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Abstract Neutrophils have long been viewed as short-lived
cells crucial for the elimination of extracellular pathogens,
possessing a limited role in the orchestration of the immune
response. This dogma has been challenged by recent lines of
evidence demonstrating the expression of an increasing num-
ber of cytokines and effector molecules by neutrophils. More-
over, in analogy with their “big brother” macrophages,
neutrophils integrate the environmental signals and can be
polarized towards an antitumoural or protumoural phenotype.
Neutrophils are a major source of humoral fluid phase pattern
recognition molecules and thus contribute to the humoral arm
of innate immunity. Neutrophils cross talk and shape the
maturation and effector functions of other leukocytes in a
direct or indirect manner, through cell–cell contact or cytokine
production, respectively. Therefore, neutrophils are integrated
in the activation and regulation of the innate and adaptive
immune system and play an important role in the resolution
or exacerbation of diverse pathologies, including infections,
chronic inflammation, autoimmunity and cancer.
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Introduction

The role played by neutrophils in immunity has long been
viewed as restricted to the acute phase of inflammation and
to resistance against extracellular pathogens [1–3]. This view
is consistent with the phagocytic theory of Metchnikoff who
proposed more than 100 years ago that polymorphonuclear
leukocytes patrol the bloodstream and migrate to the site of
infection to phagocytose microbes. Several studies have
recently challenged this dogma and placed the neutrophil
as a key effector cell in the orchestration of adaptive immu-
nity and in the resolution of inflammatory response [1–3].
Indeed, in addition to their phagocytic activity and the stor-
age of a set of lytic enzymes and antimicrobial components
in their intracellular granules, neutrophils are induced to
express molecules (e.g. cytokines, chemokines) involved in
the regulation of innate and adaptive response. Neutrophils
have emerged as a major source of humoral pattern recogni-
tion molecules (PRMs) that recognise pathogen-associated
molecular patterns and initiate the immune response in
coordination with the cellular arm, therefore acting as
functional ancestors of antibodies. Neutrophils directly
interact with macrophages, dendritic cells, and lympho-
cyte subsets and modulate their effector functions. For
instance, natural killer (NK) cell functions are impaired
during neutropenia, and under steady state, neutrophils are
crucial for NK cell development both in human and
mouse [4]. Consequently, a bidirectional cross talk occurs
between neutrophils and NK cells, which stimulates the
production of IFN-γ by NK cells and promotes the sur-
vival and activation of neutrophils [5, 6]. In addition, polar-
ized T helper (Th) 17 cells and innate IL17-producing cells
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rapidly activate neutrophilic inflammation through the pro-
duction of granulopoietic factors and chemokines [7–9]. In
this review, we will focus on the most recent findings related
to the effector functions and plasticity of neutrophils as well as
on their emerging role in regulating the innate and adaptive
immune system. Finally, we will describe the relation between
neutrophils and diverse pathologies.

Neutrophils in innate immunity

Pathogen recognition by neutrophils

Mammals are constantly in contact with microorganisms,
and their ability to mount a protective immune response
resides in their competence to identify potential pathogens.
The life-threatening condition associated with acquired or
congenital abnormalities in neutrophil life cycle or function
underlines their essential role in innate immunity and resis-
tance to pathogens [2]. Innate immune molecules involved
in pathogen recognition are germline-encoded PRMs which
belong to both the cellular and humoral arms of the innate
immune system [10]. These receptors represent a class of
sensors specialized in the discrimination of self versus non-
self and modified self and participate in the initiation and
regulation of the inflammatory process [11]. Neutrophils are
endowed with a vast repertoire of cellular-associated PRMs
which, upon recognition of pathogens or tissue damage,
promote neutrophil effector functions (e.g. production of
ROS, secretion of antimicrobial peptides) [12, 13]. These
include all members of the Toll-like receptor (TLR) family,
with the exception of TLR3 and a low or absent expression
of TLR7 [14, 15]; the C-type lectin receptors Dectin-1 [16],
CLEC-2 [17], Mincle [18] and CLECSF8 [19]; and func-
tional cytoplasmic sensors, such as NOD-1, RIG1, MDA5
and IFI16 [20–22]. Dectin-1 (also known as CLEC7A) is
the main β-glucan receptor on neutrophils and promotes
phagocytosis and the killing of Candida albicans and As-
pergillus fumigatus through the activation of a calcineurin
signalling axis [16, 23]. Neutrophils express NOD-1, which
primes the innate immune system [20], and the
NLRP3/ASC/Caspase-1 inflammasome, which regulates
IL-1β processing [24]. In addition, neutrophils express the
NOD-like receptor family member NLRP6, a negative reg-
ulator of NF-kB and ERK activation after TLR engagement
[25]. In contrast to other myeloid cells, the Myd88-
independent pathway is not activated in human neutrophils
stimulated by lipopolysaccharide (LPS) and neutrophils fail
to produce IFN-β and, consequently, CXCL10 and other
type I IFN-dependent genes after TLR4 engagement [26].
However, human neutrophils express a set of cytosolic DNA
sensors, such as IFI16, MDA5, RIG1, LRRFIP1, DDX41
and STING [21, 22]. As a consequence, the expression of

IFN-β and CXCL10 mRNAs was observed in human neu-
trophils transfected with plasmid DNA or infected by intra-
cellular pathogens (e.g. Bartonella henselae, Listeria
monocytogenes, Legionella pneumophila and adenovirus
type 5) [21]. Formyl peptides, found in bacteria and mito-
chondria, activate neutrophils via the seven-transmembrane
G-protein-coupled receptors FPR1 (high-affinity receptor
for fMLF) and FPR2 (low-affinity receptor for fMLF),
which have different effector functions [27, 28]. The activa-
tion of FPR1 or FPR2, depending on ligand concentration,
promotes p38 or Erk activation, respectively, leading to the
activation or inhibition of neutrophil chemotaxis [27].
Mitochondrial-derived formylated peptides induce the re-
cruitment of neutrophils and inflammation and elicit
neutrophil-mediated organ injury [29]. Since the production
of formylated proteins is limited to bacteria and mitochon-
dria, FPRs can be classified as PRMs recognising microbial
moieties and tissue damage [29].

Fluid phase PRMs, including collectins, ficolins and
pentraxins, are essential effectors and modulators of the
innate resistance in animals and human and act as functional
ancestors of antibodies [10]. Neutrophils have emerged as a
source of humoral PRMs and notably serve as a ready-made
reservoir of a set of PRMs, including long pentraxin PTX3,
proteoglycan recognition receptor PGRP-S and M-ficolin
(also known as ficolin 1), covering a temporal window
preceding gene expression-dependent production (Fig. 1).

PTX3 is a member of the long pentraxin family related to
classic short pentraxins (e.g. C-reactive protein and serum
amyloid P) and has served as a paradigm to study the
humoral arm of the innate immune system [10]. PTX3
transcript expression is confined to immature myeloid cells,
and mature neutrophils serve as a reservoir of preformed
PTX3, ready for rapid release into neutrophil extracellular
traps (NETs) [30]. Upon pathogen opsonisation (i.e. A.
fumigatus, Pseudomonas aeruginosa), PTX3 interacts with
Fcγ receptor IIA (FcγRIIA/CD32) and induces inside-out
CR3 (CD11b/CD18) activation and amplification of C3b-
opsonized pathogen phagocytosis [31, 32]. Accordingly,
neutrophil-associated PTX3 is essential for resistance
against A. fumigatus [30]. In addition, PTX3 is translocated
from granules to the surface of apoptotic neutrophils and
acts as a late “eat me” molecule involved in the recognition
and engulfment of apoptotic neutrophils by macrophages
[33]. Leukocyte-derived PTX3 also has a regulatory func-
tion on neutrophil recruitment and inflammation by
interacting with P-selectin [34]. Thus, under conditions of
full-blown neutrophilic inflammation, leukocyte-derived
PTX3 acts as a negative feedback loop by binding to P-
selectin and preventing further neutrophil recruitment [34].

PGRP-S and M-ficolin are stored in secondary and ter-
tiary granules [35–37]. PGRP-S is also localized in NETs,
binds to peptidoglycan and exerts bacteriostatic and
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bactericidal activities against selected microorganism
(e.g. Micrococcus luteus, Staphylococcus aureus, Bacillus
subtilis) [37, 38]. M-ficolin, which belongs to the lectin
family, recognises selected Gram-positive and Gram-
negative bacteria, activates the complement lectin pathway
and exerts opsonic effects [10]. M-ficolin released from
granules is also found associated with the neutrophil surface
through a direct interaction with CD43 [36, 39]. This inter-
action enhances neutrophil aggregation and adhesion and
activates complement on the neutrophil surface [39].

Collectively, these observations reveal that neutrophils
participate in humoral innate immunity via the expression
and release of fluid phase PRMs involved in the recognition
and phagocytosis of non-self and modified self, complement
activation and regulation of the inflammatory response.

Neutrophil extracellular traps

NETs are an extracellular fibrillary network formed by
activated neutrophils [40] and composed of nuclear compo-
nents (i.e. DNA, histones) [40] decorated by a set of proteins
from primary (e.g. myeloperoxidase (MPO) and neutrophil
elastase (NE)) [40], secondary (e.g. lactoferrin [40] and
PTX3 [30]) and tertiary granules (e.g. MMP-9 [40] and
PGRP-S [37]). In addition to genomic DNA, mitochondrial
DNA has been reported in NETs [41]. These extracellular
structures trap bacteria (e.g. Escherichia coli, Shigella

flexneri, S. aureus); fungi (e.g. C. albicans, A. fumigatus);
and human immunodeficiency virus-1 (HIV-1), favouring
their interaction with effector molecules and their disposal
(Fig. 2) [40, 42]. In addition to neutrophil-associated mole-
cules, surfactant protein D present on many mucosal sur-
faces binds NETs and enhances microbial trapping [43].
However, direct microbicidal activity of NETs has recently
been a matter of controversy and could require the presence
of H2O2, chloride and the formation of HOCl catalysed by
MPO [44, 45]. NET formation is a rapid active process
called “NETosis” (Fig. 2) which occurs in vivo in animals
and humans and prevents systemic bacterial dissemination
[40, 46]. NET formation is induced by the Raf-MEK-ERK
pathway, through the activation of the NADPH oxidase
complex and upregulation of anti-apoptotic proteins, and
by the mammalian target of rapamycin (mTOR), through
the induction of hypoxia-inducible factor 1 alpha protein
expression [47, 48].

After stimulation, neutrophils lose their characteristic
nuclear morphology. Chromatin decondensation is an essen-
tial event and requires the generation of ROS, the induction
of neutrophil autophagy [49, 50], and the citrullination of
histones by the peptidyl arginine deiminase 4 (PAD4) [51]
and is favoured by NE and MPO [52]. Accordingly, genetic
deficiency of these molecules, as observed for instance in
chronic granulomatous disease or in MPO-deficient pa-
tients, results in defective NET formation, which is likely
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Fig. 1 Neutrophils contribute to the humoral arm of innate immunity.
Sensing microbial moieties or tissue damage by cellular receptors
induces the release of humoral fluid phase pattern recognition receptors
by innate immune cells (e.g. neutrophils, macrophages) and other cell
types (e.g. endothelial cells, epithelial cells) with different tempos.
Neutrophil granules contain a set of humoral fluid phase pattern

recognition receptors (PGRP-S, PTX3, M-ficolin) rapidly released in
minutes, covering a temporal window preceding gene expression-de-
pendent production. These humoral sensors share fundamental mech-
anisms of effector function (e.g. opsonisation, agglutination,
complement activation, regulation of inflammation) and participate in
the initiation of immune response
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to contribute to the increased susceptibility to infections
observed in these patients [49, 53].

NET formation is delayed in neutrophils isolated from
preterm or healthy term neonates compared to neutrophils
isolated from healthy adults [54]. Interestingly, this defect
seems to be ROS-independent, which suggests additional
mechanisms driving NET formation [55]. According to this
observation, Leishmania donovani induces NET formation
in a ROS-independent mechanism [56].

Microorganisms have acquired a set of mechanisms
allowing them to escape NET trapping/killing and, thus,
enhancing their virulence. For instance, the cell wall struc-
ture of Streptococcus pneumoniae and L. donovani is mod-
ified by a D-alanylation of the cytoplasmic membrane-
anchored lipoteichoic acid and by the expression of a sur-
face glycolipid lipophosphoglycan, respectively, which pro-
tect them from the antimicrobial activity of NETs [56, 57].
Expression of DNase by the M1 serotype strains of the
pathogen group A Streptococcus (Streptococcus pyogenes
or GAS) and S. pneumoniae inhibits their extracellular kill-
ing mediated by neutrophils and enhances their virulence in
vivo [58, 59]. In addition, strains of P. aeruginosa isolated
from cystic fibrosis patients have developed resistance to
NET-mediated killing within the cystic fibrosis airway [60].
Finally, HIV-1 is also able to counteract the antiviral activity
of NETs through DC-SIGN (CD209)-dependent IL-10 pro-
duction, which inhibits NADPH oxidase-dependent NET
formation [42]. Thus, as ancient Roman gladiators, neutro-
phils throw noxious NETs, whilst escape from NETs is an
evolutionary strategy adopted by bacteria and HIV-1.

The growing number of neutrophil-derived cytokines

Beyond their classical preformed and rapidly secreted me-
diators, neutrophils have recently emerged as key regulators

in innate and adaptive immunity through cytokine produc-
tion and secretion. Table 1 summarizes the growing number
of neutrophil-derived cytokines. Here, we describe the most
recent evidence and refer the reader to previous reviews for
background [2, 61].

A recent report has demonstrated that murine neutrophils
constitutively express the NLRP3 inflammasome complex
and that LPS-pretreated murine neutrophils are the major
source of IL-1β in response to classical inflammasome acti-
vators (ATP, silica crystals) [24]. Previous results indicated
that murine neutrophils are able to produce IL-1β and process
it in a proteinase-3- and elastase-dependent manner [62].
However, Mankan and colleagues [24] showed that neutro-
phils isolated from proteinase 3/elastase double knockout
mice are still able to produce functional IL-1β, whilst neutro-
phils isolated from NLRP, ASC or caspase-1 knockout mice
are not, demonstrating that the NLRP3/ASC/caspase-1 path-
way plays a major role in IL-1β production by murine neu-
trophils. IL-27 expressed by human neutrophils during sepsis
suppresses the production of ROS and therefore reduces neu-
trophil bactericidal activity in vitro, suggesting that IL-27
exerts regulatory effects on neutrophils [63]. Human neutro-
phils are unable to activate the MyD88-independent/TRIF-
dependent pathway upon TLR4 engagement and thereby fail
to produce IFN-β upon stimulation by LPS [26]. Tamassia
and colleagues [21] recently found that DNA-transfected hu-
man neutrophils express IFN-β and related genes via direct
activation of IRF3 mediated by intracellular DNA sensors.
Moreover, murine neutrophils also express IFN-β and related
genes upon infection with encephalo-myocarditis virus via
MDA5 engagement [22]. These results highlight the role of
neutrophils in recognising intracellular pathogens and modu-
lating innate and adaptive immune response.

Other neutrophil-derived cytokines, such as TNF-related
leukocyte-expressed ligand (TRAIL), CCL20, CXCL8, B
cell-activating factor BAFF) or IL-1 receptor antagonist, are
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Fig. 2 Neutrophil extracellular
traps in physiology and
pathology. Neutrophil
extracellular traps (NETs) are
formed by activated neutrophils
via an active process called
NETosis. This extracellular
network, composed of DNA and
nuclear components decorated
by a set of proteins from
granules, traps microorganisms
and facilitates their disposal by
NET-associated effector
molecules. NETs are also
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stored in intracellular pools and rapidly secreted upon stim-
ulation by pro-inflammatory stimuli [64].

Human neutrophils represent an important source of
BAFF and A proliferation-inducing ligand (APRIL), two
cytokines crucial for the survival, maturation and differen-
tiation of B cells, suggesting a role of neutrophil-derived
cytokines in autoimmune and neoplastic B cell-dependent
disorders [2]. Under homeostatic conditions, Puga and col-
leagues [65] described a subpopulation of neutrophils
presenting a singular phenotype characterized by high levels
of BAFF, APRIL, CD40L and IL-21 production. These
neutrophils activate B cells from the marginal zone of the
spleen and promote the diversification and production of
immunoglobulins, and are therefore called “B-cell helper
neutrophils” (NBH) [65].

Neutrophil-derived proteases regulate the biological ac-
tivity of cytokines in the inflammatory microenvironment.
For instance, human and murine neutrophil-derived elastase
and cathepsin G cleave full-length IL-33 into mature forms
[66]. In a mouse model of P. aeruginosa-induced pneumo-
nia, neutrophil-derived elastase (NE) induces the production
of TNF-α, MIP-2/CXCL2 and IL-6 in the lungs, and in
particular by macrophages, via a TLR4-dependent mecha-
nism [67].

It has been proposed that both human and murine neu-
trophils infiltrating psoriatic skin lesions and inflamed sy-
novia of rheumatoid arthritis patients express IL-17A [68,
69]. However, human and murine neutrophils show differ-
ences in cytokine expression. In particular, the expression of
IFN-γ and IL-10 by human neutrophils remains controver-
sial [2, 61, 70]. Surprisingly, and despite previous negative
findings [70], human neutrophils have been reported to
produce remarkable amounts of IL-10 upon stimulation with
serum amyloid A and LPS [71]. These latter findings have

not been reproduced in other laboratories, thus raising the issue
of the need for stringent purification and control of monocyte
contamination [72]. In addition, the IL-10 genomic locus is in
an inactive state in human neutrophils, supporting their inca-
pacity to produce IL-10 [76]. Concerning the murine counter-
part, several studies have demonstrated that mouse neutrophils
produce IL-10, for instance during disseminated Candida in-
fection [23], methicillin-resistant S. aureus infection [73],
pneumonia [74] or Trypanosoma cruzi infection [75].

Immune cell cross talk

Within tissues, neutrophils engage in an intricate cross talk
with stromal elements, macrophages, dendritic cells (DC)
and lymphocyte subsets. Integration of signals received by
neutrophils during the migration process (i.e. cytokines,
adhesion, transmigration, microbial products) is a critical
step to increase their life span, thereby allowing these cross
talks [77]. Activated tissue-resident mesenchymal stem cells
and bone marrow-derived mesenchymal cells promote neu-
trophil recruitment, increase their life span and function in
vitro [78, 79].

Activated neutrophils were shown to promote the matu-
ration of human monocyte-derived DC (moDC), through
interaction between CD18 and CEACAM1 expressed by
neutrophil and DC-SIGN on moDC, and mouse bone
marrow-derived DC, through the production of TNF-α
[80–82]. However, the cross talk between neutrophils and
DC may also inhibit or reduce their maturation and
immunostimulatory activity through the secretion of
ectosomes and neutrophil elastase [83, 84].

Neutrophils also communicate with T cells, B cells and
NK cells. For example, activated neutrophils induce Th1

Table 1 Neutrophil-derived cytokines

CXC chemokines CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12a,
CXCL13a

CC chemokines CCL2, CCL3, CCL4, CCL17, CCL18, CCL19, CCL20, CCL22

Pro-inflammatory cytokines IL-1α, IL-1β, IL-6b, IL-7, IL-9b, IL-16b, IL-17A, IL-17Fb, IL-18, MIF

Anti-inflammatory cytokines IL-1RA, IL-4b, IL-10b, TGFβ1, TGFβ2

Immunoregulatory cytokines IFN-αc, IFN-β, IFN-γb, IL-12, IL-23, IL-27, IL-21a

Colony-stimulating factors G-CSF, M-CSFb, GM-CSFb, IL-3b, SCFb,c

Angiogenic and fibrogenic
factors

HB-EGF, HGF, FGF2, TGFα, VEGF, Bv8 (prokineticin 2)

TNF superfamily members APRIL, BAFF, CD30L, CD95L, LIGHTc, LTβc, RANKL, TNF, TRAIL, CD40La

Other cytokines Amphiregulin, BDNFc, midkine, NGFc, NT4c, oncostatin M, PBEF

Cytokines expressed by neutrophils, either spontaneously or following appropriate stimulation, based on gene expression techniques, immuno-
histochemistry, ELISA or biological assays in in vitro or in vivo studies
a Reported expressed by “B cell-helper neutrophils”
b Controversial data for human neutrophils
c Studies performed at the mRNA level only
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and Th17 cell chemotaxis through the production of CCL2,
and CXCL10 or CCL2 and CCL20, respectively [9]. Ac-
cordingly, neutrophils and Th17 cells co-localize in the gut
from Crohn’s disease and synovial fluid from rheumatoid
arthritis patients [9]. In turn, Th17, γδ T cell or Treg, but not
Th1, produce the neutrophil chemoattractant CXCL8 and
activated T cells modulate the neutrophil life span and
activation through the secretion of selected cytokines (e.g.
IFN-γ, GM-CSF and TNF-α) [9, 85–87].

Neutrophils migrate to the lymph node in a CCR7-
dependent manner and act as antigen-presenting cells
[88–92]. Moreover, neutrophils take up and present exoge-
nous antigens on MHC-I complex in vivo and promote the
differentiation of naive CD8+ T cells into cytotoxic T cells,
suggesting a direct interaction between neutrophils and CD8+

T cells [91]. In contrast, neutrophils may also interfere with
professional antigen-presenting cells via a competition for the
antigen and, therefore, reduce the T CD4+ response [93].

A “ménage a trois” composed by neutrophils, dendritic
cells and T cells can enhance the development of the im-
mune protective response. DC have the capacity to internal-
ize live and UV-irradiated neutrophils in a CD18-dependent
fashion [94]. Therefore, infected neutrophils sustain the
maturation, activation and migration to the lymph node of
DC through a cell contact-dependent fashion, which in turn
cross-present antigens and elicit T cells to produce IFN-γ
[94–96]. Mycobacterium tuberculosis inhibits neutrophil
apoptosis, leading to a slow down of the bacterial acquisi-
tion by DC, a slower migration to the lung-draining lymph
node and a delayed activation of CD4+ T cells in vivo [97].

The interaction of neutrophils with DC can also result in
NK cell activation. A cross talk between human neutrophils
and 6-sulfo LacNAc+ myeloid DC (slanDC) increases the
release of IL-12p70 by slanDC, which in turn potentiates the
production of IFN-γ by NK cells [5]. Moreover, IFN-γ
potentiates the interaction between neutrophils and slanDC
and the release of IL-12p70, creating a positive amplifica-
tion loop [5]. This tripartite network is supported by direct
interactions between neutrophils and slanDC, via CD18–
ICAM1 interaction, and between neutrophils and NK cells,
via ICAM3 and probably CD18–CD11d complex expressed
by NK cells [5]. Co-localization of neutrophils, slanDC and
NK cells has been shown in the colonic mucosa of Crohn’s
disease patients as well as in skin lesions of psoriasis pa-
tients, suggesting a pathophysiological relevance for this
tripartite network [5].

Using a novel form of neutropenia obtained from a point
mutation in the transcriptional repressor Gfi1, Jaeger and
colleagues have recently demonstrated that neutrophils are
crucial for the development of NK cells [4, 98]. These mice,
called Genista, have normal viability, but are neutropenic due
to a blockage of terminal granulocytic differentiation just after
the metamyelocytic stage [98]. Interestingly, neutropenia was

associated with poor survival, hyperproliferation, impaired
development and hyporeactivity of NK cells [4]. For instance,
most of the splenic NK cells are blocked at the double-positive
CD27+CD11b+ stage and a low percentage expresses CD107a
and IFN-γ upon contact with tumour cells [4]. Moreover, the
depletion of neutrophils in wild-type mice is sufficient to
induce NK cell hyporeactivity and impair their maturation
[4]. Interestingly, NK cells from patients suffering from severe
congenital neutropenia display similar maturation and func-
tional defects, suggesting that neutrophils contribute to NK
cell development and function also in human [4]. In turn, NK
cell-derived products (e.g. IFN-γ, GM-CSF) promote the
survival and activation of neutrophils [6, 99, 100], whereas
cell–cell contact between NK cells and neutrophils induces
neutrophil apoptosis via the natural cytotoxicity receptor
NKp46 and the Fas pathway [6, 101].

As discussed above, a population of neutrophils around the
marginal zone of the spleen (MZ) has been recently identified
and called “B-cell helper neutrophils” (NBH) [65]. These
neutrophils colonize the MZ during foetal life and become
more prominent after postnatal mucosal colonization by bac-
teria. Indeed, LPS-activated splenic sinusoidal endothelial
cells produce neutrophil chemoattractant molecules (e.g.
CXCL8, CXCL1, CXCL2, CXCL3) and IL-10, which repro-
gram neutrophils towards a NBH phenotype [65]. NBH express
higher levels of B cell-stimulating molecules such as BAFF,
APRIL, IL-21 and CD40L and B cell chemoattractant mole-
cules such as CXCL12 and CXCL13 compared to circulating
neutrophils [65]. Based on various parameters, including their
expression levels of CD16 and CD15, NBH were divided into
NBH1 (CD15int, CD16int) and NBH2 (CD15low, CD16low).
Moreover, higher expression levels of CD27, CD40L,
CD86, CD95 and HLA-II associated with a lower expression
level of CD24 are found in NBH1 compared to NBH2,
suggesting that NBH1 are more activated subsets. NBH, and
in particular NBH2, via higher secretion levels of BAFF,
APRIL and IL-21 compared to NBH1, activate B cells from
the MZ and promote immunoglobulin class switching, somat-
ic hypermutation and antibody production [65]. Interestingly,
patients with neutrophil disorders present low levels of IgM,
IgG and IgA antibodies against microbial T cell-independent
antigens (e.g. LPS, peptidoglycan), whereas immunoglobulin
levels against T cell-dependent antigens (e.g. diphtheria
toxins, tetanus) are unmodified, suggesting that NBH regulate
the immunoglobulin response to T cell-independent antigens
in vivo [65]. Though this study suggests that neutrophils may
regulate the immunoglobulin response, their implication in
human immunoglobulin deficiency, such as in acquired IgA
deficiency, has not been demonstrated.

Though invariant NKT (iNKT) cells are known to modu-
late inflammation and neutrophilic inflammation [102–104],
neutrophil modulation of iNKT activity has not been previ-
ously reported. Recently, Weingender and colleagues [105]
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have demonstrated that cell–cell contact between neutrophils
and iNKT cells occurs in vitro and impairs iNKT function.
Accordingly, the expression levels of GATA3 and T-bet in
iNKT as well as the levels of α-galactosyl ceramide-induced
cytokines are reduced during neutrophilic inflammation in
mice and humans [105].

All these data demonstrate that neutrophils are not isolat-
ed players that are quickly substituted by more specialized
cells, but they guide, support and regulate the immune
response throughout its development.

Neutrophils in resolution of inflammation

Neutrophils have long been viewed as final effector cells of
the acute phase of the inflammatory response and as passive
cells during the resolution of inflammation. However, the
critical role played by neutrophils in the resolution phase of
inflammation and to maintain tissue homeostasis is now
demonstrated and accepted [2].

The cell death receptor ligand TRAIL is produced by neu-
trophils [106] and, in turn, accelerates neutrophil apoptosis in
vitro and in vivo [107]. Accordingly, TRAIL deficiency has
been associated with increased neutrophil number and inflam-
mation during neutrophilic inflammation [107]. This pheno-
type is reversed by treatment with recombinant TRAIL,
suggesting that neutrophil apoptosis driven by TRAIL could
be a potential therapeutic target in neutrophilic inflammation
[107]. Moreover, neutrophil-associated p40phox, a subunit of
the NADPH oxidase complex involved in the generation of
ROS, plays a crucial role in the resolution phase of intestinal
inflammation [108]. Indeed, NADPH oxidase activity controls
the resolution phase of inflammation via the downregulation of
CCR1 expression in mouse neutrophils and the upregulation of
enzymes involved in glycan modifications (e.g. fucosyl trans-
ferases, sialyl transferases), which are regulators of leukocyte
trafficking through selectin ligand synthesis [108].

During the late phase of the inflammatory response, the
biosynthesis of eicosanoids by neutrophils is shifted from
leukotriene B4 (LTB4) to the lipoxin A4 (LXA4), reducing
tissue neutrophil infiltration through a direct interaction
between LXA4 and FPR2, also known as the G-protein-
coupled receptor (GPCR) LXA4 receptor [109]. Neutrophils
contribute to the biosynthesis of omega-3 essential polyun-
saturated fatty acid-derived mediators, resolvins (Rv; i.e.
RvE1, RvE2, RvD1, RvD2, RvD5), and protectin D1
(PD1), which inhibit neutrophil infiltration in several in vivo
inflammatory models [109–111]. RvD1 and RvE2 have the
capacity to interact with GPCRs and RvE1 with leukotriene
B4 receptor 1 (BLT1), leading to the inhibition of subse-
quent migration induced by LTB4 [109, 112]. Accordingly,
in a zymosan-induced peritonitis model, the anti-
inflammatory effects observed after low-dose administration

of RvE1 are lost in BLT1-deficient mice [113]. Moreover,
RvE1 and RvD1 dampen leukocyte–endothelial interactions
via the modulation of the expression of leukocyte adhesion
receptors (e.g. CD11b, CD18) and the regulation of L-
selectin (CD62L) shedding [109, 111, 112]. Other media-
tors, such as the recently described macrophage-derived
compound maresin 1 and the new 18S series resolvins,
inhibit neutrophil transendothelial migration and tissue in-
filtration in vivo [114, 115]. In addition to limiting neutro-
phil infiltration, these pro-resolving mediators enhance
phagocytosis and the clearance of microorganisms by neu-
trophils [110]. For instance, in a model of E. coli-induced
peritonitis, RvD5 and RvD1 increased the phagocytosis of
E. coli by macrophages and neutrophils, reduced pro-
inflammatory cytokine levels and bacterial burden, and en-
hanced survival, potentiating the effect of antibiotics [110].

Disposal of apoptotic neutrophils regulated by the expres-
sion of “eat me” signal on apoptotic cells and receptors on
phagocytes is a fundamental step to trigger an anti-
inflammatory response and the resolution of inflammation
[116]. For instance, recognition and ingestion of apoptotic
neutrophils by macrophages induce an IL-10high IL-12low

M2-like phenotype that negatively regulates inflammation
and stimulates tissue repair [117]. The biosynthesis of pro-
resolving mediators is increased in neutrophils during apopto-
sis and in macrophages after engulfment of apoptotic neutro-
phils. In turn, these mediators enhance the phagocytosis and
clearance of apoptotic cells [109, 118]. RvE1 shortens the life
span of neutrophils in the presence of opsonized pathogens,
probably through the activation of caspase-8 [119]. Accord-
ingly, apoptotic neutrophils protected mice against LPS-
induced septic shock, and in a model of pneumonia, treatment
with RvE1 increased the percentage of apoptotic neutrophils
and reduced neutrophil infiltration and lung injury [119, 120].
Moreover, the pro-resolving mediators LXA4, RvE1 and PD1
increased the expression of CCR5 on apoptotic neutrophils
that assist in vivo in the sequestration and clearance of CCL3
and CCL5 from inflamed sites [121]. Live neutrophils also
have the capacity to trap and scavenge chemokines and cyto-
kines. For instance, neutrophils express the IL-1 receptor
antagonist, a soluble molecule which binds to IL-1R without
inducing any intracellular signal [122] and the type II IL-1
decoy receptor (IL-1RII), both in membrane-bound or re-
leased forms, which binds IL-1 and prevents its interaction
with its signalling receptor complex IL-1R1 [123].

Neutrophils in pathology

Infection

Neutrophils have long been recognised for their ability to
sense and eliminate extracellular pathogens. However,
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recent evidence demonstrating their recruitment during the
IL-17/Th17 response and their involvement in the host
response against intracellular pathogens challenges this
view [8]. For instance, the granule-associated molecules
cathepsin G and neutrophil elastase play a crucial role in
pulmonary protective immunity against mycobacterial in-
fection [124]. In a genome-wide transcriptional profile from
the blood of patients with active tuberculosis (TB), latent
TB and healthy controls, a signature revealed an
overexpression of type I IFN-inducible transcripts in blood
neutrophils from infected patients, thus supporting a role for
these cells in the pathogenesis of TB [125]. Consistently,
neutrophils express various cytosolic DNA sensors promot-
ing IFN-β production upon infection by intracellular path-
ogens (e.g. Legionella pneumophilia, B. henselae, L.
monocytogenes) [21]. Neutrophilic inflammation observed
during M. tuberculosis infection is detrimental to the host
and has been associated with increased infection [126].
IFN-γ controls neutrophilic inflammation via inhibition of
the IL-17/Th17 response and may directly act on neutrophils
to prevent their accumulation [126, 127].

Upon neutrophil activation via TLR engagement, G-
protein-coupled receptor kinase-2 induces CXCR2 desensiti-
zation and internalization. Accordingly, TLR9 deficiency en-
hances neutrophil recruitment to the site of infection, increases
bacterial clearance and improves sepsis outcome [128]. IL-33,
a member of the IL-1 family, is involved in regulating the
activity of neutrophils in infections. For instance, it inhibits
the downregulation of CXCR2 expression induced by TLR4
ligation in mouse and human neutrophils. Interestingly, pa-
tients who do not recover from sepsis have high serum levels
of soluble ST2 (ST2 is also known as IL-1RL1), the decoy
receptor of IL-33, and their neutrophils have reduced expres-
sion of CXCR2, suggesting a therapeutic potential of IL-33 in
sepsis [129].Moreover, IL-33 increases the expression of CR3
in neutrophils via a mechanism involving both the TLR and
dectin-1 signalling pathways [130]. Therefore, IL-33 en-
hances the phagocytosis and killing of opsonized C. albicans
by neutrophils and the administration of IL-33 protects mice
against C. albicans infection in a neutrophil-dependent mech-
anism [130].

Neutrophils in chronic inflammation and autoimmunity

Although neutrophils are generally linked to acute inflam-
mation, recent reports have challenged the dogma and dem-
onstrated their fundamental implication in the development
and/or persistence of chronic inflammation. For instance,
neutrophil infiltration in response to zymosan-induced peri-
tonitis is enhanced in mice experiencing various chronic
inflammatory conditions, probably via IL-17A produced
during chronic inflammation [131].

In chronic obstructive pulmonary disease (COPD),
immunoglobulin-free light chains (IgLC), found in serum
and lung tissue of patients, bind to neutrophils, activating
and inducing them to secrete CXCL8 [132]. Interestingly, in
a murine model of lung emphysema induced by cigarette
smoke, the administration of IgLC antagonist reduces neu-
trophil influx in the broncho-alveolar space and activation
[132]. Moreover, selective neutrophil chemoattraction pro-
moted by the tripeptide proline–glycine–proline (PGP) has
been implicated in the persistence of COPD [133, 134]. The
leukotriene A4 hydrolase, which promotes the synthesis of
the chemotactic factor, LTB4, also has the capacity to de-
grade PGP via its aminopeptidase activity [133]. However,
the aminopeptidase but not the hydrolase activity of LTAH4
is inhibited by cigarette smoke, thereby leading to sustained
neutrophil recruitment and chronic lung inflammation by
the combined action of LTB4 and PGP [133, 134]. Since
the extracellular levels of chloride ions selectively activate
the peptidase activity of LTAH4, a similar mechanism may
be at play in cystic fibrosis, characterized by chronic neu-
trophilic inflammation [133]. Indeed, due to mutations in
the cystic fibrosis transmembrane conductance regulator
protein, the extracellular levels of chloride ions are reduced
in cystic fibrosis and are likely to be responsible for the
measurable levels of PGP in the sputum of these patients
[135]. In addition, gamma-glutamyl transferase, observed in
high levels in cystic fibrosis sputum and involved in the
catabolism of the antioxidant and mucolytic glutathione, are
found associated with the neutrophil secretory vesicles and
released after stimulation [136]. Thus, neutrophils can di-
rectly contribute to the low concentration levels of glutathi-
one found in cystic fibrosis airways and in worsening
respiratory function [136].

The nature of the contribution of neutrophils in autoim-
mune disorders is not well defined, despite their recognised
role in pathogenesis. Recent observations demonstrated the
involvement of NETs in autoimmunity. Indeed, the degra-
dation of NETs by DNase I, normally observed in healthy
human serum, is compromised in a subset (36.1 %) of
patients with systemic lupus erythematosus (SLE), a multi-
organ autoimmune disease characterized by an interferon
and granulopoiesis signature [137, 138]. NETs activate the
classical complement pathway leading to C1q deposition,
which inhibits DNase I and, thus, their degradation [139]. A
positive correlation has been reported between undegraded
NETs and the levels of antinuclear and anti-NET antibodies
and with the frequency of lupus nephritis development
[138]. Accordingly, netting neutrophils are found in the skin
and kidney of lupus patients, and serum from lupus patients
contains immune complexes composed of autoantibodies,
notably anti-ribonucleoproteins (anti-RNP IgG), self-DNA
and antimicrobial peptides, such as LL-37 or HNP
[140–142]. Therefore, defective NET clearance leads to the
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expression of a set of autoantigens and danger-associated
molecular patterns, known to trigger and promote inflam-
mation [116]. In Felty’s syndrome, a variant of rheumatoid
arthritis defined by an enlarged spleen and an abnormally
low white blood cell count, circulating autoantibodies, in
particular directed against PAD4-deiminated histones, are
found associated with NETs [143]. These immune com-
plexes are transported across pDC membranes via binding
to CD32 (FcγRIIB), where self-DNA induces the produc-
tion of IFN-α. In turn, IFN-α primes neutrophils for further
NET formation [140–142]. Interestingly, a distinct subset of
neutrophils (low-density granulocytes) found in SLE pa-
tients display an activated phenotype; secrete high levels
of type I IFNs, TNF-α and IFN-γ; overexpress a set of
immunostimulatory proteins and alarmins; have a high ca-
pacity to produce NETs; and induce significant endothelial
cell cytotoxicity [140, 144].

Neutrophils are also linked to vascular diseases where the
presence of anti-neutrophil cytoplasmic antibodies (ANCAs)
is a hallmark of ANCA-associated vasculitis (e.g. Wegener’s
granulomatosis, Churg–Strauss syndrome and microscopic
polyangiitis) [145]. NETs promote injury of the endothelium
and the surrounding tissue via the presence of extracellular
histones, which have been involved in cytotoxic activity,
organ failure and death [146, 147]. Accordingly, pre-
incubation of NETs with antibodies against histones reduced
NET-induced cytotoxicity in vitro [148]. NETs are produced
by ANCA-stimulated neutrophils and found in kidney biop-
sies from patients with small-vessel vasculitis and SLE, where
they contribute to endothelial damage [140, 149].

In a mouse model of transfusion-related acute lung injury
(TRALI), neutrophils capture circulating platelets, which
results in the production of ROS by neutrophils and subse-
quent vascular injury [150]. Moreover, activated platelets,
found during vessel injury and sepsis, induce NET forma-
tion, causing endothelial and tissue damage [146, 151–153].
Disruption of NETs by intranasal DNase I treatment in
TRALI improves blood arterial oxygenation and reduces
lung oedema, lung vascular permeability and mortality
[151, 152]. In humans, NETs were detected in plasma and
lungs of patients with TRALI, suggesting that clinical trials
to target platelet activation and platelet–neutrophil interac-
tions should be considered in this condition [151].

Neutrophils, and in particular NET formation, are in-
volved in the coagulation cascade and thrombus formation
by supporting platelet adhesion and aggregation, thrombin-
dependent fibrin formation and blood clot formation
[153–155]. Accordingly, in an experimental model of deep
vein thrombosis, NETs are found in the thrombus and the
administration of DNaseI protects mice from thrombosis
[154, 156]. Moreover, NET formation has been involved
in cancer-associated thrombosis, one of the major causes of
death in cancer patients [155].

Neutrophil recruitment into joints, induced by LTB4 and
chemokines produced by stimulated synovial cells, is a
hallmark of arthritis [157]. Their recruitment into joints re-
quires the GPI-anchored protein Ly6G, which is closely
associated with β2-integrins at the neutrophil surface
[158]. Moreover, Syk-dependent signalling in neutrophils,
required for FcγR-induced signalling, is essential to estab-
lish an immune complex-mediated arthritis [159].

Finally, CXCR2-dependent neutrophil activation and
consequent inflammatory disease has been involved in sus-
ceptibility to murine multiple sclerosis, an inflammatory
demyelinating disorder of the central nervous system [160,
161]. For instance, transfer of CXCR2-positive neutrophils
into CXCR2-deficient resistant mice restores susceptibility
to autoimmune encephalomyelitis [161]. Moreover, in a
model of cuprizone-induced demyelination, CXCR2 knock-
out mice are resistant due to deficient neutrophil effector
responses [160]. Thus, CXCR2 not only contributes to
neutrophil migration into tissues but also promotes their
effector functions.

Neutrophils and cancer

Genetic instability and inflammation, such as inflammatory
cell infiltration, chemokine and cytokine expression in the
microenvironment of most neoplastic tissues, have been pro-
posed to represent hallmarks of cancer [162]. Among myeloid
cell subsets infiltrating the tumour stroma, tumour-associated
macrophages (TAM) were the most prominent and best-
characterized cells implicated in tumour progression, stroma
deposition and remodelling, angiogenesis and antitumour T
cell-dependent immunity [163]. However, tumour-associated
neutrophils (TAN) have recently emerged as key mediators in
malignant transformation, tumour progression and in the reg-
ulation of antitumour immunity [2, 127].

Neutrophils and prognostic significance

The relationship between TAN infiltration and prognosis in
human cancer has not been systematically investigated, as has
been done for macrophages [163]. However, evidence based
on epidemiological studies and animal models is consistent
with the view that neutrophil infiltration and accumulation
within neoplastic tissues may be associated with a poor clin-
ical outcome, as observed in human patients with bronchoal-
veolar carcinoma, hepatocellular carcinoma, colorectal
carcinomas, aggressive types of pancreatic tumours, or head
and neck squamous cell carcinoma [164–169]. In contrast,
neutrophil infiltration has been associated with a favourable
prognosis in patients with gastric carcinoma [170]. Collective-
ly, these results suggest that depending on the localisation, the
prognostic significance of infiltrating neutrophils may differ,
as observed for other leukocyte populations [163].
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Neutrophil recruitment into the tumour and tumour
promotion

The tumour-associated inflammation, a hallmark of cancer,
triggers the production of CXC chemokines (CXCL8,
CXCL1, CXCL2, CXCL3, CXCL5) by cells infiltrating or
surrounding the tumour (e.g. TAM) and by tumour cells
themselves [2, 171, 172]. This family of chemokines was
linked to cancer progression and in particular to tumour an-
giogenesis and metastasis [173]. In animal models, a correla-
tion was found between the expression levels of CXC
chemokines and lung tumour progression, and CXCR2 inhi-
bition reduced pancreatic ductal adenocarcinoma progression
[174, 175]. Most recently, Jamieson and colleagues [176]
reported that in models of inflammation-induced skin papil-
lomas, colitis-associated tumour or spontaneous malignancy,
CXCR2 deficiency or neutrophil depletion suppressed the
inflammation-associated tumourigenesis and the spontaneous
development of tumours.

More than 30 years ago, Clark and Klebanoff [177]
suggested a neutrophil-dependent tumour cell cytotoxicity
mediated by the peroxidase system. In contrast, in 1995,
Pekarek et al. [178] found that granulocytes are required for
the rapid growth of tumour cells and that their depletion
inhibits tumour development. Evidence suggesting the in-
volvement of neutrophils in the promotion and progression
of cancer has followed these original observations [2, 127].

Neutrophil-associated proteins stored within granules and
directed to defence towards pathogens are also involved in
tumour promotion. Neutrophil elastase shows a dual role in
tumour initiation. For instance, NE is taken up into a spe-
cific endosomal compartment of adjacent epithelial tumour
cells and hydrolyses insulin receptor substrate-1, which
normally interacts with a subunit of the PI3K and blocks
its activity [179]. Therefore, upon NE activity, PI3K en-
hances the signalling of the platelet-derived growth factor
receptor, thereby leading to tumour cell proliferation [179].
In contrast, NE taken up by breast cancer cells cleaves
cyclin E into a truncated isoform, which is subsequently
presented in the context of HLA-I molecule and promotes a
T lymphocyte-mediated lysis of cancer cells [180].

Neutrophil-derived cytokines contribute also to tumour
progression. The expression of GM-CSF by breast tumour
cells promotes the production of oncostatin M by neutro-
phils, which in turn induces the production of vascular
endothelial growth factor (VEGF) by breast cancer cells,
reduces cancer cell adhesiveness and increases their inva-
sive capacity [181]. Hepatocyte growth factor (HGF), a
cytokine involved in cell proliferation and motility, is stored
in secretory vesicles and granules of neutrophils [182].
Interestingly, neutrophils enhance the invasiveness of hu-
man cholangiocellular carcinoma and hepatocellular carci-
noma cells in vitro via a HGF secretion-dependent

mechanism [183]. Moreover, in patients with bronchoalve-
olar carcinoma, tumour cells express the HGF receptor and
neutrophil-derived HGF promotes their migration [166].
Accordingly, the levels of HGF found in the bronchoalveo-
lar lavage fluids of patients are correlated with the neutro-
phil counts and associated with poor prognosis [166].

A mechanism facilitating the occurrence of metastasis
has been directly linked with the recruitment and activation
of neutrophils. Indeed, melanoma cell-derived CXCL8 in-
creases the expression of β2-integrin on neutrophils and
promotes a neutrophil–melanoma cell interaction via the
expression of ICAM-1 by melanoma cells [171]. In turn,
this cross talk favours the transmigration of melanoma cells
across the endothelium and facilitates the development of
lung metastasis [171]. In contrast, in mice orthotopically
implanted with breast cancer cells, TAN accumulate in the
premetastatic lung and their depletion increases the meta-
static burden. The authors suggested that tumour-educated
neutrophils are recruited to the premetastatic lung and in-
hibit tumour cell seeding through an H2O2-dependent cyto-
toxic activity [184]. Neutrophils acquire this cytotoxic
phenotype upon accumulation and sequestration in the lung
mediated by granulocyte colony-stimulating factor (G-CSF)
and a subsequent activation induced by CCL2 [184].

Angiogenic switch mediated by neutrophils

TAM and TAN are involved in tumour angiogenesis through
the production of growth and matrix remodelling factors
such as VEGF, basic fibroblast growth factor, platelet-
derived growth factor, urokinase-type plasminogen activator
and metalloproteinases (MMPs). For instance, neutrophil-
derived VEGF has been identified as the major factor re-
sponsible for the in vivo angiogenesis activity induced by
CXCL1 [185]. In addition, neutrophil-derived MMP-9 in-
duces VEGF expression in the neoplastic tissue and there-
fore catalyses tumour angiogenesis [186]. In patients with
hepatocellular carcinoma and head and neck cancer, neutro-
phils are the major source of MMP-9 in the peritumoural
stroma and within the tumour, respectively [164, 187]. In-
terestingly, a microvascular architecture promoting blood-
borne metastasis is observed in hepatoma samples
presenting an elevated number of neutrophils [164]. More-
over, depletion of granulocytes reduces tumour angiogene-
sis and growth in murine hepatoma, demonstrating that
neutrophils control the progression of tumour angiogenesis
in vivo [164].

In a model of subcutaneous injection of melanoma or
fibrosarcoma cells, neutrophils were identified as the major
cells with angiogenic activity negatively controlled by
IFN-β, a potential adjuvant in cancer vaccines. High ex-
pression levels of VEGF, CXCR4 and MMP-9, associated
with better developed blood vessels, are found in

386 Semin Immunopathol (2013) 35:377–394



neutrophils from IFN-βmice [188]. Interestingly, neutrophil
depletion in IFN-β-deficient mice reduces tumour growth
[188], suggesting the relevance of the interplay between
INF-β and neutrophils in the early stages of cancer
development.

Tumour-associated G-CSF enhances the expression of
Bv8 (also known as prokineticin-2) by neutrophils, which
promotes their mobilization and tumour angiogenesis [189,
190]. Interestingly, treatment of tumours refractory to anti-
VEGF therapy with anti-G-CSF or anti-Bv8 reduces tumour
growth and angiogenesis [191].

Finally, NET formation has been recently linked to
cancer-associated thrombosis, a highly common cause of
death in cancer patients [155]. Neutrophils isolated from
leukaemic mice or tumour-bearing mice are primed to re-
lease NETs, most likely via the increased levels of G-CSF
found in cancer, which thus promotes a prothrombotic mi-
lieu [155].

Neutrophilic inflammation is linked to genetic instability

More than 25 years ago, neutrophilic inflammation and, in
particular, neutrophil-derived ROS were linked to genetic
instability [192]. Today, several lines of evidence are con-
sistent with the view that neutrophils are linked with the
process of carcinogenesis through ROS-dependent and
ROS-independent mechanisms. Accordingly, the expression
of neutrophil-derived inducible nitric oxide synthase and
ROS, notably the MPO-mediated formation of HOCl, have
been linked with point mutations or DNA damages, and
levels of TAN significantly correlated with DNA mutations
[193–195]. In ulcerative colitis, neutrophils located in crypt
abscesses are activated and induce DNA damage, as
suggested by G2/M cell cycle checkpoint arrest in colon
epithelial cells [196].

Plasticity of TAN

In 1989, the plasticity of neutrophils was suggested in the
context of tumours in which neutrophils isolated from
tumour-bearing animals significantly increased the metastat-
ic potential of adenocarcinoma cells compared to neutro-
phils isolated from healthy animals [197]. More recently,
reports have confirmed that neutrophils are endowed with
unexpected plasticity [70, 172]. Therefore, mirroring the
M1–M2 and Th1–Th2 paradigms, neutrophils can be polar-
ized towards a pro-inflammatory phenotype with antitumour
activity (N1) or towards a protumoural N2 phenotype [172].
TGF-β, which has a regulatory role on neutrophil functions,
including chemotaxis or cytotoxicity, and plays a critical
role in tumour initiation, progression and metastasis (e.g.
suppressor or promoter depending on the context and stage
of the tumour), is a crucial effector in this polarization [172].

In models of lung adenocarcinoma and mesothelioma,
TGF-β drives neutrophils towards a N2 phenotype, whereas
TGF-β blockade enhances the infiltration of N1 TAN,
which are characterized by a cytotoxic activity against tu-
mour and a pro-inflammatory phenotype (i.e. TNF-αhigh,

CCL3high, ICAM-1high, arginaselow) [172]. The authors have
demonstrated that TGF-β blockade is associated with the
activation of a CD8+ T cell-dependent arm that involves
neutrophils as effectors [172].

Since studies have indicated that neutrophils can also
exert an antitumour immunity [184], in analogy with their
“big brothers”, macrophages, and depending on environ-
mental signals, neutrophils can exert a dual influence on
tumour growth. Moreover, in parallel to the differences
found between mouse and human macrophage polarization,
the existence and functional properties of N1 and N2 in
human have to be carefully investigated.

Relation between neutrophils, TAN and MDSC

Cancer has provided a paradigm for myeloid-derived sup-
pressor cells (MDSC), which represent a heterogeneous
group of myeloid cells composed of monocytic (M-MDSC)
and granulocytic (G-MDSC) subsets, recognised for their
immune-suppressive activity [198]. Neutrophils and TAN
share phenotypic (e.g. cell markers and morphology) and
functional properties (e.g. recruitment within tumours, pro-
duction of arginase, promotion of tumour angiogenesis)
with G-MDSC [198]. Moreover, G-MDSC and neutrophils
were usually defined and isolated using the same phenotype
markers (i.e. CD11b+ Ly6G+ Ly6Clow), creating confusion
to discriminate these cells. Therefore, whether TAN activity
can be attributed to MDSC remains a matter of debate.
Reports have suggested that activated neutrophils present
an immunosuppressive activity in cancer patients and could
account for the arginase I-mediated suppression of lympho-
cytes in renal cell carcinoma [199, 200]. Recently, in a
genetic model of lung adenocarcinoma, but also in patients
with invasive cancer, splenic granulocyte/macrophage pro-
genitors have been proposed as TAN progenitors [201].
Consistent with the hypothesis that a part of the MDSC
activity can be attributed to TAN, a subset of MDSC accu-
mulated within the spleen of tumour-bearing animals are
indeed immature myeloid cells [201–203]. However, other
studies have reported that MDSC and neutrophils are func-
tionally and phenotypically different [202, 204]. For in-
stance, transcriptomic analysis of mouse TAN, naive
neutrophils and G-MDSC has suggested that TAN and G-
MDSC are distinct populations of cells and that naive neu-
trophils and G-MDSC are more closely related to each other
than to TAN [205]. Interestingly, upon stimulation by GM-
CSF, G-MDSC acquire the same characteristics as neutro-
phils, suggesting that G-MDSC are immature neutrophils
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[204]. These immature neutrophilic MDSC have also been
reported in the peripheral blood of patients with cancer, and
high levels are associated with poor prognosis [202, 203].
Collectively, MDSC are a heterogeneous population of my-
eloid cells which includes immature granulocytes. There-
fore, further investigations are required to identify new
biomarkers and discriminate the distinct subpopulation of
cells within MDSC.

Concluding remarks

Long viewed as ultimate short-lived effectors, several lines
of evidence have demonstrated in vitro, but also in vivo, that
neutrophils are endowed with unsuspected diversity and
plasticity. Conforming to Metchnikoff’s model, neutrophils
patrol the bloodstream to detect and phagocyte pathogens.
However, this classical mechanism has been complemented
by the discovery of NETs, which trap and kill extracellular
pathogens. Their importance in innate immunity was nota-
bly put into evidence by evolutionary strategies adopted by
pathogens to escape these poisonous NETs.

Neutrophils use a set of membrane and intracellular mol-
ecules to sense their local environment signals and switch
their phenotype towards a pro-inflammatory and antitumour
(N1) or anti-inflammatory and protumoural (N2) programs.
In turn, neutrophils are involved in a bidirectional cross talk
with most other types of leukocytes and can directly or
indirectly modify their maturation, activation or effector
functions, depending on the context. These new vistas shed
new light on neutrophil function, but also raise new ques-
tions. For instance, the existence of neutrophil plasticity and
diversity in humans together with their role in human pa-
thologies require further studies.
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