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Abstract Systemic lupus erythematosus (SLE) is a remark-
ably complex and heterogeneous systemic autoimmune dis-
ease. Disease complexity within individuals and heterogeneity
among individuals, even genetically identical individuals, is
driven by stochastic execution of a complex inherited pro-
gram. Genome-wide association studies (GWAS) have pro-
gressively improved understanding of which genes are most
critical to the potential for SLE and provided illuminating
insight about the immune mechanisms that are engaged in
SLE. What initiates expression of the genetic program to
cause SLE within an individual and how that program is
initiated remains poorly understood. If we extrapolate from
all of the different experimental mouse models for SLE, we
can begin to appreciate why SLE is so heterogeneous and
consequently why prediction of disease outcome is so diffi-
cult. In this review, we critically evaluate extrinsic versus
intrinsic cellular functions in the clearance and elimination
of cellular debris and how dysfunction in that system may
promote autoimmunity to nuclear antigens. We also examine
several mouse models genetically prone to SLE either because
of natural inheritance or inheritance of induced mutations to
illustrate how different immune mechanisms may initiate
autoimmunity and affect disease pathogenesis. Finally, we
describe the heterogeneity of disease manifestations in SLE

and discuss the mechanisms of disease pathogenesis with
emphasis on glomerulonephritis. Particular attention is given
to discussion of how anti-DNA autoantibody initiates exper-
imental lupus nephritis (LN) in mice.
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For most autoimmune diseases, we knowmore about the middle
and end stages of the disease than the beginning. Lupus, systemic
lupus erythematosus (SLE), is not different in that respect. SLE is
the prototypic systemic autoimmune disease [1]. We are devel-
oping an understanding of how the potential for SLE is inherited
and many genetic susceptibility loci that may contribute to SLE
have been identified, but we are still in the very early stages of
understanding how the identified susceptibility loci combine to
produce disease phenotypes in SLE. More importantly, we do
not know how the genetic program inherent within the inherited
susceptibility genes is initiated to cause SLE nor what events or
stimuli initiate the program. The heterogeneity of disease presen-
tation in SLE further complicates understanding of how SLE is
initiated. Virtually all organ systems of the body are potential
targets for damage by the disease processes of SLE. Just what
determines in a given individual with SLE which organs will be
targeted is poorly understood and is an important area for future
research. The plethora of autoantibodies that occurs in many
individuals with SLE is thought to be the main drivers of organ
damage or altered cellular function in the disease [2]. Established
criteria for clinical diagnosis of SLE have been modified and
updated to better reflect clinical presentation in patients and
improvements in diagnostic tools and capabilities [3–7]. The
published criteria include most, if not all, pathologic manifesta-
tions of SLE. A more recent guideline has been published
specifically for diagnosis andmanagement of glomerulonephritis
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in SLE, lupus nephritis (LN) [8]. Although there are more deaths
due to cardiovascular disease in SLE patients, renal disease had
the highest standardizedmortality ratio (SMR) among patients in
a very large, multicenter international cohort [9]. SMR was
calculated as the ratio of deaths observed to deaths expected by
cause for calendar-year periods and accounting for gender and
age. Since patients are diagnosed with SLE after onset of clinical
symptoms and because clinical symptoms can be so heteroge-
neous, there has been minimal opportunity to understand how
SLE is initiated within individual patients or why disease phe-
notypes are so variable. This reviewwill highlight current knowl-
edge regarding the etiopathogenesis of damage to major target
organs in SLE.

SLE

Autoimmunity in SLE is a consequence of the progressive
innate immune stimulation of antigen-selective, adaptive im-
mune responses to autoantigens [10–13]. The products of the
autoimmune response are autoantibodies primarily, but not
exclusively [2], to a variety of nuclear antigens including
DNA, RNA, ribonuclear proteins, and histones [14]
Pathogenic manifestations of lupus can encompass many tis-
sues and organs and may include but are not limited to
inflammation in the skin, joints, and other connective tissues;
vasculitis; glomerular and interstitial nephritis; cardiopulmo-
nary inflammation; central and peripheral nervous system
inflammation; and thrombocytopenia [3, 15]. SLE is more
prevalent in women than men with an estimated prevalence
of 1/1,000 among American women above the age of 17 [16].
SLE also has an unequal prevalence depending upon race and
ethnicity being more prevalent [17, 18] and with worse dis-
ease severity [19, 20] among African Americans, Asian, and
Hispanic individuals. The frequency of lupus among female
children below age 17 is estimated to be as high as 1/400 for
non-Caucasian Americans [21]. The disease is generally more
severe at onset in children than in adults [22, 23].

Mouse models for SLE

There are several experimental mouse models for SLE [24, 25].
All of the mouse models of spontaneous SLE share the pheno-
types of antinuclear and anti-DNA autoantibody production and
glomerulonephritis [1]. Similar to SLE in humans, multiple
susceptibility loci may contribute to SLE in mice [26]. The first
identified autoimmune mouse model was NZB and its F1 hybrid
with NZW, NZY, or NZC [27]. Autoimmunity in (NZB ×
NZW)F1 (B/W) mice most closely resembles SLE in humans
[26, 28] with female gender bias, complex genetic associations
including major histocompatibility complex (MHC)-linked and
non-linked loci [29–33], antinuclear and anti-DNA autoantibody

[24], and lupus-like glomerulonephritis [28]. NZM, derived by
inbreeding progeny of unintended backcross of B/Wwith NZW,
have similar complex inheritance of SLE as B/W but are homo-
zygous [25, 34]. Genetic susceptibility to SLE in MRLlpr/lpr and
BXSBYaa is primarily the result of a single mutation lpr that
affects Fas expression in MRL and an X chromosome translo-
cation Yaa that duplicates a region that includes the tlr7 gene in
BXSB [35]. B/W and other lupus-susceptible mice have been
invaluable as experimental models to test hypotheses related to
disease pathogenesis in SLE.

Genetics and stochasticity in SLE

At the Fourth International Congress of Immunology (Toronto,
1986), Dr. C. Garrison Fathman opened his presentation on
autoimmunity in type I diabetes with the statement that
“Autoimmunity is a combination of genetics and bad luck.”
The statement was and continues to be astute and accurate.
Most autoimmune diseases have significant linkages to one or
more genetic loci. Immune dysregulation, polyendocrinopathy,
enteropathy, X-linked syndrome (IPEX), and autoimmune
polyendocrinopathy-candidiasis-ectodermal dystrophy
(APECED) are exceptions in which autoimmune disease is
linked to mutations in single genes, foxp3 for IPEX [36, 37]
and aire for APECED [38–40]. SLE has a strong heritable
component, estimated to be approximately 66 % [41, 42], with
rates of concordance between 20 and 40% inmonozygotic twins
and from 2 to 5% in dizygotic twins or siblings [41, 43, 44]. The
sibling recurrence risk ratio in SLE patients is 29-fold higher than
in the general population [41], and the higher concordance
among monozygotic than dizygotic twins [44] indicates the
importance of susceptibility inheritance. Genome-wide associa-
tion (GWA) and gene mapping studies have identified approxi-
mately 30 susceptibility loci for SLE [42, 45, 46]. Individually,
each locus has relatively modest risk association, odds ratio
(OR)<2.5, and together account for only 15 % or less of the
estimated genetic heritability of SLE [47, 48]. What accounts for
the “missing heritability” for SLE is unknown or at least unre-
solved but may include epigenetic factors, other risk factors, or
the likely possibility that the “SLE phenotype” is a collection of
several distinct and rare subtypes [48, 49]. Penetrance for most
identified risk loci is low, and as noted above, concordance is
relatively low for monozygotic twins. Monozygotic twins re-
ceive the same genetic “hand,” but “luck” clearly influences
outcome as the genetic hand is played. Similarly,MRLlpr/lprmice
are genetically homogeneous. All develop SLE, but only 25 %
produce the anti-Sm autoantibody [50]. No C57 BL/6lpr/lpr mice
produce anti-Sm. Anti-Sm in MRLlpr/lpr is independent of gen-
der, age, parentage, and environment. The potential to produce
anti-Sm autoantibody is genetically determined, but anti-Sm
production in the 25 % of MRLlpr/lpr that produce the autoanti-
body is determined by chance. Epistatic interactions among
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susceptibility loci have been identified [51–55], most notably
between HLA and CTLA4, although again with relatively
modest risk, OR<2. Low concordance and penetrance among
susceptibility loci for SLE are consistent with stochastic ex-
pression of multiple susceptibility genes [1] and epigenetic
effects on susceptibility gene expression [56, 57]. Low con-
cordance has also been cited as indication for an environmen-
tal stimulus to initiate autoimmunity in SLE, which would
also be manifested as a stochastic effect on disease suscepti-
bility [41, 44, 58].

Exceptions to low penetrance for susceptibility loci in SLE
are genes that encode early complement components [42],
particularly C1q [59, 60], and TREX1, a gene that encodes a
nuclease important in the degradation of cytosolic DNA [61].
Mutations in C1q [59] and TREX1 [62] are rare, but both are
strong risk factors for lupus (OR=10 and 25, respectively).
Mutations that inhibit function of those genes initiate autoim-
munity and SLE without a requirement for “bad luck” other
than inheriting a bad C1q or TREX1 gene. Although there
have been fewer genetic studies in pediatric lupus patients
with concomitantly much less data, the risk and confirmed
loci are similar to those in adults [63]. Inherited deficiencies in
early complement components present the highest risk and,
when present, account for the earlier disease manifestation in
children [59].

MHC

Genetic risk for SLE is associated with inheritance of MHC
class II and class III loci [49]. Within MHC class II, HLA-
DRB1 haplotypes DBR1*1501 and DBR1*0301 confer the
strongest MHC class II association with SLE [64, 65]. The
MHC class III locus contains genes encoding complement
components and other proteins, single nucleotide polymor-
phisms (SNP) for which GWA has established linkage to SLE.
These include the early complement components C1q, C4,
C1r/s, C2, and C3 [66–68], the MutS homolog 5 (MSH5),
super viralicidic activity 2-like (SKIV2L), integrin alpha m
(ITGAM, CD11b), integrin beta chain beta 2 (ITGB2, CD18),
and Fcγ receptor (FcγR) genes [69–75]. The phenotypic
contributions of complement, ITGAM, and FcγR are
discussed in more detail below. MSH5 is important in immu-
noglobulin (Ig) class switch recombination [76], meiosis, and
DNA mismatch repair [76]. The phenotypic contribution of
SKIV2L is less understood.

Type I IFN

As found in other autoimmune diseases such as systemic
sclerosis, type 1 diabetes, rheumatoid arthritis, psoriasis,
Sjogren’s syndrome, and dermatomyositis, over half of pa-
tients with SLE exhibit a type I interferon (IFN)-inducible
gene signature in their peripheral blood leukocytes [77–82].

As it turns out, close to half of the genetic susceptibility loci
found to be associated with SLE are involved in type I IFN
production or downstream signaling [83]. Type I IFNs that
consist of 13 IFN-α isotypes, IFN-β, IFN-ε, IFN-κ, and
IFN-ω, are major mediators of inflammation and the innate
immune response. Plasmacytoid dendritic cells (pDCs) pro-
duce IFN in response to cell membrane or endosomal signal-
ing when innate immune receptors, including toll like recep-
tors (TLR) 3, 7, 8, and 9, are engaged by pathogen-associated
molecular patterns (PAMPs) or damage-associated molecu-
lar patterns (DAMPs) or when specialized receptors, such
as RIG-I or IFIH1, are engaged by intracellular RNA and
DNA [84]. The IFNAR1/2 receptor when engaged by type
I IFN initiates a signaling cascade through the Janus-
activated protein kinases (JAK), JAK1 and TYK2, which
regulate a myriad of downstream genes [83, 85, 86].
Many of these downstream genes are likely involved in
SLE pathogenesis by affecting expression of chemokines,
facilitating monocyte and DC maturation, activating
autoreactive T and B cells, promoting autoantibody secre-
tion from differentiated, autoreactive plasma cells, and by
facilitating apoptosis of immune cells [86]. The importance
of the type I IFN signature in SLE pathogenesis is sup-
ported by the observation that those patients with endog-
enous anti-IFNα autoantibodies tend to have lower serum
type I IFN levels, reduced activation of type I IFN path-
ways, and lower SLE disease activity scores [87].

Other cytokines and cytokine signaling

Although members of the tumor necrosis α (TNF-α) family
have been associated with SLE, the role of TNFα specifically is
still to be determined. TNF ligand superfamily 4 (TNFSF4)
polymorphism confers susceptibility to SLE [88]. The TNFSF4
receptor is expressed mainly on activated antigen-presenting
cells (APCs) and activated CD4+ T cells, and increased expres-
sion of TNFSF4 may enhance interactions with APCs or by
modulating T cell activation [88–90]. B/W mice inherit a dom-
inant TNF-α allele from NZW H-2z that results in reduced
TNF-α [91]. Recombinant TNF-α replacement therapy induces
a significant delay in LN in B/W mice. Associations between
interleukin (IL)-10 [92–94], IL-1 signaling [95], IL-21 [96], and
inducible T cell co-stimulator (ICOS) [97] and susceptibility to
SLE have also been identified.

Genetic risk and intrinsic versus extrinsic problems
in disposal of cellular debris

The highest risk associations for SLE are in genes that control
disposal and degradation of apoptotic cells and cellular debris,
C1q [59, 60] and TREX1 [62, 98]. TREX1 is a negative
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regulator of the type I interferon-stimulatory DNA (ISD) re-
sponse [99]. TREX1 deletion in mice results in the accumulation
of endogenous retroelement DNA, ISD-dependent IFN produc-
tion, inflammation, and autoimmunity. C1q binds apoptotic cells
and particles and facilitates their degradation and removal [60,
100, 101]. C1q is a complex of three polypeptides, A, B, and C,
encoded by genes within chromosomal region 1p34.1 to 1p36.3
[102]. C1q deficiency may be caused by nonsense or missense
mutations in A, B, or C with no identified preference [59]. Mice
made genetically deficient in either C1q [60] or DNaseI [103]
accumulate apoptotic cells and nuclear debris and develop SLE-
like autoimmunity including LN. Similarly, mutant mice that
lack functional Tyro 3 family member Mer also have defective
phagocytosis and clearance of apoptotic cells and also develop
SLE-like autoimmunity [104].

Circulating monocytes and macrophages from SLE pa-
tients exhibit a reduced capacity for eliminating apoptotic cells
[105, 106]. What is not clear is whether that observed phago-
cytic defect is intrinsic to phagocytic cells or extrinsic from the
effects of chronic inflammation on phagocytic cells in SLE
patients. Peritoneal macrophages but not bone marrow-
derived macrophages in B/W mice have phagocytic defects
similar to those in phagocytes from SLE patients [107, 108].
Those results indicated that the phagocytic defect in circulat-
ing or peripheral tissue macrophages in B/W mice is extrinsic
and related to autoimmunity in the mice and not intrinsic to the
macrophages. The latter is relevant to understand whether
phagocytic defects and poor elimination of apoptotic cells
contribute to initiation of SLE early in disease pathogenesis,
“cause,” or simply reflect the cumulative effects of autoim-
munity and ongoing chronic inflammation, “effect.” Whether
cause or effect, reduced phagocytosis and elimination of apo-
ptotic, necroptotic, NETotic, or necrotic debris would exacer-
bate autoantibody production and disease progression.

Izui et al. were the first to realize that inflammatory stimuli
such as lipopolysaccharide (LPS) could induce release of
circulating DNA, formation of circulating DNA–anti-DNA
complexes, and glomerulonephritis [109–111]. Immune com-
plexes of antinuclear autoantibodies and remnants of second-
ary necrosis from poorly phagocytosed apoptotic cells aug-
ment inflammatory cytokine release ex vivo in phagocytic
cells from SLE patients [112] likely as a result of increased
signaling from FcγR and TLR. That enhanced ability to
phagocytose cellular debris from secondary necrosis contrasts
with the inherited susceptibility locus in ITGAM, CD11b. An
inherited polymorphism in ITGAM is a susceptibility locus
for SLE although with modest individual risk [74, 75].
Monocytes/macrophages and neutrophils from individuals
homozygous [113] or heterozygous [114] for the susceptibility
allele have reduced iC3b-dependent phagocytosis by comple-
ment receptor 3 (CR3). The reduced phagocytic function of
CR3 encoded by the susceptible allele is consistent with the
association of susceptibility in SLE with reduced potential to

eliminate apoptotic cells and cellular debris. The modest sin-
gle risk for SLE associated with ITGAM implies that other
intrinsic and/or extrinsic factors must operate with ITGAM to
affect disease.

As noted above, the rather low penetrance and low concor-
dance for most inherited susceptibility loci have been interpreted
as indication for the necessary contribution of environmental
factors for autoimmunity and disease in SLE [41, 44, 58]. At
least in B/W and other mice genetically predisposed to SLE,
initiation of spontaneous autoimmunity is independent of an
identified external innate or adaptive immune stimulus [1].
Mice not genetically prone to autoimmunity and homozygous
for an induced null mutation in the inhibitory FcγRIIb develop
SLE-like autoimmunity including glomerulonephritis [115]. The
elimination of a critical regulatory pathway for inhibiting B cell
activation results in SLE-like autoimmunity in an otherwise
normal background. Sanroque mice produce anti-DNA autoan-
tibody and develop LN [116]. Sanroque mice are homozygous
for an induced mutation in the roquin ubiquitin ligase gene
Rc3h1 [117]. Sanroque mice have spontaneous T follicular help-
er cell (TFH) expansion and germinal center (GC) formation.
Lyn−/− mice have defective B cell signaling and development
with reduced B cell numbers, more rapid turnover, and abnormal
response to T-independent (TI) and T-dependent (TD) antigens
[118–120]. As Lyn−/−mice age, they develop autoantibodies and
lupus-like autoimmune disease. Lyn function is not required to
initiate B cell receptor-dependent activation but is essential for
tolerance and negative regulation including FcγRIIb [121].
Cd22−/− mice have a similar B cell phenotype to Lyn−/− [122].
Chronic graft-versus-host (GVH) disease in mice produces SLE-
like autoimmunity including selective production of antinuclear
autoantibodies, including anti-DNA autoantibody, and glomeru-
lonephritis [123–125]. The intensive, chronic T cell stimulation
in GVH stimulates normally tolerant autoreactive B cells to
produce autoantibodies. Intraperitoneal pristane injection of mice
not genetically predisposed to autoimmunity induces chronic
inflammation, autoantibody production, including anti-DNA,
and lupus-like disease [126]. The mechanism for autoantibody
production in that experimental system is not understood but is
likely due to chronic stimulation of mononuclear cells, particu-
larly Ly6C-positive monocytes, and type I interferon production
[127]. Mice from strains not genetically predisposed to autoim-
munity produce IgG anti-DNA antibody with glomerular im-
mune deposits and proteinuria when immunized with DNA-
peptide complexes, but the induced autoantibody production is
not sustained [128, 129].

Eilat andWabl [130] have introduced a new and interesting
hypothesis for the role of endogenous retroviral elements in
the induction of autoimmunity in B/Wand other autoimmune
mice. Their hypothesis derives from the experimental effects
of an antiretroviral drug on disease progression in B/W mice
[131]. The hypothesis predicts that intracellular replication
and accumulation of retroviral DNA and RNA stimulate IFN
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production and the creation of neo-epitopes to which T cells
are not tolerant. The hypothesis is consistent with SLE sus-
ceptibility associated with TREX1 deficiency discussed above
and the function of nucleic acid sensing TLR7 and 9 in B cell
activation [11, 132].

Tolerance and self-reactivity

Whether good versus bad luck in SLE reveals itself as random
environmental influence, inherited [133] or stochastic epige-
netic regulation, or other stochastic genetic events remains
largely unknown. The immune system has evolved recogni-
tion and sensing capabilities to maximize pathogen detection
at the risk of self-reactivity [134]. For example, a surprising
percentage of Ig heavy and light chain variable regions genes
in the mouse primary B cell repertoire encode anti-DNA
antibodies [13, 135]. That potential for self-reactivity must
be and normally is restrained [134]. Any genetic [115, 116],
innate immune [126, 136], or adaptive immune [123, 124,
128, 129] disruption of the regulatory balance and control of
self-reactivity can initiate autoimmunity. If the activation is
sustained or progressive, the acute autoimmunity can become
chronic and produce autoimmune disease.

Autoantibodies and autoimmune B cell activation

Disease phenotypes in SLE are highly pleomorphic [3, 4, 15,
137] due to the heterogeneity of molecular and cellular dys-
regulation of immune function [138]. The most frequent im-
mune aberration, common to human and mouse SLE, is
antinuclear autoantibody production. Antinuclear autoanti-
bodies in human and mouse SLE may include antibodies
reactive to DNA; chromatin; nucleosomes; histones; non-
histone DNA-binding proteins; and ribonuclear proteins
(RNP), Sm, U1-RNP, Ro/SSA, and La/SSB [14] with reactiv-
ity or cross-reactivity to phospholipids [139, 140]. Reactivity
to double-stranded DNA (dsDNA) and the Sm ribonuclear
protein antigen are generally specific for SLE [3]. Immune
pathogenesis in human [141–143] and mouse [24] SLE is
most correlated with autoantibody production to native DNA
(dsDNA), although most anti-dsDNA monoclonal antibodies
(mAbs) also bind chromatin and nucleosomes [135, 144].

How autoreactive B cell activation and anti-DNA autoan-
tibody production are initiated and what initiates the activation
is still basically unknown. What is known is that autoreactive
B cells undergo clonally selective specificity maturation and
class switching to IgG driven by specificity for DNA or other
nuclear antigens within GC [12, 13, 145]. Initiation of the
autoimmune response depends upon innate immune signaling
primarily through TLR7 and 9 on B cells and APCs [11, 132].
IFN production byAPCs, particularly pDC, is a consistent and

critical mechanism in the innate immune-dependent initiation
of inflammation and T and B cell activation [146–148]. The
IgG autoimmune antibody response, including IgG anti-DNA,
is CD4 T cell-dependent [149], although determination of
which CD4 T cell subsets are necessary for autoantibody
production is somewhat confusing and seems mostly to de-
pend upon the experimental system or autoimmune mouse
model. TFH seem to be the most critical T cell subset because
of their critical role in the GC response [116, 150].

Sanroque mice (roquinsan/san) are a mutant strain with
spontaneously expanded TFH and GC [117]. Sanroque mice
develop lupus-like autoimmunity including anti-DNA autoan-
tibody production and glomerulonephritis. The roquinsan/san

mutation disrupts an ICOS repressor resulting in excessive co-
stimulation of TFH and IL-21 production. GC formation and
autoantibody production were independent of TH1, TH2, and
TH17 [116]. Interestingly, TFH and GC expansion requires T
cell signaling but is independent of IL-21. The results with
sanroque mice contrast with other results implicating a neces-
sity for IL-17 and/or TH17 in immune and autoimmune GC
formation [151, 152]. Spontaneous GC formation and patho-
genic autoantibody production in BXD2mice were dependent
upon IL-17 signaling through the IL-17 receptor [152]. The
effect of IL-17 may be to promote B cell retention in GC to
promote autoreactive B cell activation [150]. GWA has iden-
tified genetic associations between IL-21 [96] and ICOS [97]
with susceptibility to SLE in humans.

Disease pathogenesis

Disease pathogenesis in SLE is manifested as systemic acute
and chronic inflammation that affects many organ systems,
although to varying degrees within individual SLE patients [3,
4, 15, 137]. The major cause of mortality in adult SLE is
myocardial infarction consequent to premature atherosclerosis
and coronary heart disease [15], although renal end-stage
disease has the highest SMR in SLE [9]. Interestingly, even
though the most recognized pathology related to SLE in B/W
mice is glomerulonephritis [28], atherosclerotic lesions and
myocardial infarction were described in early reports of pa-
thology in those and other hybrids with NZB [27]. LN is also a
severe life-threatening disease manifestation of SLE in both
adults [153, 154] and children [155], generally being more
severe at disease onset in children [22, 23]. The following
sections will discuss the mechanisms of tissue damage for
different manifestations of disease pathogenesis.

Lupus nephritis

Glomerulonephritis in human [142, 156–158] and mouse [24,
159] SLE has long been associated with glomerular immune
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deposits of IgG autoantibody to DNA. Glomerular lesions in
affected kidneys contain both subendothelial and subepithelial
complexes of chromatin, IgG anti-DNA antibody, and com-
plement [160–162]. The glomerular immune complexes in-
duce leukocyte infiltration and accumulation and initiate a
tissue destructive chronic inflammation. The role for B cells
that secrete anti-DNA autoantibodies is obvious, and the
antibodies in LN are discussed in detail below. T cells, mono-
cytes and macrophages, dendritic cells, and neutrophils also
contribute to glomerular inflammation, but their function is
more heterogeneous and varies within different experimental
systems and mouse models of SLE. Common to all of the
experimental systems and mouse models for LN is antibody
that binds DNA and/or chromatin except one. mIgM.MRL/
MpJ-Faslprmice have surface Ig receptor-positive B cells, but
the B cells cannot secrete Ig [163]. Those mice are autoim-
mune and develop a B cell-dependent interstitial nephritis.
The most prominent immunohistology of the interstitial ne-
phritis in mIgM.MRL/MpJ-Faslprmice was T cell infiltration.
Although different from the diffuse proliferative nephritis in
wild-type (wt) MRL-Faslpr and other mice that develop spon-
taneous LN, the phenotype of mIgM.MRL/MpJ-Faslpr mice
provides insight about kidney pathogenesis in LN unrelated to
anti-DNA autoantibody. In contrast to the mIgM.MRL/MpJ-
Faslprmice, F2 mice homozygous for Faslpr and a JH deletion
(JhD) with ~50% genetic contribution fromMRL/MpJ had no
kidney pathology [164]. JhD homozygous mutant mice
lacked B cells from birth. The JhD mutant mice indicated
the requirement for B cells for kidney pathology in
mIgM.MRL/MpJ-Faslpr mice.

FcγR

Mice with homozygous null mutation of the FcγR chain have
reduced cell surface expression of FcγRI, III, and IV, no
signaling capability through the receptors, and consequently
defective FcγR-dependent activation and phagocytic function
among cells that normally express activating cell surface
FcγR [165, 166]. When the γ−/− mutation was backcrossed
into NZB and NZW to create NZB.γ−/− and NZW.γ+/− that
were mated to create F1, the B/W γ−/− were autoimmune with
similar anti-DNA autoantibody titers as wt B/W [167]. In
contrast to wt B/W, however, γ−/− B/W had attenuated LN
including reduced glomerulonephritis, reduced proteinuria,
and prolonged survival. These results were profound in their
implication that FcγR-dependent rather than complement-
dependent activation of inflammatory effector cells is more
important for glomerular inflammation in LN. On the other
hand, mice with a homozygous null mutation of the inhibitory
FcγRIIB developed spontaneous autoimmunity including
anti-DNA autoantibody production and glomerulonephritis
depending upon genetic background. All of the results with

FcγR mutations in mice are consistent with genetic linkages
between SLE susceptibility and FcγR loci [46]. Complement
activation may be important for glomerular recruitment of
leukocytes [168] that initiate and accelerate glomerulonephri-
tis [169]. Activated complement components also induce
increased FcγR expression on neutrophils and monocytes
making them more susceptible to activation by immune com-
plexes via FcγR [168, 170, 171]. Early complement compo-
nents and activating FcγR are both important in SLE suscep-
tibility for their roles in removing and eliminating necrotic and
apoptotic cells and cellular debris [46, 172].

Mesangial cells

In vitro experiments have implicated mesangial cells for pro-
moting inflammation in LN through FcγR or innate immune,
TLR stimulation [173–176], or direct binding by
nephritogenic anti-DNA autoantibody [177]. The results are
controversial if not contradictory and difficult to reconcile
with in vivo genetic results. Until activated by IFNγ to ex-
press activating FcγRI, IIA, and IIIA, mesangial cells only
expressed inhibitory FcγRIIB [173, 178]. This result would
imply that IgG immune complexes should inhibit not promote
proinflammatory cytokine expression by normal mesangial
cells. Mesangial cells also do not express TLR 7, 8, and 9
but do express TLR 1–6 [179]. In the absence of TLR9 [132,
180], it is unclear how DNA or nucleosomes would activate
mesangial cells in the absence of mononuclear or myeloid
cells [176].

The most insightful results about the role for mesangial
cells in LN were obtained with B/W bone marrow chime-
ric mice [181]. Only mice chimeric for B/W γ+/+ bone
marrow cells but not B/W γ−/− bone marrow cells devel-
oped glomerulonephritis, even though both had equivalent
glomerular IgG deposits. B/W γ−/− bone marrow chimeric
mice had no myeloid or mononuclear cellular infiltrates
that would have been expected if FcγR+ mesangial cells
produced chemokines and cytokines in response to the
glomerular immune complexes. Together, the above re-
sults indicate that signaling through activating FcγR on
resident myeloid and mononuclear cells initiate glomeru-
lonephritis in SLE. Complement’s role in LN is in
recruiting leukocytes and accelerating their response to
glomerular IgG deposits [168, 169].

T cells

The role for T cells in glomerular pathogenesis in SLE is
complicated. Part of the difficulty is in distinguishing
whether the accumulation of activated T cells in inflamed
glomeruli or tubular interstitium is cause or effect.
Interstitial T cell infiltration in MRL/MpJ-Faslpr mice is
discussed above. In human SLE patients [182] and B/W
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[183] and NZM2328 mice [184], LN has been correlated
with glomerular IL-18 and IFNγ indicative of TH1 infil-
tration. In both cases, TH1 were likely more important for
progression than initiation of glomerular pathogenesis. The
discovery of IL-17 and TH17 and their role in inflammation
and autoimmune disease [185] has yielded a new perspec-
tive for disease development in SLE [186]. The require-
ment for IL-17 signaling for autoimmunity in BXD2 [152]
described above is an excellent example.

Fcγr2b−/−.Traf3ip2−/− mice also present an insightful if
not intriguing example for the role of IL-17 in LN.
Fcγr2b−/−.Traf3ip2−/− mice lack the inhibitory FcγRIIB but
also lack the CIKS/ACT1 adaptor required for signaling by all
IL-17 cytokines through the IL-17 receptor [187]. These mice
produce IgG anti-DNA with glomerular IgG deposits like
Fcγr2b−/− mice but have attenuated glomerular disease and
increased survival. Fcγr2b−/−.il17a−/− mice had a similar
phenotype to Fcγr2b−/−.Traf3ip2−/− mice. Unlike the BXD2
mice, loss of IL-17a or IL-17 receptor signaling did not
diminish autoantibody production or GC formation in
Fcγr2b−/−.il17a−/− mice and only partially reduced GC in
Fcγr2b−/−.Traf3ip2−/− mice. Recruitment of inflammato-
ry cells, particularly neutrophils, was reduced in both
Fcγr2b−/−. Traf3ip2−/− and Fcγr2b−/−.il17a−/− mice.

Anti-DNA antibody specificity and lupus nephritis

The strongest immunological and serological correlate for
glomerulonephritis in SLE is IgG autoantibody to dsDNA
[141, 143]. Glomerular lesions consist of fibrinoid, electron
dense subendothelial and subepithelial deposits of complexes
of IgG anti-DNA, chromatin, and complement [142, 160–162,
188]. Nevertheless, a subset of SLE patients [154, 189–192]
and anti-DNA antibody VH and VL transgenic B/W mice
[193–195] produce anti-dsDNA similarly to patients with LN
or wt B/W, respectively, but do not develop LN. Serum IgG
anti-dsDNAmay precede LN by several years in serologically
positive clinically quiescent patients (SPCQ), and the trans-
genic B/W live well beyond a year with no signs of LN. As
such, the transgenic B/W are reasonable models for SPCQ in
SLE patients. Ebling and Hahn had observed that eluted IgG
anti-DNA were limited to a subset of total serum IgG anti-
DNA [188]. The restricted subset was limited to anti-DNA
IgG with relatively high pI. Krishnan et al. [144] passively
induced LN in non-autoimmune mice by injecting anti-DNA
mAbs or mAb-producing hybridomas. Only mAbs that also
bound cross-reactively to basement membrane matrix anti-
gens in vitro bound to glomerular basement membrane
(GBM) or mesangial matrix (MM) in vivo and induced pro-
teinuria. Binding in glomeruli by the mAbs was independent
of DNA, chromatin, or nucleosomes. Non-GBM-binding
mAbs had similar or even higher relative affinity for
dsDNA and chromatin as the GBM-binding mAbs [144].

The 3H9 mAb, from which the 3H9, VH, and VL trans-
genic B/W [193] were derived, does not bind basement
membrane matrix antigens or GBM and does not induce
passive LN [144, 196]. The subset of anti-DNA IgG in
glomerular eluates isolated by Ebling and Hahn [188]
likely included antibodies that bound directly to GBM or
MM. The pioneering work of Madaio and colleagues
[197–199] and Eilat and colleagues [200] had already
demonstrated that anti-DNA mAbs may bind directly to
glomerular antigens independently of DNA and initiate
LN. The experiments of Krishnan et al. [144] demonstrated
that only GBM-binding anti-dsDNA bound in glomeruli
when co-injected with non-GBM-binding anti-dsDNA. The
conclusion from these results is that binding to DNA,
chromatin, or nucleosomes alone is neither necessary nor
sufficient for anti-DNA IgG to initiate glomerular binding
and LN. The stochastic processes of somatic recombination
and somatic hypermutation determine antibody specificity,
and at least for B/W mice, only about 20 % of individual
anti-DNA antibodies could be expected to initiate glomer-
ular binding and LN [144]. These stochastic processes may
contribute to SPCQ in SLE patients and the variation in
onset of LN in B/W and other autoimmune mice.

An alternative conclusion to the above suggests that anti-
DNA autoantibody may only bind to chromatin on GBM or in
MM and is based upon morphologic data from nephritic
kidneys [201, 202] or kidneys perfused with nucleosome-
anti-DNA complexes [203]. Essentially, the proposed mecha-
nism requires histone-dependent binding of nucleosomes to
GBM or MM. Izui et al. [204] had earlier demonstrated that
both ssDNA and dsDNA bound GBM in vitro. In those
experiments, ssDNA bound more efficiently. Although intui-
tively appealing, the proposed mechanism is inconsistent with
the known structure of nucleosomes [205] and chromatin
[206] and their physical chemical properties [207]. The highly
negatively charged nucleosomes are unlikely to promote in-
teraction with the negatively charged GBM [208, 209].
Nucleosomes may bind to individual GBM components on a
laboratory sensor chip [210], but nucleosomes do not bind to
GB or other areas of the kidney in vivo in either humans [211]
or mice [212]. In the aforementioned experiments above,
nucleosomes were only bound to GBM in the presence
of anti-DNA antibody [201] or when the perfused im-
mune complexes were prepared with high antibody ex-
cess. Under such conditions, excess antibody in the complexes
may be able to bind directly to GBM [144]. The morphologic
data [201, 202] are also consistent with direct GBM and MM-
binding of anti-dsDNA antibody. GBM or MM-bound anti-
body may bind to extracellular chromatin and increase
the size of glomerular immune complexes [144, 213,
214]. The morphologic data may reflect the middle to
end stages of glomerular IgG deposition [142, 160–162]
but not the initiating event.
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Accumulating results in mice and humans indicate at least
an indirect role for neutrophil extracellular traps (NETs) and
NETosis in SLE. Since Radic and Marion recently reviewed
that topic in this series [213], no further discussion will be
included here. It is important to note, however, that recent
experiments in MRLlpr/lpr nox2−/− mice that are defective for
NETosis and NET release from neutrophils have even worse
SLE disease symptoms than MRLlpr/lpr Nox2 sufficient mice
[215]. NETosis by neutrophils is at least not required for SLE
in MRLlpr/lpr mice. Important to note, however, DNA extra-
cellular traps can be formed without NADPH oxidase and by
innate immune cells other than neutrophils [216].

The mechanistic pattern for lupus nephritis that emerges
from the above mouse models is likely as follows (Fig. 1):

1. The stochastic generation, activation, and antigen selec-
tion of DNA-reactive B cells will eventually yield an IgG
anti-DNA that cross-reacts with relatively high affinity to
GBM and/or MM antigens.

2. IgG anti-DNA binds directly to cross-reactive GBM or
MM antigens [144] and activates complement and
resident hematopoietic cells expressing activating
FcγR [167, 181].

3. Chromatin [202], apoptotic bodies [217], and/or micro-
particles [218] released by necrosis or inflammation-
induced NETosis, necroptosis, or apoptosis may bind to
GBM-bound IgG anti-DNA to produce progressively
larger immune complexes [219]. Cytokines and
chemokines produced by activated leukocytes [220], in-
cluding IL-17 [187] and IL-12 [182], recruit more cellular
infiltration by myeloid cells, monocytes, and T cells.

The initial binding of IgG anti-DNA and small immune
complexes to GBMwill likely be reversible and represents the
rate-limiting step for initiation of LN [144]. The above process
will establish a feed-forward, progressive accumulation of
IgG and immune complexes, inflammatory cells, and media-
tors that eventually destroy glomerular and tubular structure
and function.

Skin

The skin is a target of tissue damage in several different forms
of lupus erythematosus (LE). Ultraviolet radiation (UVR)
from sun exposure has been implicated in triggering onset
and/or exacerbation of the cutaneous lesions of LE by several
possible mechanisms. The term “cutaneous lupus erythema-
tosus” (CLE) encompasses several conditions that share his-
tologic features of hyperkeratosis, follicular plugging, and
inflammation of adnexal structures [221]. Major groups in-
clude acute cutaneous lupus erythematosus (ACLE), subacute
cutaneous lupus erythematosus (SCLE), chronic cutaneous

lupus erythematosus, and intermittent cutaneous lupus erythe-
matosus (ICLE) [222]. Chronic CLE is further subdivided into
discoid lupus erythematosus (DLE) and chilblain LE with the
former being triggered by UVRwith cold and humidity acting
as a trigger for the latter [222]. The patient with CLE may
follow a classical course in which LE remains confined to the
skin or can develop other organ involvement to become SLE.
The reverse can also occur in which initially there is no skin
involvement in SLE with one form of CLE appearing later in
the course of the disease.

The cellular infiltrates in CLE include CD8+ cytotoxic and
CD4+ Teffector cells, CD68+ macrophages, pDCs, andVα24+

Vβ11+ invariant natural killer T cells (iNKT) [223–225].
Inflammation-promoting cytokines, including IL-1β, IL-17,
IL-18, TNFα, IFNγ, and high-mobility group box 1
(HMGB1) protein, are present in CLE lesional skin and can
stimulate production of chemokines and expression of adhe-
sion molecules (intracellular adhesion molecule-1 (ICAM-1)
and E-selectin) to promote leukocyte influx [226–232]. IL-17A
is positively correlated with expression of IFN-α and antiviral
myxovirus A protein (MxA) in all subtypes of CLE [233].

Exposure to UVR-A and UVR-B can induce apoptosis of
keratinocytes and is associated with c-Jun N-terminal kinase
(JNK) that facilitates induced nitric acid synthase (iNOS)
production [234–237]. Increased iNOS leads to increased
production of nitric oxide (NO) that may counter UVR-A-
induced apoptosis by increasing Bcl-2 expression and reduc-
ing Bax protein in endothelial cells [238]. Compared to skin of
normal individuals in which iNOS expression is upregulated
within 2 days after UVR, iNOS in CLE patients appears 72 h
after UVR exposure that would allow apoptosis of
keratinocytes to proceed unopposed within the first 72 h after
UVR exposure [238–240]. Apoptotic keratinocytes in turn

�Fig. 1 GBM/MM-binding anti-dsDNA initiates glomerulonephritis in
SLE. a Activated TFH activate DNA-reactive and stimulated B cells to
produce IgG anti-dsDNA autoantibody. b IgG anti-dsDNA binds directly
to GBM or MM cross-reactive antigen(s). c Resident neutrophils and
monocytes/macrophages are activated by FcγR and complement. d
GBM/MM-bound anti-dsDNA can bind to extracellular chromatin,
apoptotic bodies, microparticles, or DNA extracellular traps. The large
GBM/MM-bound immune complexes activate more complement and
activating FcγR-expressing neutrophils and monocyte/macrophages.
Chemokines and cytokines released by activated leukocytes attract and
activate TH1 and TH17 CD4 T cells. This process establishes a
progressive, feed-forward mechanism to sustain chronic inflammation
that eventually destroys glomerular structure and function.

, GBM/MM; , chromatin; , act ivated
complement; , complement receptor; , activating FcγR; ,
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may become a source for innate and subsequent adaptive
immune cell activation [112, 136]. Recent experiments in
mice demonstrated that repeated epicutaneous stimulation
with the TLR-7 agonist imiquimod not only induced a
lupus-like systemic autoimmune disease but also increased

skin photosensitivity to UVR-B light [241]. In those experi-
ments, systemic autoimmunity and photosensitivity were de-
pendent upon pDC. These results are important because they
implicate the skin as a potential primary organ for TLR-7
dependent initiation of SLE.
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Th17

Th17
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Th1Th1

Th1
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Lungs

Some form of pulmonary inflammation occurs in 50–70 % of
patients with SLE [242–244]. Pleuritis is the most common
and occurs with or without pleural effusions [245]. Etiology
and pathogenesis of pleuritis and pleural effusions in SLE
patients is unknown. Other less common pulmonary involve-
ment includes bronchiolitis obliterans, interstitial lung disease,
shrinking lung syndrome, pulmonary arterial hypertension,
diffuse alveolar hemorrhage, vasculitis, pulmonary nodules,
and diaphragmatic weakness [242, 245, 246]. Although the
cause of diffuse alveolar hemorrhage (DAH) in SLE has not
been completely elucidated, immune-mediated damage of
small blood vessels and alveolar space is suspected. There
are three different histologic patterns of tissue damage that
include pulmonary capillaritis, diffuse alveolar damage, and
bland pulmonary hemorrhage [242, 246–255]. Patients with
DAH often have lupus nephritis, high titers of anti-DNA
antibody, hypocomplementemia, and anemia [242, 248,
256]. Pulmonary embolism, often associated with
antiphospholipid syndrome, is increased in patients with
SLE [247]. Pulmonary arterial hypertension not secondary to
pulmonary emboli or cardiac disease is uncommon, and its
cause and pathogenesis are unknown.

Interstitial lung disease (ILD) most commonly has the
nonspecific interstitial pneumonia (NSIP) pattern and can
occur with desquamative interstitial pneumonitis but only
rarely in non-smoking SLE patients [257]. The cause of ILD
in SLE, as in other conditions, is unknown. In SLE patients,
ILD can develop with no previous lung disease or after lupus
pneumonitis, in which there are deposits of IgG and C3 within
alveolar septa, diffuse alveolar inflammation associated with
hyaline membranes, and alveolar hemorrhage [258, 259].

Cardiovascular system

The pericardium may be involved in up to 100 % of SLE
patients with involvement consisting of an acute pericarditis
often associated with pleurisy and pleural effusions and peri-
cardial effusion that rarely progresses to cardiac tamponade or
constrictive pericarditis [260–264]. The pericardial effusion is
exudative having a straw-colored appearance with a high
leukocyte count that is predominantly neutrophilic [265]. In
rare cases, the pericardial effusion may be hemorrhagic [266].
Antinuclear and anti-DNA antibodies, low complement, and
immune complexes are commonly found in the pericardial
fluid [267].

The myocardium is involved with myocarditis in up to 40–
50 % of patients with SLE, based on autopsy reports [268], but
clinically significant myocarditis is less common (from 10 to
14 %) [269–271]. Histologic examination reveals widespread
deposition of Ig and complement in myocardial blood vessel

walls and within muscle bundles that may or may not be
associated with inflammatory plasma cell and lymphocyte
infiltrates [268]. Fibrinoid deposits and hematoxylin bodies
occur, and patchy myocardial fibrosis is seen in SLE patients
with myocarditis who have been treated with corticosteroids
[272]. Several different antibody specificities have been asso-
ciated with lupus myocarditis including anti-RNP occurring
with coexistence of skeletal myositis, anti-Ro antibodies, and
antimyocardial antibodies, although their involvement in path-
ogenesis of the myocarditis is not yet proven. The association
between neonatal and newborn congenital heart block and
maternal SLE is well established [273]. Congenital heart block
is strongly correlated with the presence of autoantibodies to
SSA/Ro and SSB/La in both mothers’ and infants’ sera
[274–277]. Infants acquire the autoantibodies transplacentally.
The association between anti-SSA/Ro52 autoantibody and
congenital heart block may be related to cross-reactivity of
the autoantibody with the 5-HT4 serotoninergic receptor [278].

Valvular abnormalities detected by transesophageal echo-
cardiography have been reported in up to 61% of patients with
SLE [279]. In that study, 43 % of patients had valvular vege-
tations, and 50 % had thickening of mitral and aortic valves.
Libman-Sacks endocarditis, atypical verrucous endocarditis, is
the term used to describe the atypical sterile verrucous lesions
of the valves and mural endocardium originally described in
the SLE patients. Such lesions were later also found in patients
without SLE but with antiphospholipid antibodies [280, 281].
The active Libman-Sacks lesions have accumulations of fibrin
clumps, lymphocytes, and plasma cells that upon healing are
converted to dense vascularized fibrous tissue with an absence
of calcification [272]. Ig and complement are found deposited
often throughout the valve leaflet inside and outside of the
verrucae [282]. In patients with antiphospholipid syndrome,
anti-β2-glycoprotein antibodies are deposited in the verrucae
[283].

Patients with SLE are at increased risk for accelerated
atherosclerosis that cannot be explained entirely by traditional
atherosclerosis risk factors [284]. While it is still undeter-
mined what the cause(s) of the accelerated atherosclerosis in
SLE are, attention has focused on the autoimmune and in-
flammatory state typical of SLE. Monocytes and T cells are
recruited to nascent plaques in arterial walls where monocytes
secrete monocyte chemotactic protein-1 (MCP-1), IL-6, and
TNFα, while the Th1 CD4+ cells produce IFNγ, known to be
proinflammatory and atherogenic [284]. Macrophages phago-
cytose oxidized low-density lipoprotein (oxLDL) to become
foam cells. The foam cells contribute to plaque accumulation
that is then followed by fibrosis from the extracellular matrix
produced by arterial smooth muscle cells [284]. Contributions
to accelerated atherosclerosis in SLE might include the pres-
ence of IgG anti-oxLDL antibodies and anti-apoA-I antibod-
ies, the latter negating the atheroprotective properties of apoA-
I and high-density lipoprotein (HDL) [285, 286].
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Vasculitis

Vasculitis is reported to occur in as many as 40 % of patients
with SLE [287–289]. Although typically small vessels are
involved, medium- and large-sized vessels can also be involved
in the vasculitis of SLE [288, 290, 291]. Small vessel involve-
ment is typically that of leukocytoclastic vasculitis while
medium-sized involvement shows a necrotizing or polyarteritis
nodosum pathology [291, 292]. The spectrum of organs
exhibiting vasculitis in SLE includes, most commonly, the skin,
but also kidneys, coronary, brain, mesentery, gallbladder, and
urinary bladder blood vessels [287, 288, 292–296].

The pathophysiologic mechanism of lupus vasculitis is
thought to be secondary to immune complex deposition.
Studies using human umbilical cord endothelial cells exposed
to IgG immune complexes from lupus sera showed that the
immune complexes upregulated endothelial cell expression of
the receptor for advanced glycation end products (RAGE) and
upregulated expression of ICAM1, vascular cell adhesion
molecule-1 (VCAM-1), IL-8, IL-6, TNFα, and MCP-1
[297]. That study also implicated endothelial cell signaling
via the HMGB1-RAGE axis to be critical for the lupus im-
mune complex effect in activation of NF-κB p65, ICAM-1,
VCAM-1, chemokines, and cytokines [297].

Nervous system

Nervous system involvement has long been recognized as a
major feature of SLE and includes a wide spectrum of pre-
sentations with varying clinical severity and to different de-
grees among different patients. There can be involvement of
the central nervous system (CNS) and/or the peripheral ner-
vous system (PNS). The term “neuropsychiatric lupus” is used
to encompass both neurologic, e.g., stroke, headaches, sei-
zures, myasthenia gravis, demyelinating syndrome, myelopa-
thy, Guillain-Barre syndrome, polyneuropathy, cranial neu-
ropathy, and aseptic meningitis, and psychiatric syndromes,
e.g., acute confusional state, anxiety disorders, mood disorder,
severe depression, psychosis, and cognitive dysfunction
[298]. The incidence of neuropsychiatric lupus reported in
the literature varies widely due to the lack of standardized
diagnostic criteria [299]. The current mechanistic scenario,
although not proven, purposes that certain autoantibodies,
with or without complement activation and proinflammatory
cytokine proliferation, orchestrate nervous system damage
through different processes including immune complex depo-
sition, thrombosis, vasculopathy, and inflammation that result
in neurodegeneration [300]. Cerebral atrophy is a common
finding on imaging of brains of SLE patients, and significant
correlations have been reported between brain atrophy and
cerebral dysfunction. Severe cognitive impairment is present
in SLE patients in association with reduction in white and gray

matter [301, 302]. Brain vasculature in SLE patients with
neuropsychiatric involvement displays abnormalities includ-
ing ischemic infarcts and hemorrhages, narrowing or occlu-
sion of small arteries and veins, and varying degrees of cere-
bral hypoperfusion [303–308].

Studies measuring neurometabolites underscore the pres-
ence of neurodegeneration in neuropsychiatric lupus [309].N-
acetylaspartate (NAA), a biomarker of axonal integrity usual-
ly present at high levels in normal axons and neurons, is
reduced in normal appearing white matter (NAWM), gray
matter (GM), and brain lesions in patients with neuropsychi-
atric lupus [304, 309, 310]. In addition, levels of glial fibrillary
protein and neurofilament triplet protein are elevated in cere-
brospinal fluid (CSF) of patients with neuropsychiatric lupus
and brain involvement, suggesting ongoing neuronal and
astrocytic damage [311]. Plasminogen inhibitor activator-1
(PAI-1) and D-dimer levels have been reported to be elevated
in patients with increased CSF glial fibrillary acidic protein,
neurofilament triplet protein, and tau protein [312]. This result
suggests that abnormal fibrinolysis may also be contributing
to neuronal and astrocyte damage.

A large array of autoantibodies has been detected in serum
or CSF of patients with SLE and has been implicated to
various extents in the pathogenesis of neuropsychiatric lupus.
These are listed in Table 1 [309]. A subset of anti-DNA
autoantibodies may cross-react with the NR2A and NR2B
polypeptides of the N-methyl-D-aspartate (NMDA) receptor
[325–327]. NMDA-binding anti-DNA antibodies caused neu-
ronal damage only after the blood–brain barrier (BBB) was
compromised by LPS-induced inflammation in mice
[327]. Neuronal dysfunction caused by the combination
of NMDA-binding antibody and LPS-induced BBB
damage was accompanied by poor memory function in

Table 1 Autoantibodies potentially implicated in nervous system in-
volvement in SLE

Antibody Reference

NMDA cross-reactive anti-DNA [327]

Anti-NMDA receptor [313]

Anti-microtubule-associated protein 2 [314]

Anti-α tubulin [315]

Anti-ganglioside(s) [316]

Anti-glial fibrillary acidic protein [317]

Anti-phospholipid [318]

Anti-ribosomal P protein [319]

Anti-endothelial cell [320]

Anti-intermediate neurofilament α internexin [321]

Anti-triosephosphate isomerase [322]

Anti-Smith small nuclear ribonucleoproteins [323]

Anti-histones [324]

Semin Immunopathol (2014) 36:495–517 505



experimentally treated mice. Mice producing NMDA-
binding antibody but without BBB damage showed no
signs of memory loss or neuronal dysfunction. These
results with NMDA cross-reacting antibodies have im-
portant implications for the role of autoantibody in CNS
lupus in human SLE.

There is evidence of neuroinflammation in brains of pa-
tients with SLE, since levels of soluble VCAM-1, soluble
ICAM-1, soluble L-selectin, IL-6, IL-8, IL-10, IFNγ, and
TNFα are elevated in CSF of patients with neuropsychiatric
lupus [311, 328–336]. The role of complement in patients
with neuropsychiatric SLE is unknown, but studies in lupus
prone MRLlpr mice demonstrate evidence of comple-
ment activation contributing to neuronal apoptosis,
CNS inflammation, and BBB damage [337–343].
Correlative studies show that levels of serum or CSF
matrix metalloproteinase-9 are higher in SLE patients
with neuropsychiatric than in SLE patients without
CNS involvement [334, 344].

Hematological system

Some form of hematologic disorder is observed in most pa-
tients with active SLE. The disorder(s) take the form of
anemia, neutropenia, thrombocytopenia, and/or lymphopenia.
Anemia can be due to the anemia of chronic disease, arising
from suppressed erythropoiesis secondary to chronic inflam-
mation, anti-erythropoietin autoantibodies, autoimmune he-
molytic anemia induced by anti-erythrocyte autoantibody
and complement, pure red cell aplasia induced by antibodies
to erythropoietin or bone marrow erythroblasts, or aplastic
anemia secondary to antibodies to bone marrow precursor
cells [345, 346]. Lymphocytes in SLE with leukopenia have
reduced expression of CD55 and CD59 that renders the lym-
phocytes susceptible to lysis by complement [347, 348]. The
cause of neutropenia is unknown but is associated with anti-
neutrophil antibodies and increased levels of TNF-related
apoptosis-inducing ligand (TRAIL) that could increase neu-
trophil apoptosis [349]. Thrombocytopenia is observed in up
to 30 % of patients with SLE and is thought to develop as a
result of platelet destruction by antiphospholipid antibodies.
Anti-thrombopoietin receptor C-Mpl and anti-CD154 anti-
bodies may also play roles in thrombocytopenia but remains
to be proven [350]. In addition to immune thrombocytopenia
(ITP) described above, there is also increased incidence of
thrombotic thrombocytopenic purpura (TTP) in which
there is increased platelet consumption from platelet
aggregation and thrombosis. Severe cases of ITP are
associated with ADAMTS13 (a disintegrin and metallo-
proteinase with a thrombospondin type 1 motif, member
13) deficiency or anti-ADAMTS13 antibody that in-
duces platelet aggregation and thrombosis [351].

Summary and conclusions

Several major points emerge from this review. One, genetic
disruption of any one of the normal mechanisms that regulate
self-tolerance will cause autoimmunity to DNA and LN. This
outcome is no doubt a consequence of the innate immune
commitment to use nucleic acids as “pathogen danger signals”
and a promiscuous, DNA-reactive B cell repertoire. Two, SLE
is remarkably heterogeneous with respect to inheritance, ge-
netic susceptibility, and disease phenotype. Clearly, genetic
heterogeneity affects phenotypic heterogeneity among differ-
ent individuals and racial and ethnic subpopulations.
Phenotypic heterogeneity in the presence of identical geno-
types, monozygotic twins and inbred mice, indicates that the
genetic program for SLE is initiated and executed stochasti-
cally. Three, very little is known about what exactly initiates
SLE in either mice or humans. Most of the receptors and
signaling molecules and pathways have been identified, but
what actually sets autoimmune activation in motion is un-
known. Even in the well-defined mouse genetic models,
B/W, MRLlpr, BXSB, BXD2, FcγRIIB−/−, and Sanroque,
the initiating event leading to the well described and under-
stood autoimmune phenotype is not understood. For example,
in mice from all of those strains, DNA-reactive B cells are
stimulated or activated to produce anti-DNA autoantibody.
The activation is selective and Ig-receptor-dependent. The
stimulus is believed to be DNA in the form of chromatin,
microparticles, apoptotic bodies, or cellular debris, but the
origin of the stimulus is unknown. Four, disease manifestation
in SLE is heterogeneous. Both the heterogeneity of disease
and the inability to know how and when autoimmunity is
initiated make prognosis and therapy such a challenge for
SLE. Future longitudinal studies that undertake very broad,
inclusive evaluations of as many phenotypic parameters as
possible will be necessary. The studies should include
evaluation of the circulating proteome and RNA expression
in circulating cells. If those studies can include patients
prior to disease onset or at least in the very early stages
of autoimmunity, the results will almost for sure produce
new and useful insight for future diagnostic and therapeutic
development.
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