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Abstract Rheumatoid arthritis (RA) is an autoimmune dis-
ease affecting ∼1 % of the population. Although major ad-
vances have been made in the treatment of RA, relatively little
is known about disease pathogenesis. Autoantibodies, present
in approximately 60 % of the patients with early disease,
might provide indications for immunological mechanisms
underlying RA. Among the RA-associated autoantibodies,
especially anti-citrullinated protein antibodies (ACPAs) have
been studied intensively in the last decade. The discovery of
ACPAs resulted into novel insight in RA pathogenesis and
allowed division of the heterogeneous entity of RA into an
ACPA-positive and ACPA-negative subset of disease. Other
autoantibodies discovered in the serum of RA patients, includ-
ing rheumatoid factors (RFs) targeting human IgG and anti-
peptidylarginine deiminase (PAD)3/4 antibodies reactive
against and activating the enzyme involved in citrullination,
might contribute in collaboration with ACPAs to a feed-
forward loop to aggravate erosive outcome of disease. Re-
cently, a novel autoantibody system associated with RA was
identified. These autoantibodies recognize carbamylated pro-
teins (anti-CarP antibodies) and are detected in approximately
20 % of ACPA-negative patients, suggesting another param-
eter to sub-classify RA. In this review, the implication of
autoantibodies in RA pathogenesis, diagnosis, prognosis and
as biomarker for personalized medicine is discussed.
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Introduction

Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease
affecting 0.5–1% of the population in industrialized countries.
RA is characterized by persistent synovitis, systemic inflam-
mation and the presence of several autoantibodies. The clini-
cal course is extremely variable, showing a wide spectrum of
clinical manifestations ranging from mild and self-limiting
disease to rapidly progressive inflammationwith joint destruc-
tion and severe physical disability [1, 2]. Because of the
heterogeneous character of the disease, classification criteria
have been developed to provide a basis for disease definition
and to standardize recruitment in clinical trials and compari-
son of the results of multi-centred studies. Since 1987, RA has
been classified based on the ACR 1987 criteria defined by a
regression analysis of disease characteristics of “classic
cases”. This resulted in the inclusion of a heterogeneous set
of patients with conceivably different “pathogenic” back-
grounds [3]. The ACR 1987 criteria are well accepted for
disease definition, but have a significant limitation in identi-
fication of patients with recent-onset RA. Especially, this latter
subset of patients would benefit from early effective interven-
tion to avoid progress to the chronic, erosive state of RA
exemplified in the 1987 criteria. Therefore, ACR/EULAR
2010 criteria were developed [4], which display a higher
sensitivity but a lower specificity for RA to be able to diag-
nose RA and start treatment early in disease.

The heterogeneous character of RA is also reflected by a
wide range of responses to therapies. Patients do not respond
uniformly to therapeutics, conceivably because the specific
biological pathway targeted by the drug may not be active in
the particular patient subgroup. Currently, it is difficult to
predict effectiveness of a specific therapy in individual pa-
tients because we lack knowledge to sub-classify RA based on
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biological pathways involved in pathogenesis. For the devel-
opment of a personalized medicine approach or even more
ambitious, curative therapeutics, it is essential to understand
the immunological mechanisms underlying RA. AlthoughRA
is a considerable health problem, still relatively little is known
on its immunopathology. Refinement of the understanding of
molecular pathways involved in disease pathogenesis could
be achieved by combined knowledge onRA-associated genes,
environmental factors and the presence of serological factors.

Genetic and environmental contributions to RA

Both genetic and environmental risk factors contribute the
development of RA. Smoking is the most prominent environ-
mental factor, with its largest effect in autoantibody-positive
patients [5, 6]. Although the prevalence of RA in the general
population is <1 %, among monozygotic twins with one of
them affected, for the unaffected sibling, the prevalence in-
creases to 12.3 to 15.4 %. This implicates that genetic factors
have a substantial impact on susceptibility to RA, with the
genetic contribution estimated around 50 to 60 % [7]. The
identification of disease-associated genes provided valuable
insight into biological pathways that might contribute to RA
pathogenesis. The strongest predisposing variants of the ge-
netic risk factors are found in the human leukocyte antigen
(HLA) alleles, accounting for 30 to 50 % of overall genetic
susceptibility to RA [8, 9]. Already in 1969, it was demon-
strated that in mixed lymphocyte cultures, peripheral blood
lymphocytes from RA patients were non-reactive to each
other [10] and that this non-reactivity was due to the sharing
of genes in the HLA region [11]. Subsequently, it was discov-
ered that multiple RA risk alleles within the HLA-DRB1 gene
share a conserved amino acid sequence, leading to the “shared
epitope” (SE) hypothesis [12]. The odds ratio to develop RA
for one HLA SE allele is around 4, whereas two SE copies
increase the odds ratio to approximately 12 [13]. The under-
lying mechanism by which HLA SE alleles predispose to the
development of RA is still not understood, despite much
progress in perception of the structure and function of HLA-
DRB1 molecules. HLA-DR molecules are anchored in the
membrane of antigen-presenting cells to present antigenic
peptides to T lymphocytes. The T cell receptor recognizes
residues from both the peptide as well as the HLA-DR mol-
ecule itself. The SEmotif is situated at the part of the HLA-DR
molecule that binds to the peptide. At this position, the SE
influences peptide binding and presentation to T cells (Fig. 1).
So far, no specific arthritogenic peptides have been identified
that bind to SE HLA-DR molecules and contribute to RA.

It was not until 2001, almost 30 years after the identifica-
tion of HLA-alleles as a risk factor for RA, that non-HLA loci
associated with RA were revealed [14]. Interestingly, one of
these loci encode the gene for PADI4, an enzyme that
citrullinates proteins and hereby creating targets for anti-

citrullinated protein antibodies (ACPAs) [15]. This directly
implicates citrullination as important mechanism for RA de-
velopment. After 2004, the identification of new genetic risk
factors underwent an unprecedented acceleration. Genome-
wide association studies rapidly expanded the number of
genes associated with ACPA-positive RA. Currently, more
than 30 genetic risk factors have been identified [16]. Most
of them are located near genes that are linked to T or B cell
activation or differentiation, and cytokine signalling, implicat-
ing—not surprisingly—immune-related events as an impor-
tant component of RA-disease pathogenesis [17].

In addition to genes predisposing for RA, also, protective
genes that are more often present in healthy controls compared
to RA patients have been identified. A meta-analysis was
performed to investigate which HLA-DRB1 alleles are asso-
ciated with protection in ACPA-positive RA and ACPA-
negative RA, stratified for SE alleles. In ACPA-positive RA,
the alleles that conveyed protection after stratification for SE
were HLA-DRB1*13 alleles, containing the amino acid
DERAA. In ACPA-negative RA, no robust associations were
found with protective HLA-DRB1 alleles [18].

RA-associated autoantibodies

The presence of autoantibodies in serum of RA patients has
been recognized already for over 70 years. Rheumatoid factor
(RFs), targeting the Fc part of human IgG were the first group
of autoantibodies discovered [19]. Unfortunately, RFs do not
have high specificity for RA and can be detected in up to 15%
of the healthy individuals. In 1964 and 1979, additional serum
factors present in RA patients were described, anti-perinuclear
factor antibodies and anti-keratin antibodies, respectively [20,

Fig. 1 Antigen-activated B cells require help from antigen-specific T
cells to secrete isotype-switched antibodies. B cells recognizing
citrullinated or carbamylated human proteins internalize antigen with
their B cell receptor. After processing, antigen is presented to T cells on
HLA-DR molecules anchored in the B cell membrane. The SE motif is
situated at the part of the HLA-DR molecule that binds to the peptide and
influences at this position peptide binding and subsequent presentation to
T cells
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21]. Although their specificity for RA was very high, it was
difficult to visualize the presence of these autoantibodies.
Therefore, in daily practice, RF was still used to aid RA
diagnosis, and consequently, the presence of RF was taken
up in the ACR 1987 criteria for RA. It was not until 1995
when it was realized that anti-perinuclear factor antibodies and
anti-keratin antibodies are the same autoantibodies [22] and
that the epitopes they both target are generated by deimination
of argine residues resulting in citrulline residues [23]. In 2002,
the first commercial test to visualize ACPA as biomarker for
RA to allow routine testing became available by the develop-
ment of the cyclic citrullinated peptide (CCP)-2 assay. Exten-
sive research into this unique autoantibody system boosted the
understanding and classification of RA considerably, with
both RF and ACPA being part of the ACR/EULAR 2010
classification criteria [4]. Recently, a novel subset of autoan-
tibodies in sera of RA patients recognizing carbamylated
proteins (anti-CarP antibodies) was reported [24]. This anti-
body system is independent from ACPA because antibodies
from sera of RA patients can discriminate between
citrullinated and carbamylated antigens. Correspondingly, a
substantial part of ACPA-negative patients harbour anti-CarP
antibodies [24]. Recently, anti-PAD antibodies targeting the
enzyme involved in citrullination of proteins received much
attention by the discovery that these antibodies not only target
but also activate PAD [25]. The recent identification of a novel
autoantibody system present in RA, together with the recent
finding of autoantibodies in formerly defined ANCA-negative
vasculitis [26], make the discovery of novel disease-specific
autoantibodies in presumably autoantibody negative RA
plausible.

Posttranslational modifications

Antibodies are important tools to protect the body from path-
ogenic intruders by neutralization of the pathogen and activa-
tion of the immune system. Unfortunately, individuals may
produce antibodies directed against self-tissues, causing un-
wanted tissue damage observed in autoimmune diseases. Au-
toantibodies can be directed against chemical or enzymatic

altered self-tissue, such as posttranslationally modified pro-
teins. Although these modifications might occur in response to
stress, also, under normal and pathological conditions, post-
translational modifications take please. However, they are
generally invisible for the immune system. Apparently, in
RA, the immune system is triggered to respond to modified
self-proteins by the induction of an autoimmune response.

Over the past few years, important insight has been gained
into the occurrence and aetiophathology of RA by the discovery
of RA-specific autoantibodies directed against citrullinated pro-
teins (ACPA) and carbamylated proteins (anti-CarP antibodies).
Carbamylation and citrullination are both posttranslational
modifications, resulting in carbamylated and citrullinated
(self-) proteins, respectively, in which a positively charged
amino acid is replaced by a neutral amino acid. Citrullinated
proteins are generated by PAD enzymes, whereas
carbamylation of proteins occurs when the amino acid lysine
is converted to homocitrulline by a chemical reaction. The
chemical structure of citrulline resembles homocitrulline, but
is located at different positions of proteins as arginine and lysine
are, by definition, located at different positions. Furthermore,
citrulline is one methylene group longer (Fig. 2). Although
some autoantibodies are reactive to both structures, also anti-
CarP antibodies have been found that do not react to citrulline
and vice versa [24].

The posttranslational modification of arginine to citrulline
by PAD enzymes is essential for the generation of the epitope
recognized by ACPA. Citrullination is a physiological process
occurring under different conditions, including inflammation
[27]. It is tempting to speculate that presentation of peptides
bearing posttranslational modifications can elicit highly specific
T and B cell responses that might contribute to autoimmune
disease. This hypothesis was reinforced by the demonstration
that presentation of citrullinated peptides by B cells was not
detected under normal culture conditions [28]. However, B cell
stimulation by engagement of the B cell receptor resulted in
autophagy associated with the presentation of citrullinated pep-
tides to CD4 T cells [29]. These findings are in line with the
notion that a cascade of immunological events precedes auto-
immunity, starting with “inflammation-induced citrullination”

Fig. 2 Schematic illustration of
citrullination and carbamylation.
Citrullination and carbamylation
occur on distinct amino acids by
different mechanisms to generate
similar posttranslational
modifications
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and B cell receptor triggering followed by (autophagy-
facilitated) HLA-restricted citrullinated antigen presentation to
T cells, ultimately resulting in breach of T cell tolerance and
development of ACPA responses (Fig. 1). To dissect the events
that occur in the break of tolerance against citrullinated proteins,
animal models of arthritis could be used. However, it is unclear
at the moment whether a genuine ACPA response can be
induced in animal models of arthritis [30, 31].

Carbamylated proteins contain a homocitrulline residue
that has been generated through a chemical reaction in which
mainly lysine is converted into a homocitrulline through the
action of cyanate. Cyanate is naturally present in the body and
in equilibrium with urea [32]. Under steady-state physiologi-
cal conditions, the cyanate concentration might be too low to
allow extensive carbamylation. Indeed, in renal failure, the
urea concentration increases, resulting in extensive
carbamylation of proteins [33]. Interestingly, smoking, the
most prominent environmental risk factor for RA, increases
the cyanate concentration and might consequently enhance
carbamylation. However, most carbamylation is believed to
be provoked under inflammatory conditions, when MPO is
released from neutrophils. MPO converts thiocyanate to
cyanate, allowing extensive carbamylation [34]. RA is
characterized by inflamed joints; therefore, it is conceiv-
able that carbamylation is a naturally occurring process in
the inflamed synovium.

In addition to posttranslational modifications themselves,
also, autoantibodies against the enzymes involved in generat-
ing posttranslational modifications are described in RA
[35–38]. It was recently discovered that a subset of anti-
PAD4 autoantibodies increase the catalytic efficiency of
PAD4 by decreasing the enzyme’s requirement for calcium
[25]. This implies that anti-PAD autoantibodies might be
involved in the generation of the ligands for ACPA.

Characteristics of RA-associated autoantibodies

ACPA antigen recognition

ACPAs recognize posttranslationally modified proteins with
the “non-encoded”, amino acid citrulline generated after en-
zymatic conversion of arginine. The first enzyme-linked im-
munosorbent assay (ELISA) to detect ACPA based upon the
molecular identity of the antigens recognized by ACPA was
developed in 1998, using citrullinated peptides derived from
several filaggrin epitopes [39]. To allow routine testing, in
2002, the first commercial ELISA test was available with CCP
to detect ACPA as biomarker in RA This anti-CCP ELISA
proved to be extremely specific (98 %) for RA and had a
significantly higher specificity in comparisonwith the IgMRF
ELISA [40]. To confirm that the antibodies detected by CCP
ELISA are in fact ACPA, it was shown that affinity-purified

anti-CCP antibodies were able to recognize citrullinated pro-
teins on Western blot. This indicates that anti-CCP antibodies
recognize multiple citrullinated proteins and are a collection of
ACPA. To determine to what extent antibody responses to
different citrullinated antigens are cross-reactive, a method
was established in which citrullinated antigen-specific anti-
bodies were eluted from ELISA plates and then used for
detection of other citrullinated antigens with Western blot or
in ELISA, with citrullinated or control peptides as inhibitor.
These experiments showed that antibodies specific for
citrullinated fibrinogen and citrullinated myelin basic protein
were cross-reactive. This cross-reactivity is not complete, as
distinct non-cross-reactive responses can also be detected in
RA patients [41]. Correspondingly, murine monoclonal
ACPA cross-reacted with variable degrees to citrullinated
epitopes on different peptide backbones [42]. Furthermore,
by single B cell-based cloning technology it was demonstrated
that human citrulline-reactive monoclonal antibodies reacted
with more than one citrullinated antigen [43], confirming the
cross-reactive nature of ACPA. This cross-reactivity towards
different citrullinated proteins indicates that citrulline is rec-
ognized in a hapten-like manner to elicit immune responses
towards several (self-) proteins.

Epitope spreading, an increase or shift in the antigen recog-
nition profile, can have important pathophysiological conse-
quences in autoimmune diseases. It was demonstrated that
ACPA epitope spreading occurs several years prior to the onset
of clinical RA [44]. At later stages of the disease course, the
ACPA fine specificity does not change anymore [45]. Therefore,
it is suggested that the initial autoimmune response is directed
towards a limited, but not always the same set of autoantigens.
At a later stage in the development of the autoimmune response,
an increasing number of epitopes are recognized. This is
paralleled by an increase in ACPA levels which also occurs
before onset of symptoms; after which, both the ACPA-epitope
recognition profile and the level of ACPA stabilize to relatively
high levels at onset of disease [44] (Fig. 3). It is estimated that in
ACPA-positive RA patients, up to 1 in 80 IgG molecules in
serum are ACPA, indicating that absolute ACPA levels are high
compared to other antibodies in established disease [46].

Within the ACPA repertoire, the presence and detection of
different fine specificities offered hope for the possibility to
use the ACPA epitope recognition profile as biomarker to
predict disease development and progression. Although epi-
tope spreading occurs on the group level before patients fulfill
the ACR 1987 criteria for RA, current evidence indicated that
this does not correlate with clinical outcome as measured by
rate of joint destruction. For example, no statistically significant
differences in clinical or in radiological outcomes were dem-
onstrated between the ACPA recognizing citrullinated enolase
peptide 1 (CEP1)-positive and negative subset of RA patients
[47]. Since ACPA-positive patients display a heterogeneous
ACPA recognition profile, cluster analyses have been
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performed in an attempt to identify subgroups of patients on the
basis of their ACPA recognition profile. No apparent clustering
of patients was found, and the recognition of specific
citrullinated epitopes was not associated with baseline charac-
teristics. Furthermore, patients with an extended fine-specificity
repertoire did not display differences in baseline characteristics
or joint damage after 7 years of follow-up compared to ACPA-
positive patients recognizing few peptides [48], also indicating
the limited use to detect ACPA fine specificities for diagnostic
or prognostic purposes.

ACPA and the HLA system

Intriguingly, the strong association between SE-encoding
HLA-DRB1 alleles and RA is only observed for ACPA-
positive disease [13]. It was demonstrated that the HLA-SE-
alleles influence not only the magnitude but also the specific-
ity of the ACPA response by the finding that HLA-SE alleles
predispose to the development of antibodies against
citrullinated vimentin peptides, but not to the development
of antibodies against citrullinated fibrinogen peptides [49].
However, although several ACPA fine specificities are more
readily formed under the influence of SE alleles, again, no
association between the presence of the HLA-SE alleles and
radiological damage was observed in the ACPA-positive pa-
tient group [50]. These data indicate that although the HLA-
SE alleles are instrumental in shaping the ACPA-repertoire,

the “shape” of the ACPA-repertoire does not translate to
meaningful clinical differences.

ACPA isotype switching

Antigen-activated B cells initially secrete antibodies of the
IgM isotype, and after activation by T helper cells, they
undergo isotype switching to produce IgG, IgA or IgE anti-
bodies (Fig. 1). Isotype switching is a process in which the
constant region of the antibody is changed, to affect the
effector function of an antibody, whereas the variable region
of the antibody, important for antigen recognition, is not
affected. ACPA have been found in different forms, including
IgG, IgA and IgM. The fine specificity and isotype usage of
ACPA in health and disease differs. The ACPA-response
present in healthy family members of patients with RA uses
fewer ACPA isotypes than ACPA from RA patients [51].
Nonetheless, ACPA of both the IgG and IgA isotypes pre-
date the onset of RA by years and predict the development of
RAwith the highest predictive value for IgG antibodies [52].
Although the usage of isotypes by ACPA increases during the
development towards RA [45], the ACPA isotype distribution
does not expand in established disease [53], indicating that
most of the expansion of isotype usage by ACPA takes places
before the onset of arthritis (Fig. 3). The number of isotypes
used by ACPA does not only associate with RA development
but also with RA progression, as the magnitude of the ACPA

Fig. 3 ACPA maturation in RA
development. Before onset of
arthritis, the epitope recognition
profile, antibody levels, avidity
for its antigen, glycosylation
pattern and isotype usage of
ACPA change
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isotype profile at baseline reflects the risk of future radio-
graphic damage [54].

ACPA avidity maturation

To evaluate if the evolution of the ACPA response differs
intrinsically from the protective responses against pathogens,
the avidity of ACPA in relation to the avidity of antibodies
against recall antigens has been analysed. Intriguingly, the
avidity of ACPA was significantly lower than the avidity of
antibodies to the recall antigens tetanus toxoid and diphtheria
toxoid. Moreover, ACPA did not show avidity maturation
during longitudinal follow-up, even in patients who displayed
extensive isotype switching [55]. These observations indicate
that the evolution of ACPA differs from the development of
antibodies against recall antigens as isotype-switching and
avidity maturation are apparently uncoupled. The reason for
low avidity of the ACPA response compared to “convention-
al” antibody responses against recall antigens in the same
patients is unknown. However, it is conceivable that these
observations are related to the notion that citrullinated anti-
gens are abundantly expressed in the human body, including B
cell follicles in lymph nodes. This avoids competition for only
the strongest antigen-binding B cell receptors to bind these
citrullinated antigens to receive survival signals. Abundant
expression of citrullinated antigens could also explain the
presence of high levels of IgM ACPA in RA patients [46].
Often, the presence of IgG prevents priming of new IgM-
positive B cells, as a consequence of higher avidity for the
same antigen. This principle is, for example, used in the
context of Rhesus-antigen immunity, where a mother of a
Rhesus-positive child is injected with anti-Rhesus IgG shortly
after delivery, to prevent the formation of a new anti-Rhesus
response by low-binding anti-Rhesus IgM from the mother.
Probably, IgG ACPA is not able to capture the citrullinated
antigens preventing them from binding to IgM-producing B
cells, because of the low avidity of the IgG ACPA and/or the
high concentration of citrullinated antigens. Interestingly, the
detection of IgM ACPA also indicates that the presence of a
continuous ongoing ACPA-immune response as IgM has a
short half-life and is highly expressed in the synovial com-
partment [46].

Glycosylation of ACPA

Already in 1985, the importance of antibody glycosylation in
RA was acknowledged. To obtain more information on
autoantigenic reactivity of RF, Parekh et al. compared in detail
the N-glycosylation pattern of serum IgG isolated from nor-
mal individuals and from patients with RA. The results of this
study indicated that disease is associated with changes in the
relative extent of galactosylation of IgG antibodies. The in-
vestigators proposed that RA might be a “glycosylation

disease”, reflecting changes in the intracellular processing or
postsecretory degradation of N-linked oligosaccharides [56].
After the discovery of ACPA, IgG ACPA glycosylation was
determined, to address the occurrence of specific glycosyla-
tion features of antigen-specific subpopulations of antibodies.
Glycosylation patterns of ACPA-Fc were analysed because
glycosylation of the Fc part can underlie pro- versus anti-
inflammatory characteristics of antibodies [57]. It was dem-
onstrated that Fc glycosylation of IgG1 ACPA varies consid-
erably from total serum IgG1 of patients with respect to
galactosylation patterns [58]. Since RA is characterized by
inflammation of the synovium, Fc glycosylation of IgG1
ACPA derived from serum and synovial fluid was compared.
It was demonstrated that Fc glycosylation of ACPA differs
considerably between synovial fluid and serum [59]. This
might indicate that an inflammatory environment contributes
to antibody glycosylation profiles. Indeed, environmental fac-
tors, including retinoic acid, TLR ligands and cytokines have
specific impact on IgG1 Fc-glycosylation patterns, whereas
no altered glycosylation patterns were observed for total cel-
lular glycan proteins [60]. Because ACPA is present years
before onset of disease and some molecular characteristics of
ACPA change before disease onset, it was investigated wheth-
er ACPA exhibit specific changes in Fc glycosylation prior to
the onset of arthritis. ACPA-IgG1 from arthralgia patients
display Fc glycosylation patterns comparable to that of
asymptomatic blood donors. However, around 3 months be-
fore disease onset, ACPA display significant changes in Fc
galactosylation and fucosylation [61], again, indicating that
specific changes in the molecular composition of ACPA occur
before clinical precipitation of disease (Fig. 3).

Anti-CarP antibodies

The chemical structure of homocitulline highly resembles
citrulline (Fig. 2). Therefore, it was hypothesized that ACPA
might recognize homocitrulline present on proteins
(carbamylated proteins) as well. Surprisingly, it was shown
that most ACPA did not recognize peptides in which the
citrulline residue was replaced by a homocitrulline residue,
indicating that ACPA can discriminate between citrulline and
homocitrulline. Intriguingly, reactivity towards homocitrulline
containing antigens was noted in some patients in these stud-
ies. Therefore, an assay was developed to detect antibodies
against carbamylated proteins. Interestingly, it was demon-
strated that 45 % of the RA patients harbour IgG antibodies
recognizing carbamylated proteins. Of note, not only ACPA-
positive RA patients showed anti-CarP reactivity but also 16–
30 % of the ACPA-negative patients harboured anti-CarP
antibodies (Fig. 4) [24]. This observation demonstrated the
identification of a novel group of autoantibodies present in
RA. Since the discovery of this unique novel autoantibody
system in RA was only a few years ago, the molecular
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characteristics of anti-CarP antibodies are to be defined. Like-
wise, it is currently not known whether carbamylated proteins
are present in (inflamed) joints. The possibility to induce anti-
CarP immunity by vaccination with carbamylated and
citrullinated proteins [62, 63] and the emerge of anti-CarP
antibodies upon arthritis induction in animal models (Stoop
et al., submitted for publication) might allow to study the
driving mechanisms underlying the anti-CarP immune re-
sponse and their contribution to arthritis.

Pathogenic potential of RA-associated autoantibodies

The strong association with RA suggests a prominent role for
ACPA in disease pathogenesis. The presence of ACPA in
patients already diagnosed with RA predicts severe joint dam-
age [64], whereas the presence of ACPA predicts progression
towards RA in patients with undifferentiated arthritis [65].
Furthermore, the presence and levels of ACPA are indicative
for arthritis development in arthralgia patients [66, 67].
ACPA-positive arthralgia patients show local subclinical in-
flammation in small joints already in the pre-clinical phase
[68]. Likewise, it was demonstrated that most ACPA-positive
RA patients appear to be ACPA positive already years before
onset of disease [69]. In addition, polymorphisms in genes
encoding the PAD enzymes associate with RA [15], indicating
that the enzymes generating antigens for ACPA are involved
in pathogenesis. Nonetheless, although suggestive, these ob-
servations do not show direct evidence of ACPA implication
in disease pathogenesis.

Effector functions of ACPA

Intriguingly, shortly before the start of clinical symptoms, the
epitope recognition profile, isotype usage, avidity maturation
and glycosylation pattern of ACPA change [44, 45, 52, 61, 70]
(Fig. 3), indicating that maturation of the ACPA response is
required for its pathogenicity. Likewise, the magnitude of the
ACPA isotype profile at baseline is associated with radio-
graphic damage, showing an odds ratio of 1.4-fold increase
for every additional isotype [54]. The mechanism behind
elevated disease severity in association with isotype usage is
still unknown; however, isotype usage might be implicated in
the effector functions recruited by ACPA. These include

complement activation [71], activation of Fc-receptor positive
cells [72] and osteoclast activation. The presence of ACPA
was associated with serum markers for osteoclast-mediated
bone degradation. Interestingly, ACPA bind to osteoclast sur-
faces, resulting in osteoclastgenesis and bone degradation.
This was confirmed by adoptive transfer of human ACPA into
mice, leading to osteopenia and increased osteoclastgenesis
[73].

Indications for a pathogenic role of ACPA were found in
the synovium of ACPA-positive RA patients as well. Histo-
logical differences, mainly with regard to infiltrating lympho-
cytes, in the inflamed joint of ACPA-positive and ACPA-
negative RA patients have been visualized [74]. Indeed, tar-
gets for ACPA are present in joints of RA patients, demon-
strated by the detection of many citrullinated proteins in
synovial fluid samples from the inflamed joints of RA patients
[75]. Because ACPA display lower avidity to its antigen
compared to antibodies against recall antigens [55], ACPA
avidity in relation to biological activity and clinical outcome
was analysed. Unexpectedly, patients with low-avidity ACPA
display a higher rate of joint destruction [76]. Themechanisms
behind this remain elusive, but could be due to a higher ability
of low-avidity antibodies to penetrate tissues.

ACPA and neutrophil extracellular traps

The strong connection of HLAwith (ACPA-positive) disease
[13] elicits the focus of RA research on the adaptive immune
system. Recently, a connection between the innate and adap-
tive immune system in RA was proposed by the observation
that PAD4 is required for neutrophil extracellular trap (NET)
formation by neutrophils [77]. NETs are highly decondensed
chromatin structures that are formed by neutrophils to trap and
kill bacteria. The observation that PAD4 is required for
NETosis is interesting, because enhanced NET formation by
neutrophils has already been shown to be related to autoim-
munity, potentially because autoantigens together with
immunostimulatory molecules are exposed to trigger the im-
mune system. NETosis was directly linked to RA by the
demonstration that citrullinated histone 4 from NETs is a
target for RA sera [78]. Furthermore, enhanced NETosis in
neutrophils derived from peripheral blood and synovial fluid
of RA patients correlates with ACPA levels. Interestingly,
immunoglobulin fractions from RA patients with high levels

Fig. 4 Percentage of RA patients
positive for IgG ACPA and
anti-CarP antibodies and IgA
ACPA and anti-CarP antibodies
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of ACPA and/or RF are able to significantly enhance NETosis
in neutrophils from RA patients and these NETs induced by
antibodies from RA serum harbour citrullinated proteins. In-
triguingly, also, purified human ACPAs have been reported to
induce potent NETosis in RA neutrophils [79]. This indicates
that ACPA can enhance the formation of NETs by neutrophils,
resulting in expel of immunostimulatory molecules together
with its own target, citrullinated autoantigens. These observa-
tions suggest a mechanism that may promote and perpetuate
disease (Fig. 5).

Pathogenic potential of anti-PAD3/4 antibodies

Similar to ACPA and anti-CarP antibodies, anti-PAD4 anti-
bodies have been associated with severe disease in established
RA [35, 36]. Like RF, anti-PAD antibodies are associated with
the presence of ACPA. Although anti-PAD4 antibodies have
been detected with a mean duration of 4.7 years prior to the
clinical diagnosis of RA in a small subset of patients, in the
majority of patients, anti-PAD4 antibodies were detected after
the appearance of ACPA [80]. To assess anti-PAD antibodies
in health and disease, the presence of anti-PAD4 antibodies
was tested in first-degree relatives of indigenous North Amer-
ican people with RA who are characterized by a high preva-
lence of ACPA. Interestingly, in contrast to ACPA, anti-PAD4
antibodies were almost exclusively found in people with
established RA [81].

Recently, it was discovered that a subset of anti-PAD4
antibodies increases the catalytic capacity of PAD4 by de-
creasing the calcium requirement of this citrullination enzyme.
The identification of autoantibodies that activate an enzyme
that itself generates antigens for another group of autoanti-
bodies associated with RA identifies an important feed-
forward loop. This might drive worse outcome of disease
and therefore potentially identify patient subsets that require
aggressive treatment. The predictive value of anti-PAD

antibodies for severe disease was confirmed by the finding
that PAD3/PAD4 cross-reactive autoantibody-positive RA pa-
tients showed increased radiographic damage compared to
PAD3/PAD4 cross-reactive autoantibody-negative individuals
[25].

Autoreactive B cells

The introduction of biologicals for RA treatment provided
valuable insight into the contribution of specific immunolog-
ical mediators in pathogenesis. The effectiveness of biologi-
cals depleting B cells, such as rituximab, demonstrates evi-
dence for the involvement of B cells and/or (auto) antibodies
in disease pathogenesis. In conventional B cell activation,
which is intensively studied for vaccination strategies, antigen
binding to the B cell receptor initiates signalling pathways for
somatic hypermutation. After somatic hypermutation, B cells
with the highest affinity receptors for their antigen are selected
for survival. This process continues during evolution of the
immune response, resulting in competitive survival and pro-
liferation of B cells with high-affinity receptors. In contrast,
low-affinity B cells die by apoptosis and eventually disappear
from the population. Interestingly, ACPA-producing B cells
behave differently, demonstrated by the identification of the
avidity of ACPA for its antigen significantly lower than the
avidity of antibodies to the recall antigens tetanus toxoid and
diphtheria toxoid [55]. The avidity of ACPA is even low after
extensive isotype switching [51], indicating that in ACPA-
specific B cells, affinity maturation and isotype switching, in
contrast to general B cell biology, is uncoupled.

Recently, a culture method has been developed to detect the
presence of ACPA-producing B cells in different compart-
ments of the human body and to study the characteristics
and phenotype of these cells derived from RA patients. B cells
were isolated from peripheral blood or synovial fluid from
ACPA-positive RA patients and cultured with or without
stimulating factors to assess the presence of ACPA-
producing B cells in the different compartments. It was esti-
mated that around 1 in 20,000 B cells in blood of RA patients
secrete ACPA [82] versus around 10–20 % of the B cell
population present in the synovial fluid compartment
(Kerkman et al., unpublished observations). Likewise, it was
demonstrated that ∼25 % of the synovial IgG-expressing B
cells from ACPA-positive RA patients recognize citrullinated
autoantigens [43]. Furthermore, it was shown that IgM-ACPA
is the most abundantly present isotype of ACPA in synovial
fluid, with the highest enrichment in the range of one IgM-
ACPA for every eight IgM-antibodies [46]. Analysis of the
BCR repertoire in blood and synovium showedmultiple dom-
inant clones in inflamed synovium and hardly any in blood.
Interestingly, the fraction of IgM clones was higher in
established RA compared to early RA [83]. Together, this

Fig. 5 ACPA have been reported to enhance the formation of NETs by
neutrophils, resulting in expel of immunostimulatory molecules together
with citrullinated autoantigens, the targets of ACPA
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indicates that the synovium is a niche for expanded
autoantibody-producing B cells and is the décor of an ongoing
induction of anti-citrulline immune responses in RA patients.

Autoantibodies as biomarkers for early disease
and disease sub-classification

To prevent development towards the classical picture of RA,
with massive erosions and deformities of inflamed joints,
early treatment intervention is very important. Currently, it is
hard to predict whether arthralgia and undifferentiated arthritis
(UA) patients will go in remission or will develop RA. To
decide which patients would benefit from aggressive interven-
tion, robust biomarkers are required to diagnose RA early in
disease.

RA is characterized by a wide spectrum of clinical mani-
festations, ranging from mild and self-limiting disease to
rapidly progressive inflammation, joint destruction and severe
physical disability. This heterogeneous character of RA is
reflected by a broad range of responses to therapies. Currently,
we are unable to predict the effectiveness of a specific therapy
in individual patients, because we lack robust biomarkers for
RA sub-classification. The discovery of the serological mark-
er ACPAwas of outstanding impact because for the first time,
it was possible to sub-classify the heterogeneous entity of RA
based on serological markers. ACPA-positive and ACPA-
negative RA patients display major differences regarding
genetic and environmental determinants of disease, molecular
features of the affected joint, remission rates and, importantly,
response to treatment.

Already before RA establishment, it could be considered to
treat ACPA-positive UA patients differently than ACPA-
negative UA patients. It was demonstrated that in ACPA-
positive UA patients treated with methotrexaat, RA progres-
sion was circumvented or delayed. In contrast, for the ACPA-
negative subset of UA patients, no effect of methotrexaat was
observed [84]. Furthermore, ACPA-positive UAmethotrexaat
responders had lower levels of IgG ACPA before start of the
treatment compared to ACPA-positive UA non-responders
[85]. This suggests not only that different treatment strategies
for ACPA-positive versus ACPA-negative patients might be
required but also that in UA patients with high ACPA levels,
only methotrexaat treatment might not be sufficient. In
established RA, different treatments for ACPA-positive and
ACPA-negative RA could be considered as well. This is
supported by a study demonstrating that ACPA-positive RA
patients initially treated with DMARD mono-therapy
displayed increased radiographic joint destruction after 2 years
compared to ACPA-negative patients. In contrast, in patients
treated with initial combination therapy, no difference be-
tween ACPA-positive and ACPA-negative patients with re-
spect to joint destruction was observed [86].

Assuming that ACPA is pathogenic, it is conceivable to
hypothesize that ACPA-positive RA patients would benefit
from therapies reducing B cells from the circulation. Indeed, it
was demonstrated that in refractory RA patients ACPA posi-
tivity was predictive for a EULAR response at 24 weeks to
rituximab, a therapy to deplete anti-CD20 positive cells. The
investigators suggest that ACPA might be used as biomarker
to predict responses to rituximab therapy [87]. Since ACPA
consist of a collection of citrulline-recognizing antibodies
with different reactivities, it was examined if the different fine
specificities within the ACPA repertoire could predict re-
sponse to therapies. Unfortunately, at least for anti-TNF
agents, only the presence, but not individual ACPA specific-
ities was associated with response to treatment [88]. Instead,
intrinsic differences between the ACPA response and conven-
tional antibody responses, including the disconnection of
ACPA avidity maturation and isotype switching [55], and
the detection of spontaneous ACPA production by circulating
unstimulated plasmablasts/cells [82] might represent targets
for novel therapeutic interventions.

Although taking a personalized medicine approach to treat
the subgroup of ACPA-positive patients sounds promising, in
the large subset of ACPA-negative RA patients, targets to
distinguish different subsets are limited, mainly by the ab-
sence of robust biomarkers characterizing this manifestation
of RA. Therefore, especially in the ACPA-negative group of
patients, the identification of anti-CarP antibodies might be
clinically useful. Possibly, the population of RA patients is
more heterogeneous than only ACPA positive or negative, and
anti-CarP-positive RA might represent an additional disease
entity with its own genetic and environmental contributions
and responses to specific therapies.

Conclusions

Several RA-associated autoantibody systems have been iden-
tified. Among these autoantibodies, ACPA exhibit a unique
sensitivity for RA with the highest predictive value for RA
development and severity. The importance of ACPA in RA
diagnosis is emphasized by the inclusion of ACPA status in
the 2010 criteria for RA. For the first time, ACPA allowed
division of the heterogeneous entity of RA in an ACPA-
positive and an ACPA-negative subset, with different genetic
and environmental contribution factors. Importantly, ACPA
status predicts response to therapies, indicating a biomarker
for a personalized medicine approach. Over the past few
years, important insight has been gained into the occurrence
and aetiophathology of RA by the discovery of anti-
citrullinated protein immunity, although the pathogenic poten-
tial of ACPA remains elusive. Major alterations in the biomo-
lecular composition of ACPA in health and disease might be
the key to discover the mechanisms underlying pathogenicity
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of ACPA. Recent evidence suggest a role for ACPA in exac-
erbating and perpetuating disease by the demonstration that
ACPA enhances the formation of citrullinated autoantigens
and immunostimulatory molecules containing NETs by neu-
trophils. Another feed-forward loop driving worse outcome of
disease was demonstrated by another group of RA-associated
autoantibodies, activating the enzymes that generate targets
for ACPA. Although the discovery of ACPA induced a break-
through in the understanding immunological events underly-
ing ACPA-positive RA, these factors are still poorly under-
stood for ACPA-negative RA. Recently, the identification of
anti-CarP antibodies, also present in serum of ACPA-negative
RA patients, indicated that even more subgroups of RA in
addition to ACPA-positive and ACPA-negative disease might
exist. Therefore, it is plausible that in the future, novel auto-
antibodies systems in RA will be identified, hopefully
resulting in unravelling the immunological pathways under-
lying RA physiopathology, potentially of importance for the
development of diagnostic and/or prognostic tools.
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