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Abstract Throughout evolution, effective nutrient sensing
and control of systemic energy homeostasis have relied on a
close physical and functional interaction between immune and
metabolically active cells. However, in today's obesogenic
environment, this fine-tuned immunometabolic interface
is perturbed. As a consequence, chronic inflammatory
conditions and aberrant activation of immune cells have
emerged as key features of obesity-related metabolic disorders,
including insulin resistance, cardiovascular complications, and
type 2 diabetes, whereas a major research focus has been
placed on the adipocyte–macrophage interaction in the context
of metabolic dysfunction; recent studies have not only
expanded the scope of relevant immune cells in this setting
but also highlight the impact of distinct metabolic organs,
including the liver, on immunometabolic control, metabolic
disease development, and potential anti-inflammatory
therapeutic options in obesity-driven pathologies. This review
will thus summarize recent progress in this emerging area of
metabolic research.
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Obesity, inflammation, and insulin resistance

Epidemiological studies estimate that by the year 2030, 2.2
billion people worldwide will be overweight and 1.1 billion will
be obese [1]. Obesity as such represents the core component of
the so-calledmetabolic syndromewhich is a cluster ofmetabolic
disorders, including insulin resistance, obesity, fatty liver
disease, hyperglycemia, dyslipidemia, and hypertension, mainly
caused by caloric excess, sedentary lifestyle, and a genetic
predisposition. Progression of the aforementioned disorders
can precipitate into end-stage diseases such as type 2 diabetes,
atherosclerosis, and eventually even cancer. Consequently,
components of the metabolic syndrome are tightly associated
with increased mortality as observed in these patients [2].

Inflammation is now recognized as a key feature of
metabolic dysfunction. Dating back to the 1990s, a critical role
for inflammatory mediators, i.e., tumor necrosis factor alpha
(TNFα), has been described in the manifestation of obesity and
associated complications most notably insulin resistance. While
adipose tissue of obese humans and mice is characterized by
elevated numbers of inflammatory macrophages and the
induction of circulating TNFα levels [3], early studies already
have shown that antibody-mediated TNFα neutralization or
genetic loss-of-function mouse models for TNFα improved
insulin sensitivity during diet-induced obesity [4]. Also, critical
molecular effectors of inflammatory signaling such as the
transcription factor nuclear factor kappa B (NFκB), its upstream
kinase IKK, or the jun-N-terminal kinase (JNK) were
subsequently found to be aberrantly activated under obese
conditions, and prevention of NFκB/JNK signaling ameliorated
substantial parts of metabolic dysfunction as associated with
insulin-resistant obesity [5, 6]. Consistent with these findings,
salicylate treatment indeed improved insulin sensitivity and
glucose homeostasis in both humans and mice [7], again
underlining the close interaction between inflammatory and
metabolic cues in the control of energy homeostasis. Indeed,
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metabolic and inflammatory cells have acted in close physical
proximity throughout evolution starting from theDrosophila fat
body which combines major mammalian metabolic cell
functions, including equivalents to adipocytes, hepatocytes,
and various hematopoietic as well as immune cells. Over 600
million years of evolution, the intra-organ communication in
flies has diverged into distinct organ compartments (i.e.,
adipose tissue and liver), however, still reflected by the close
proximity between adipocytes, hepatocytes and dedicated
tissue macrophages, and other immune cells. In fact, this tightly
coupled interaction between the metabolic and immune
compartments within adipose and liver tissue has been
hypothesized to represent a critical interface for nutrient
sensing, inter-organ communication, and metabolic control [8].

Once considered an inert energy storing depot, adipose tissue
is now considered a potent endocrine organ with critical
importance for overall energy homeostasis. Indeed, adipocytes
secrete proteins involved in inflammation, appetite regulation,
blood pressure control, and energy balance [9]. Under normal
physiological conditions, adipose tissue function is tightly
coupled to the systemic adaptation to varying conditions of food
availability; upon fasting, stored adipose tissue lipids can be
rapidly released and used for energy by peripheral organs,
particularly including skeletal and cardiac muscle and liver;
however, excessive adipose tissue is associated with increased
risk of insulin resistance, cardiovascular disease, and cancer [10].

Given its central location within the systemic circulation,
the liver serves as one of the body's critical organ for
maintenance of systemic energy homeostasis [11]. Indeed,
the liver represents the critical control relay in the reception
of small molecules arising from food digestion or degradation
of endogenous sources, their metabolic conversion or storage,
and the final (re-)distribution to the periphery. Consequently,
as the predominant interconversion point for energy substrates
in mammals, the liver plays an essential role in the adaptive
metabolic response during daily/periodic fasting–feeding
cycles [11–13]. In this regard, defects in hepatic insulin
signaling have been demonstrated to importantly contribute
to the development of systemic peripheral insulin resistance
[14]. Mice bearing a targeted disruption of the insulin receptor
gene in liver display hyperglycemia, hyperinsulinemia, and
impaired glucose tolerance [15]. Also, inhibition of the PI3K/
Akt-dependent insulin signaling pathway in liver by the Akt-
inhibitor tribbles homolog 3 leads to hyperglycemia and
glucose intolerance [16].

It is tempting to speculate that inflammation and insulin
resistance have developed as adaptive traits which might
provide an evolutionary advantage for organisms under
specific conditions. Proper inflammatory response is
extremely important for fighting invading pathogens and
recognizing transformed tumor cells. It is also an energetically
costly process, and therefore, insulin resistance develops in
the site of inflammation to fuel immune cells. Nowadays, in

obesogenic environments, an originally beneficial response
has transformed to one of the key contributors to metabolic
dysfunction [17]. Given the critical importance of both
adipose tissue and liver for overall nutrient handling and
metabolic control, intra-adipose/hepatic communication
pathways between metabolic and inflammatory cells are
crucial determinants of energy homeostasis and/or metabolic
dysfunction, especially in the context of obesity-related
insulin resistance and type 2 diabetes. Given excellent recent
reviews on components of the adaptive immune system and
metabolic control [18, 19], a particular focus will be placed on
the innate immune system and its impact on metabolic
dysfunction.

Innate immune system cells and adipose tissue
(dys)function

Innate or nonspecific immune response represents first line of
defense against invading pathogens, and virtually, all types of
innate immune cells have been identified in adipose tissue and
been implicated in maintaining of adipose homeostasis or in
inflammation-induced metabolic disease (Fig. 1). Most work
on obesity low-grade inflammation has been focused on
macrophage infiltration, and function in adipose tissue and
several excellent reviews have been recently published
elsewhere [19–21]. However, a role of other immune cells
has recently emerged as an important topic. In addition to
macrophages, cells from innate and adaptive branches of
immune system seem to play a prominent role in maintaining
adipose tissue homeostasis and are involved in promoting or
suppressing inflammation upon obese conditions.

Neutrophils

In classical immune response, neutrophils are the first immune
cells present at the site of inflammation and further help to
recruit macrophages [22]. Similarly in obesity, they infiltrate
adipose tissue as soon as 3 days after initiation of high-fat
feeding and precede infiltration of macrophages [23].
Neutrophils secrete several types of proteases that are known
to be involved in inflammation [24, 25]. Expression of
elastase, a well-characterized peptidase, was increased in
adipose of high-fat fed mice compared to chow-fed animals,
and it participated on inflammation-induced insulin resistance
via degradation of insulin receptor substrate 1 [24]. Upon
pharmacologic or genetic loss of function of neutrophil
elastase, mice showed reduced inflammation of adipose tissue
with lower macrophages infiltration and improved insulin
sensitivity and glucose tolerance [24]. Moreover, increased
levels of neutrophils were detected in circulation of obese
adults [26, 27] and children [28], which further emphasizes
their function in metabolic homeostasis.
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Basophils

Basophils are the rarest granulocytes in human blood and are
involved in regulation andmodulation of allergic inflammation.
The role of basophils in obesity remains poorly understood, and
their association with detrimental obesity outcomes is not clear
[29–31]. To date, any reports examining basophil infiltration
into adipose tissue have not been published.

Eosinophils

Eosinophils are commonly associated with allergic reactivity
and parasitic infection. Despite being elevated in serum of
obese humans and animals [32], their numbers in adipose tissue
decline with obesity [33]. Eosinophils are a major source of
interleukin (IL)-4 in adipose tissue, thereby sustaining adipose
macrophages under alternatively activated M2 phenotype and
protecting tissue from inflammation [33]. Eosinophil-deficient
mice on high-fat diet showed augmented adiposity, impaired
glucose tolerance, and increased proportion of classically
activated macrophages [33], while the total number was not
changed. This suggests eosinophils function in regulation
of macrophages polarization and thereby influence insulin
sensitivity.

Mast cells

Mast cells play a prominent role as effectors in allergic
reactions and have been implicated in wound healing and
tissue remodeling. Mast cells preferentially localize to
mucosal and connective tissues, acting as first responders to
viral and bacterial pathogens. They originate in bone marrow,
but unlike the other innate immune cells, do not mature until
they reach the target tissue [34]. In addition, a population of

mast cells' progenitors have been previously detected in
adipose tissue [35], suggesting that in addition to bonemarrow,
adipose tissue might be another source of mast cells. Counts of
mast cells in lean adipose tissue are relatively low, but increase
with fat accumulation in humans as well as in animal models
[36, 37], which suggest a contribution to diet-induced obesity
and insulin resistance. Indeed, mast cell-deficient mice fed a
Western diet gained less body weight, showed decreased
adiposity, improved glucose tolerance, and attenuated adipose
tissue inflammation compared to control counterparts [36].
Administration of mast cell stabilizers, Cromolyn (DSCG)
and Zaditor (ketotifen), which are used in the clinical treatment
of allergies, led to analogous results [36]. Lower body weight
in mast cell-depleted animals might be attributed, at least in
part, to increased thermogenesis, as they showed higher resting
metabolic rate and increased expression of key thermogenic
protein UCP1 in brown fat [36].

The exact mechanism by which mast cells contribute to
pathophysiology of obesity is not yet fully understood, but
secretion of pro-inflammatory cytokines IL-6 and interferon γ
(IFNγ) are likely to contribute. Furthermore, mast cells
promote obesity via stimulation of adipogenesis [38]. Mast
cells produce a vast spectrum of bioactive molecules including
prostaglandin D2 [39], which is metabolized to 15-deoxy-δ-
PGJ2, the major endogenous ligand of peroxisome proliferator-
activated receptor γ (PPARγ) [40, 41], a well-known inducer
of adipocyte differentiation [40, 42]. Therefore, mast cells
might be able to induce adipogenesis by prostanoids
production. It has been proposed that mast cells also promote
angiogenesis in adipose tissue by production of certain
proteases [36, 43]. This notion would be further supported by
mast cell localization next to the microvasculature and positive
correlation of mast cells and microvessels number during
obesity development [36].
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Fig. 1 A schematic representation of changes in adipose tissue innate
immune cells populations in obesity. Lean adipose tissue is characterized
with low occurrence of innate immune cells and predominantly anti-
inflammatory cytokines are secreted. With obesity, insulin sensitivity
decreases proportionally to increased inflammation of the adipose tissue.

Obese adipose tissue is associated with increased infiltration of immune
cells and inflammatory cytokines production. IL-4 interleukin 4, IL-10
interleukin 10, TNFα tumor necrosis factor α, IFNγ interferon γ, CCL2
chemokine (C-C motif) ligand 2, IL-1β interleukin 1β
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Natural killer cells

Natural killer (NK) cells are large granular lymphocytes with
potent ability to activate antigen-independent cytotoxic
response upon viral infection and participate in antitumor
response. Their function in adipose tissue has not been clearly
defined. NK cells are abundant in adipose tissue forming
about 30 % of the cells in stromal vascular fraction [44];
however, the results concerning quantity of NK cells in
adipose tissue and its changes upon obesity are inconsistent
showing decrease [44–46] or no change [47] in animal and
human studies or even increase in human visceral adipose
tissue from obese subjects [48]. Their counts seem to be
regulated by other leukocytes, as B and T cells deficiency
resulted in a pronounced increase in NK cell number in
adipose tissue [47]. Furthermore, an important regulator of
NK cells function, IL-15, was suggested to influence NK cells
number in adipose tissue. Transgenic mice overexpressing IL-
15 have more NK cells in adipose tissue and showed lean
phenotype, while IL-15 deficiency was associated with
increased body weight and less NK cells in adipose tissue
[45, 49].

Leptin, a hormone secreted specifically by adipocytes, is
implicated in body weight and appetite regulation. Its levels
are increased in obesity accompanied by leptin resistance [50].
Moreover, leptin plays a prominent role in immunity [51] as it
enhances inflammatory response during infection, promotes
production of many cytokines, e.g., IL-1β, IFNγ, IL-6, TNFα
[52–54], activation of macrophages [55] and proliferative and
anti-apoptotic effects [56], and thus provides plausible link
between obesity and immune dysfunction.

Indeed, obesity leads to decreased cytotoxicity of NK cells
[57] decreasing their ability to fight against infected and
transformed cells. Leptin might be likely candidate involved
in the process as long leptin receptor was found to be
expressed on subpopulation of human circulating NK cells.
Proportion and also total number of NK cells in leptin receptor
deficient db/db mice were declined as well as their cytotoxic
activity [58], suggesting leptin signaling to be involved in NK
cells development and activation.

It has been shown that short-term leptin stimulation of
primary human NK cells increased a secretion of IFNγ and
cell-dependent cytotoxic lysis of tumor cells [59]. However, the
opposite is true for a long-term leptin stimulation, which better
mimics obese conditions, as it led to dampened secretion of
inflammatory and cytotoxic agents byNK cells [59]. Therefore,
leptin resistance might impair central immune function and
possibly mediates cancer susceptibility of obese people.

Natural killer T cells

Family of natural killer T (NKT) cells represents a bridge
between innate and adaptive immunity and comprises several

types of NKT cells. Best characterized are type I NKT cells,
so-called invariant NKT cells, which are also most abundant
in adipose tissue. NKT cells share characteristics of NK cells
and simultaneously express invariant T cells receptor and
CD3—T lymphocyte markers. They are able to skew immune
response to inflammatory or anti-inflammatory direction,
depending on stimuli provided under specific conditions
either nutritional or immunological. NKT cells recognize
and are activated by lipid antigens presented by MHC class
I-like molecule CD1d on antigen-presenting cells [60]. Thus,
not surprisingly, they have been found enriched in adipose
tissue [44, 61]; however, function of NKT and their influence
of inflammatory process in adipose have not been well
characterized yet. Model of diet-induced obesity showed
inconsistent results. While significant enrichment of adipose
tissue with NKTcells upon high-fat feeding was detected [62,
63]; the others showed completely opposite results
demonstrating negative correlation of NKT cells amount with
adiposity [61, 64], BMI, and insulin resistance [65] and
percentage of NKT cells was reduced also in ob/ob mice, a
well-established genetic obesity model [61, 66]. Additionally,
in some studies, number of NKT cells remains comparable
between high-fat and low-fat feeding [67], but cells were
shown to be more active with high-fat feeding and produce
more pro-inflammatory cytokines [67]. Contrast to mice,
NKT cells are scarce in human adipose tissue [68, 69] and
are found even in lower frequencies with obesity [68]. Using
mouse models lacking NKT cells have not shed more light on
the problematic. β2 microglobulin knockout mice lacking
NKT cells fed high-fat diet demonstrated ameliorated glucose
tolerance and polarization of macrophages towards M2
phenotype when compared to high-fat fed controls [62]. In
contrast, opposite results have been achieved with another
mouse strain with depleted NKT cells, namely the CD1d
knockout mouse [61, 66], where positive correlation between
insulin sensitivity and NKTcell abundance was demonstrated
[65]. Furthermore, in this study, a link between NKTcells and
improved glucose homeostasis has been further supported
with experiments encompassing NKT cells activation with
α-galactosylceramide (αGalCer, a potent glycolipid agonist
derived from marine sponge not found in mammals). After
αGalCer injection and NKT cells activation, obese mice fed
high-fat diet showed improved glucose tolerance and
macrophages polarization shifted to M2 phenotype [65].
Interestingly, αGalCer injection did not have any effect
in lean mice [65], which contrasted results gained by Wu
et al. showing expansion of NKT cells in adipose after
αGalCer treatment and raised pro-inflammatory cytokines
secretion [67].

The question remains why some studies demonstrated
NKT cells to increase production of pro-inflammatory
cytokines upon lipid activation accompanied with worsen
obesity-associated pathogenesis while the others showed
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improved obesity-associated conditions. One of the reasons
might be the usage of different mouse strains, different lipid
content, and composition of diets or feeding period. Future
investigations will be necessary to clarify NKT cells role in
adipose tissue function.

Dendritic cells

Dendritic cells (DCs) are a heterogeneous antigen-presenting
cell population containing conventional or myeloid,
plasmacytoid, and newly characterized inflammatory DCs.
They contribute to pathogen defense and are involved in
recruitment of macrophages into the site of inflammation
and priming of naïve CD4+ T cells [70–72]. However, there
are not many data available about DCs and their function in
obesity-mediated low-grade adipose tissue inflammation and
associated insulin resistance. DCs were detected in adipose
tissue of mice and humans [73–75], and their number was
increased with obesity [74, 75]. Further, DCs are implicated in
recruitment of macrophages into adipose during overnutrition
[75], and mice lacking DCs showed to be resistant to high-fat
induced obesity [75]. DCs are capable of presenting antigens
to CD4+ T cells, which then become effector cells showing
Th1 immune response in lean animals. In contrast, adipose
tissue of obese or type 2 diabetic mice display a switch from
Th1 to Th17 response [74]. Th17 immune response has been
recently shown to deteriorate autoimmunity [76] and might
play an important role in metabolic process; however, this
notion would need further examination.

The liver: an immune organ

A coordinated network of cells, tissues, and organs comprise
the innate immune system, which remains the first line of
defense against pathogenic and or damaged “self” signals.
Anatomical location and dual blood supply of the human liver
(20 % oxygenated blood from the hepatic artery and 80 %
nutrient rich blood from the portal vein) ensures constant
exposure to various antigens, pathogenic stimuli, and toxins;
underscoring the organ's relevance in immunological response
[77]. Innate immune cells of the liver include both phagocytic
and lymphocytic subsets. Kupffer cells (resident hepatic
macrophages) in concerted effort with lymphocytic natural
killer cells, dendritic cells, and natural killer T cells modulate
liver immune status. Pathogen-associated molecular patterns
or damage-associated molecular patterns are received by
pattern recognition receptors (PRRs) [e.g., Toll-like receptors
(TLRs)] expressed by cells of the innate immune system to
compliment nonspecific killing mechanisms and other
innate immune barriers [77, 78]. Experimental animal
models accompanied by human clinical studies demonstrate
involvement of the aforementioned immune cells (amongst

others) during basal and injurious conditions within the
hepatic microenvironment. Specifically, cytokine balance/
imbalance controlled by cells of the innate hepatic immune
system critically regulates disease pathogenesis, including
those evolving from metabolic syndrome [79].

Systemic metabolic disturbances and innate hepatic
immune activation

Indices of metabolic syndrome are known causative factors for
development of liver steatosis or nonalcoholic fatty liver disease
(NAFLD). Excessive fat accumulation and increased hepatic
triglycerides can arise from delivery of free fatty acids from
lipolysis of visceral fat, from de novo lipogenesis, or from
dietary consumption of high-fat high-sugar foods/beverages
[80]. Portal vein delivery of fatty acids impairs hepatic extraction
of insulin and stimulates gluconeogenesis/triglyceride synthesis.
Metabolic syndrome/obesity has become a global pandemic as
such occurrence rates of NAFLD are alarmingly high in the
USA and abroad, where NAFLD currently ranks as the most
common liver disease in theWestern world [81]. Classic chronic
liver disease pathogenesis includes progression fromNAFLD to
nonalcoholic steatohepatitis (NASH), a more severe state of
injury characterized by steatosis, increased inflammation, and
elevated parenchymal cell damage [82]. Increases in lipid
peroxidation and reactive oxygen species continually evoke
cytokine overproduction, further propelling cellular dysfunction
in fatty liver disease. As such, approximately 20 % of NASH
patients will progress to end-stage liver disease (cirrhosis),
highlighting the importance of hepatic manifestations of
metabolic syndrome [81]. As basic science research in the field
has expanded, the immunological component has received
much attention resulting in numerous studies that clearly define
contributions of the innate immune response in NAFLD and
NASH [83] (Fig. 2).

Kupffer cells

Nonspecific phagocytosis in the liver is predominantly
mediated by Kupffer cells (KCs), which account for over
80 % of fixed-tissue macrophages within the human body and
approximately 20 % of nonparenchymal hepatic cells [77].
Zonal distribution analyses indicate KCs possessing increased
lysosomal activity and greater phagocytic capacity are
sequestered to the periportal tract, where blood flow from the
portal vein delivers bacterial products transported from the gut
[84]. KCs are directly linked to the liver's response to infection,
toxins as well as other stressors and are known to display
characteristic macrophage polarization. As active phagocytes,
KCs secrete various inflammatory cytokines in response to
intravascular debris and serve to eliminate bacterial cells and
other particulates via cell surface receptor complexes, notably
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complement receptors (ICAM-1 binding adhesion receptors
and TLRs facilitating recognition of polysaccharides) [77, 78,
85]. Overproduction of these inflammatory mediators by KCs,
including TNFα, IL-1 and 6, MIP1α, TGFβ, and RANTES
can lead to parenchymal injury/necrosis and subsequently
activate inflammatory cascades in neighboring cells, including
upregulation of pro-inflammatory/pro-fibrotic signaling with
the hepatic stellate cell population. Concrete links have
previously been established between KCs activation and the

pathogenesis of NAFLD and NASH, indicating reduction of
this cell population attenuates histological signs of steatosis,
inflammation, and necrosis [86–89]. More recently, elegant
studies by Tosello-Trampont et al. demonstrate depletion of
KCs (either pre- or post-methionine-choline deficient [MCD]
diet) triggers a significant hepatic influx of CD11bintLy6Chi

pro-inflammatory blood monocytes during development and
progression of NASH [90]. Interestingly, in this rodent model
of NASH development, KCs are polarized to the M1

Fig. 2 Immune cell-mediated
NAFLD pathogenesis. The
pathogenesis of NAFLD is often
described by the “two-hit”
hypothesis. Excessive
consumption of dietary fats
along with potential underlying
metabolic disruption, genetic
or otherwise, stimulates an
increase in fatty acid synthesis
with concurrent increases in
triglycerides, β-oxidation,
and disruption of glucose
homeostasis. Simple steatosis
coupled with additional injury
or a “second-hit” may progress
the state of injury to NASH
marked by tissue inflammation.
Immune cell activation observed
in NAFLD, and elevated
inflammatory cell infiltrate
observed in NASH, marres the
hepatic microenvironment
with inflammatory cytokines,
with subsequent increases in
lipoapotosis, oxidative stress, and
insulin resistance. Innate immune
cells are critical mediators of this
process; those highlighted in this
review are diagrammed above
with notable secretory factors and
receptors. DC dendritic cell, KC
Kupffer cell, NK natural killer
cell, NKT natural killer T cell
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macrophage phenotype and, along with the blood-derived
monocytes, account for the main cellular source of TNFα.
Elevation in hepatic TNFα promotes recruitment of Th1
inflammatory cells through subsequent elevation in MCP-1
levels [90]. Additionally, TNFα is known to regulate
intrahepatic lipid metabolism through various mechanisms
(e.g., insulin resistance), further amplifying NASH pathology
[81]. Visceral adiposity observed in clinical NAFLD and
NASH is often accompanied by increased gut permeability
[91]. Thus, elevated gut-derived endotoxin levels trigger KC
activation (via TLR4), which may also contribute to the
classical M1 phenotype often observed [91]. While KC
numbers have been shown to increase as a result of liver injury,
it is clear from the recent work of Leroux and colleagues that
differential phenotype is also observed in the setting of
increased lipogenesis [92]. KCs isolated from high-fat diet fed
mice were characterized by increased cell size and lipid droplet
retention. Specifically, lipid droplets enriched with ceramides
and diacylglycerols were reported, the former already known to
stimulate macrophage activation and apoptosis. In this same
study, increased inflammatory signaling was accompanied by
an induction of lipogenic gene expression in KCs from fatty
livers, which was attenuated by inhibiting the first step in
lipogenesis (via suppression of acetyl-CoA carboxylase) [92].
In contrast to the deleterious M1 KC phenotype, previous
studies have shown alternatively polarized M2 KCs to
ameliorate insulin resistance in diet-induced obesity [93, 94].
Additionally, while the mechanism of KC activation/
polarization remains unclear, recent studies have shown that
neurotransmitter serotonin and cognate receptors may skew
macrophage polarization. Specifically, KCs preferentially
express serotonin receptor 5HT2B, and upon agonist activation,
KCs display the characteristic M2 phenotype (anti-
inflammatory, pro-cell growth, and tissue repair) [95].
Serotonin levels are decreased in patients with metabolic
syndrome [96]; thus, it would reason to speculate that the
pronounced M1 pro-inflammatory phenotype of KCs observed
in NAFLD/NASH may be in some way linked to serotonin
levels in the peripheral blood supply. Additionally, oxidative
stress due to elevated ROS has been implicated as the
secondary insult in the two-hit hypothesis of NAFLD [79].
KCs are a significant source of hepatic redox disruption via
both direct and indirect ROS generation, and these effects on
disease pathology and activation of adaptive immunity have
been reviewed previously [79].

Natural killer cells

Originally termed Pit cells, NK cells reside within the hepatic
sinusoid functioning as hepatic lymphocytes with qualities
distinct from that of peripheral NK cells, T and B cells, due
to antigen receptor expression deficiency [97]. Re-population
rates remain high under normal physiological conditions,

with cellular turnover every ~1–2 weeks. Extrahepatic
replenishment of NK cells is controversial, but likely
attributable to bone marrow-derived stem cell, with tissue-
enrichment of NK cells attributed to sinusoidal endothelial
cell–NK cell adhesion. Hepatic NK cells have the ability to
directly and/or indirectly kill pathogens, stressed parenchymal
and nonparenchymal cells, and tumor cells within the hepatic
microenvironment [78]. Regulatory functions of NK cells
have been reported with regard to Kupffer cells, T and B cells,
as well as dendritic cells via production of various
chemokines, cytokines, and growth factors. NK–target cell
interactions are dictated by the presence of NK cell receptors,
notably NKG2D, and target cell ligand expression [98, 99]. In
addition to cell-activating ligands, activation of KCs is
induced by various cytokines and chemokines, predominantly
IFNα/β and CCL2 [100]. Several studies have reported key
regulatory functions of NK cells in various liver pathologies,
including HBV, HCV, and alcoholic liver disease (recently
reviewed here [97, 101]); however, far less has been reported
on the involvement of this cell type in NAFLD and NASH.
Significant increases in NK cell presence has been reported in
diabetes and obesity with corresponding increases in NK cell
ligand expression. MIC A/B, ligands for NK cell receptor
NKG2D, are increased in response to liver injury and have
recently been reported to be upregulated along with NKG2D
and other NK cell-associated mediators in livers of obese
patients [102]. Expression of NK cell death receptors (TRAIL,
CD95/FASL) was also significantly increased in livers of
NASH patients compared to NAFLD and healthy controls,
indicating an associating between activated hepatic NK cells
and NASH pathogenesis [102]. Conflictingly, O'Shea and
colleagues reported obese patients to have significantly fewer
circulating NK cells compared to healthy controls [103];
however, peripheral blood NK cell counts may not accurately
reflect the hepatic compartment. While the specific role of NK
cells in NAFLD/NASH remains unclear, inferences may be
drawn from studies examining NK contributions in liver
fibrosis and HCV, both of which commonly present with
underlying steatosis [97]. Production of cytotoxic mediators
by NK cells can induce hepatic injury, but can also inhibit
fibrogenesis through direct killing of the collagen-secreting
hepatic stellate cell and production of IFNγ. These findings
were recapitulated in the setting of HCV, wherein NK cells
isolated from HCV-infected patients were able to induce
apoptosis in activated HSCs, pointing to a beneficial role of
this cells subset in progressive disease [104]. Paradoxically, a
recent study from Gomez-Santos et al. indicates that NK cells
actively promote a classical Th1 (pro-inflammatory) response
in early stages of NAFLD as evidenced by increased TRAIL
expression and cytotoxic activity [105]. Overall, these reports
indicate divergent roles of hepatic NK in early vs. late stage
disease, which should be a primary consideration when
developing therapeutic strategies.
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Messengers across the divide: dendritic cells and NKT cells

Dendritic cells

In concert with Kupffer cells, DCs are the first to detect
invading pathogens and are classified as professional
antigen-presenting cells regulating immunity and tolerance.
DCs also provide an important link between the innate and
adaptive immune systems through priming of Tcell responses.
DCs are subdivided into two major populations: plasmacytoid
(IFN producing CD123+) and myeloid (CD11c+), both of
which are present in human liver [78, 106]. Interestingly,
properties and functions of dendritic cells vary among tissue
types and to a greater degree among species (e.g., human DCs
vs. rat), making it difficult to identify DC populations by cell
surface markers. DCs initiate innate immune responses to
eliminate foreign microbes, similarly to KCs, dendritic cells
express several PRRs, including TLRs. Due to constant
exposure to bacterial LPS, downregulation of TLR4 is
observed; thus, somewhat limited direct responsiveness to
danger signals and increased tolerogenic properties through
expression of IL-10 is observed [107]. Upon detection and
uptake of invading microbes, activated DCs have the
capability to migrate to draining lymph nodes to promote
NK cell activation in addition to their ability to modulate T
cell response and activate neighboring macrophages [106]. In
experimental models of cholestatic disease, accumulation of
DCs has been reported; however, less is known concerning the
function of DC in hepatic metabolic syndrome and
progression to NASH. High-fat diet alone has been reported
to increase hepatic DCs [108], and in a recent study, DC-
depleted mice present with decreased liver macrophages as
well as resistance of weight gain and metabolic disturbances
from high-fat diet [75]. Henning et al. has recently reported
NASH-associated dendritic cells present a more mature
phenotype characterized by increased expression of co-
stimulatory molecules and cytokines [109]. Depletion of
CD11c+ DCs in a murine model of NASHmarkedly increased
intrahepatic inflammation, with expansion of activated
Kupffer and monocyte populations observed. Additionally,
DCs blunted expansion of CD8+T cells and inflammatory
monocytes. These elegant studies by Henning and colleagues
indicate a positive role for DCs in NASH potentially via
clearance of necrotic and apoptotic cell debris [109]. These
data support previous studies examining a role for DCs in a
fibrotic milieu [107], which suggests this cell type may be
important in the progression of liver disease.

Natural killer T cells

Similar to hepatic DCs, NKTcells provide an important line of
communication between the innate and adaptive arms of the
immune response [97, 110]. NKTcells, which express NK cell

characteristics, express a variable pattern of Tcell receptor and
NK cell markers and recognize lipid antigen CD1d [97].
Intrahepatic NKT cells (reported to develop in the thymus)
are positive for both CD3 and CD56 and are classically
divided as types I, II, or III (CD1-independent), with all
subtypes providing critical intravascular immune surveillance.
Hepatic antigen-presenting cells will present microbial
glycolipid antigens to NKT cells, stimulating secretion of
Th1 or Th2 cytokines, which subsequently activates
neighboring innate immune cells and adaptive T cells [97,
101]. A distant role for NKT cells in NAFLD progression is
beginning to take shape, with NKT cell depletion reported in
fatty liver, but high accumulation in NASH-related fibrosis
[111]. This reduction in hepatic NKTcell content is reportedly
mirrored in the periphery in patients with NAFLD [112].
High-fat diet and obesity are known to trigger apoptosis of
NKT cells through induction IL-12 and increases in immature
myeloid cells, which alone can direct NKT cell death.
Invariant NKT cells (iNKT, type I cells) have been widely
studied in adipose tissue derived from lean and obese mice
[113]. Lynch et al. have shown high enrichment of iNKTcells
in human and murine adipose and liver tissue. In an obese
model, depletion of iNKT cells was observed, which
correlated with the presence of macrophage infiltration [61].
Mice deficient in iNKT cells presented with enhanced weight
loss, fatty liver, and insulin resistance. Hepatic NKT cells also
have the ability to secrete osteopontin (OPN) and sonic
hedgehog (Hh), both of which are known to promote
NAFLD/NASH and fibrosis progression. Elegant studies
from Syn et al. reported attenuated Hh and OPN expression
and dramatically blunted liver damage in mice depleted of
NKT and fed the MCD diet, indicating that hepatic NKT cells
drive the progression of NASH via production of OPN andHh
ligands [114]. These studies support previous evidence that
type II NKTcells initiate hepatic inflammation and exacerbate
obesity leading to insulin resistance [110]. In addition to being
influenced by Hh signals, NFκB signaling may also be critical
to NKT regulation. NFκB1-deficient mice, which develop
enhanced NASH, displayed increased hepatic NKT
recruitment compared to wild-type mice [115]. NKT cell
recruitment was associated with increased IL-15 expression,
a cytokine that influences NKT maturation and survival.
Interestingly, while NFκB loss increased NKTcell recruitment
and subsequently enhanced IFNγ production, liver fibrosis
(which should be attenuated by IFNγ) was still observed
indicating the appreciable complexity of innate NKT-
mediated responses [115].

Outlook

In light of the vast complexity of cell phenotypes/functionality,
which is highly dependent on etiology and disease state, it is
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evident that future work is needed to validate whether
(innate) immune cell subsets can be exploited for therapeutic
intervention inmetabolic disorders. Classical anti-inflammatory
strategies to treat insulin resistance and other obesity-mediated
disorders include high-dose salicylate administration [7], TNFα
neutralization [116], and inhibition of interleukin-1 signaling
[117, 118], however, associated with varying effectiveness and
degree of clinical improvements. In this respect, also the main
class of anti-diabetic drugs, PPARγ agonists of the TZD family,
has been found to exert anti-inflammatory effects, but was also
associated with severe (cardiovascular) side effects [119].
Novel approaches have begun to characterize the inflammatory
infiltrate in NAFLD and NASH patients to uncover markers
of inflammatory cells that correlate to disease severity.
Unsurprisingly, recent assessment of immune cell profiles in
pediatric NAFLD indicates increased CD136+ Kupffer cell
number correlates to severity of disease, while the opposite
effect is observed in CD3+ cells [120]. Additionally, in adult
patients with NASH, distribution of naive, memory, LT
helper, and cytotoxic subpopulations in the periphery are also
skewed revealing a distinct profile [121]. While these studies
are small in number, expansion is expected also into other
relevant organ entities, including adipose tissue and skeletal
muscle, which may provide more substantial data from larger
patient cohorts with appropriate controls. It is clear that each
immune subpopulation is unique in function within the
corresponding microenvironment, and that depletion and/or
expansion of certain cell types can alter disease progression.
Thus, future research in immunometabolism can be expected
to further define avenues to anti-obesity and anti-diabetic
therapies.
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