungal actions of human and mouse effector cells, and
activates the complement pathway leading to deposition of
complement C3 on the capsule of Cryptococcus [101]. Also,
MAb 18B7 therapy in mice led to quick clearance of serum
cryptococcal antigen. Phase I study revealed acceptable safety
for this antibody and suggested further investigation at a max-
imum single dose of 1.0 mg/kg. Cryptococcal antigen titers in
the serum of these patients dropped by a median of twofold at
first week and a median of threefold at 2 weeks post-therapy.
The half-life of the MAb 18B7 in the serum was found to be
nearly 53 h. Further randomized clinical trials are awaited for
this antibody.

A strong and sustained antibody response to hsp90 was
associated with recovery of patients from invasive candidiasis
following treatment with amphotericin B [102–104]. An
immunodominant epitope on the Hsp90 of C. albicans is
present both in filamentaous fungi and in yeasts including
C. parapsilosis, Torulopsis glabrata, Candida tropicalis, Can-
dida krusei, and A. fumigatus [105]. Therefore, a single chain
variable fragment of a human monoclonal antibody
Efungumab (Mycograb®) recognizing immunodominant epi-
tope on the Hsp90 of C. albicans has entered clinical trials in
patients with invasive candidiasis. A double-blind, randomized
study demonstrated that Efungumab combined with lipid-
associated amphotericin B produce significant clinical and
culture-confirmed improvement in outcome for patients with
invasive candidiasis [106]. A pre-clinical data also supported
synergy between Efungumab and caspofungin [107]. However,
a recent study suggested that Efungumab potentiation of
amphotericin B could be non-specific [108]. Although a status
of an orphan drug has been given in the USA for this antibody,
its use in Europe is not permitted by the European Medicines
Agency due to potential side effects and concerns about aggre-
gation of the antibody. Also, Novartis discontinued the clinical
development of this anti-fungal antibody in 2010.

Treatment of fungal-mediated inflammatory conditions:
quest for unusual savior, intravenous immunoglobulin

Intravenous immunoglobulin (IVIg) is a therapeutic prepara-
tion of normal IgG obtained from pooled plasma of several
thousand healthy donors. Depending on the exposure of do-
nors to infectious diseases and vaccines and also on the
endemic nature of the infectious diseases, IVIg contains anti-
bodies to various pathogens of bacterial, viral, fungal, and
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parasitic origin [40, 109]. In addition, natural antibodies rep-
resent major composition of IVIg [110].

Initially used for the replacement therapy of primary and
secondary immunodeficiencies, high-dose (1–2 g/kg body
weight) IVIg is currently used in the therapy of diverse autoim-
mune and inflammatory diseases such as Kawasaki disease,
Guillain-Barré Syndrome, inflammatory myopathies, immune
thrombocytopenic purpura, chronic inflammatory demyelinat-
ing polyneuropathy, vasculitis, graft versus host disease, and
others as an immunomodulatory agent with no reports of serious
side effects [110–115]. In addition to invasive disease, fungal
species are also associatedwith several inflammatory conditions
such as both IgE and eosinophilia-driven hypersensitivity dis-
eases including severe asthma, allergic bronchopulmonary my-
coses, chronic sinusitis, hypersensitivity pneumonitis, atopic
eczema/dermatitis syndrome, and gut inflammation. Of note,
IVIg has been used as an off-label drug in allergy and asthma
[116–121] and shown protective effects in experimental models
of allergic airway inflammation [122–126].

IVIg could act as immunomodulatory agent in inflamma-
tory conditions via several mutually non-exclusive mecha-
nisms (Fig. 1). Thus, IVIg could inhibit the activation of
innate cells such as DCs, macrophages, neutrophils, iNKT
cells, and the secretion of inflammatory cytokines while en-
hancing the anti-inflammatory mediators such as IL-1RA and
IL-10 IVIg inhibits the differentiation and expansion of Th17
cells and reciprocally expands Tregs, regulates the functions
of B cells, activation of endothelial cells, and their secretion of
cytokines and chemokines. In addition, IVIg could neutralize
the pathogens including fungi and their antigens [123, 124,
126–143]. This broad range of activities of IVIg reflects the
importance of circulating immunoglobulins in the mainte-
nance of immune homeostasis.

In an open-label study with eight severe steroid-dependent
asthma children aged between 6 to 17 years, treatment with
IVIg (six monthly infusion at 2 g/kg) resulted in significant
reductions in steroid requirements. In addition, IVIg therapy
led to decrease in serum IgE levels and a progressive diminu-
tion in skin test reactivity to allergens [116]. Other anecdotal
studies also supported the use of IVIg in severe asthma with a
steroid-sparing effect [117, 144–146]. The immunological
analysis revealed that IVIg treatment decreased the number
of activated CD3+ T cells, CD4+ T cells in endobronchial
biopsies with a reduction in peripheral blood T cell activation,
decreased total serum IgE and IL-8 [144]. Also, IVIg could
synergistically act with dexamethasone to inhibit lymphocyte
activation and improve glucocorticoid receptor binding affin-
ity [117, 147]. A multicenter, randomized, double-blind,
placebo-controlled trial of high-dose IVIg however, failed to
show benefits in corticosteroid-dependent asthma [118]; this
study period was only 2 months and patients included were
over 40 years. Therefore, based on this report, it might be
concluded that younger patients probably benefitted from

IVIg therapy. Also, modifications in the immune system due
to previous drugs/therapies in adult patients might influence
the immunomodulatory functions of IVIg. Although further
randomized clinical trials are required to support the use of
IVIg in asthma and allergy, IVIg is not currently used as a first
line therapy due to the availability of several new generation
drugs. But these studies and experimental models provided a
clue that IVIg could benefit fungal inflammatory conditions.

Conclusion

Treatment of disseminated fungal infections are still challeng-
ing due to costs associated with the treatments, growing
reports of anti-fungal drug resistance, toxicity of anti-fungal
drugs, and non-availability of protective vaccines. Although,
humoral immunity might not have a major role in conferring
protection against fungal infections in human, passive admin-
istration of specific protective antibodies could prove to be
beneficial in drug resistance cases, to reduce the dosage and
associated toxic symptoms of anti-fungal drugs. The longer
half-life of the antibodies and flexibilities to modify their
structure/forms are additional advantages with anti-fungal
antibodies. The clinical data obtained with two antibodies
should incite interests in translating pre-clinical success into
the clinics. In addition, clinically proven benefits of IVIg in
various inflammatory diseases substantiate the necessity of
testing this therapeutic preparation in fungal-mediated allergy
and inflammatory conditions.

Most of the protective antibodies described to date recog-
nize surface molecules of the fungi. Though “one antibody for
all pathogenic fungi” is still elusive, there are experimental
evidences that suggest that common cell wall component-
specific protective antibodies like β-glucan exert protection
across several species of fungi [51, 61]. Another option could
be broad-spectrum recombinant single chain fragment (ScFv)
anti-idiotypic antibodies bearing the internal image of a yeast
killer toxin (KT). These killer antibodies are lethal to yeasts
and filamentous fungi including C. albicans, A. fumigatus,
and P. carinii that express specific β-1,3 D-glucan cell wall
receptor (KTR). These KT-ScFv were reported to have fungi-
cidal properties against C. albicans both in in vitro and in vivo
model of experimental vaginal candidiasis [148]. A
decapeptide resulting from the variable region sequence and
containing part of the CDR1 segment of the KT-scFv light
chain also exerted therapeutic activity against experimental
mucosal and systemic candidiasis [149]. Killer anti-idiotypic
MAb bearing the internal image of a yeast killer toxin showed
protection against early invasive aspergillosis in a murine
model of allogenic T cell-depleted bone marrow transplanta-
tion [150]. In addition, natural yeast KT-like antibodies with
candidacidal properties were also identified in the vaginal
fluid of candida-infected human vaginitis patients [151].
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