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Abstract The outcomes of Leishmania infection are deter-
mined by host immune and nutrition status, parasite species,
and co-infection with other pathogens. While subclinical
infection and self-healing cutaneous leishmaniasis (CL) are
common, uncontrolled parasite replication can lead to non-
healing local lesions or visceral leishmaniasis (VL). It is
known that infection control requires Th1-differentiation
cytokines (IL-12, IL-18, and IL-27) and Th1 cell and mac-
rophage activation. However, there is no generalized con-
sensus for the mechanisms of host susceptibility. The recent
studies on regulatory T cells and IL-17-producing cells help
explain the effector T cell responses that occur independent-
ly of the known Th1/Th2 cell signaling pathways. This
review focuses on the immunopathogenesis of non-healing
American CL and progressive VL. We summarize recent
evidence from human and animal studies that reveals the
mechanisms of dysregulated, hyper-responses to Leishman-
ia braziliensis, as well as the presence of disease-promoting

or the absence of protective responses to Leishmania ama-
zonensis and Leishmania donovani. We highlight immune-
mediated parasite growth and immunopathogenesis, with an
emphasis on the putative roles of IL-17 and its related
cytokines as well as arginase. A better understanding of
the quality and regulation of innate immunity and T cell
responses triggered by Leishmania will aid in the rational
control of pathology and the infection.
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Introduction

Leishmaniasis represents a group of neglected tropical dis-
eases caused by infection with protozoan parasites from the
genus Leishmania. These parasites are widely distributed in
88 tropical and subtropical countries and pose a major
public health problem and a risk for people living in or
traveling to the endemic areas. It has an annual estimated
worldwide incidence of 600,000 and prevalence of 12 mil-
lion cases. Leishmaniasis is a vector-transmitted disease,
and at least 20 species of Leishmania are known to be
pathogenic for humans [1]. These parasites have a di-
genetic life cycle, multiplying as flagellated promastigotes
in the midgut of sand flies and as non-flagellated amasti-
gotes within mammalian phagocytes. Uncontrolled parasite
replication can lead to non-healing cutaneous leishmaniasis
(CL), diffuse cutaneous leishmaniasis (DCL), mucosal
leishmaniasis (ML), or visceral leishmaniasis (VL). The
available anti-Leishmania drugs are far from satisfactory
due to high costs, toxicity, or drug resistance. While pro-
phylactic and therapeutic vaccines are in great need, there
are currently no effective vaccines for any leishmaniasis
forms. This is partially due to an incomplete understanding
of correlates of protective immunity and insufficient
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information on parasite antigens that elicit protective T cell
response and appropriate regulation, since both inadequate
and excessive immune responses can contribute to patho-
genesis, leading to vaccine failure.

The epidemiology of leishmaniasis is extremely diverse.
The outcomes of infection are determined by both the host
immune status and the parasite species involved. Subclinical
infection and self-healing CL are common. Asymptomatic
Leishmania infection is detected in endemic areas by a
positive, delayed-type hypersensitivity (DTH) skin test
(called leishmanin or Montenegro skin test). In some indi-
viduals, infections can progress to non-healing skin or mu-
cosal lesions, or other severe forms. Co-infection with other
pathogens can also complicate disease severity. Leishmani-
asis and human immunodeficiency virus (HIV) are common
infectious diseases with overlapping and expanding endem-
ic areas, a situation which has led to an increased occurrence
of Leishmania/HIV co-infection [2]. For example, while
Southern Europe had the most co-infection cases reported
to WHO in 2001, the number of co-infection cases in other
endemic areas has markedly increased, as 30 % of all VL
patients in Northwest Ethiopia are also infected with HIV
[3]. These two pathogens promote each other by enhancing
pathogen intake, intracellular survival, and disease progres-
sion [4], and such cross-interactions markedly complicate
diagnosis, treatment, and patient management [2, 3].

Host immune responses to Leishmania parasites are reg-
ulated by highly complex pathways. Animal models of CL
and VL have been instrumental for dissecting the mecha-
nisms underlying protective immunity and disease patho-
genesis. The current paradigm in murine CL models of
Leishmania major infection is that healing requires sequen-
tial events, including the activation of dendritic cells (DC),
the production of Th1 differentiation cytokines (IL-12, IL-
18, and IL-27), the activation of IFN-γ/TNF-α-producing
Th1 cells, and the classical activation of macrophages (MΦ;
reviewed in [5], as illustrated in red in Fig. 1). The bio-
chemical pathways in classically activated MΦ, as well as
roles of reactive oxygen species (ROS) and reactive nitrogen
intermediates, such as nitric oxide (NO) in parasite killing
are well described [6]. However, there is no generalized
consensus for the mechanisms of host susceptibility, as
different events are preferentially triggered in a given host
(humans versus animal models) following infection with
different Leishmania species (as illustrated in blue in
Fig. 1). For example, IL-4, IL-10, and IL-13 have differen-
tial roles in host susceptibility to distinctive substrains of L.
major [5]. Notably, the Th1/Th2 polarization of IFN-γ/IL-4
production observed in murine models of L. major infec-
tions is not fully applicable to human diseases and to some
other Leishmania infection models (reviewed in [7]). Much
less is known regarding the pathogenic mechanisms of non-
healing American CL and progressive VL.

IL-17-producing CD4+ T cells (Th17) have recently been
defined as a separate effector T cell lineage, important in the
maintenance of homeostasis through the production of IL-
17A, IL-17F, IL-21, and IL-22 [8, 9]. The discovery of this
new CD4+ T cell subset explains the effector T cell
responses that occur independently of known Th1 and Th2
cell signaling pathways. RORγt and RORα are the two
master transcriptional regulators involved in Th17 differen-
tiation, but other transcriptional factors (e.g., STAT3, IRF4,
and BATF) also contribute to this process (reviewed in
[10]). Ghoreschi et al. [9] have reported two distinct Th17
subsets under in vitro stimulation conditions: the conven-
tional Th17 (or Th17β) cells generated following TGF-β/
IL-6 stimulation and inflammatory Th17 cells generated
following IL-6/IL-23/IL-17 stimulation. These Th17 subsets
play pivotal roles in autoimmunity and chronic inflammato-
ry diseases [11] and participate in defense mechanisms
against certain pathogens including Leishmania (see below).
These seminal studies open new areas for investigation and
validation in humans and experimental animals.

In this review, we focus on the immunopathogenesis of
non-healing American CL and progressive VL. The purpose
of this review is not to provide a comprehensive summary for
the host immune responses against Leishmania parasites or
protective/deleterious host immunity against L. major, as there
are excellent reviews covering these areas [5, 12]. Instead, we
will summarize recent evidence from human patients and
animal studies that reveals the mechanisms of dysregulated,
hyper-responses to Leishmania braziliensis, as well as the
presence of disease-promoting responses to Leishmania ama-
zonensis and Leishmania donovani parasites or the absence of
protective responses. We will highlight immune-mediated par-
asite growth, as well as the immunopathogenesis of non-
healing CL and progressive VL, with emphasis on the putative
roles of IL-17 and its related cytokines, as well as
macrophage-derived arginase and parasite-derived factors. A
better understanding of the quality and regulation of innate
immunity and T cell responses triggered by Leishmania, espe-
cially in the context of HIV co-infection, would aid in the
rational control of pathology and the infection.

Non-healing human diseases associated with L.
braziliensis infection

Parasites in the Leishmania (Viannia) subgenus (L. braziliensis,
Leishmania guyanensis, Leishmania panamensis, and Leish-
mania peruviana) are the most prevalent etiologic agents of
human CL in Central and South America. Among these infec-
tions, approximately 2–3 % of patients develop disseminated
skin lesions, and 3–5 % of patients progress to ML [13]. The
main pathogen of ML in the Amazon region is L. braziliensis,
followed by L. guyanensis [14]. ML is a severe and disfiguring
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form of the disease, usually compromising mucosal regions of
the nose, mouth, and pharynx [15, 16]. Pathologically, ML is
characterized by excessive T and B cell responses to the para-
site. These patients tend to produce elevated levels of anti-
Leishmania antibodies and excessive amounts of proinflamma-
tory cytokines (e.g., IFN-γ, TNF-a, and IL-6) [15, 17]. Large-
scale, gene polymorphism studies indicated that promoter poly-
morphisms for high production of IL-10 by monocytes and
regulatory T (Treg) cells increase the risk of CL lesions [18],
whereas polymorphisms for high production of IL-6 and CCL2
increase the risk of ML, but not of localized CL [19, 20]. These
studies may indicate a differential link between the host genetic
predisposition for dysregulated inflammatory responses and the
risk of severe infections. However, how host-, pathogen-, and
microenvironment-associated factors lead into ML progression
remain largely uncharacterized. Recent studies discussed below
have shed some new light on contributors to the infection
outcomes.

Roles of IL-17-producing cells

In response to stress, tissue injury, or invading pathogens,
host innate immune cells [21] and newly described T cell
subsets can produce IL-17 [8, 9]. IL-17-producing cells play
a pivotal role in neutrophil recruitment at early stages of
infection, as well as in autoimmunity and chronic inflam-
matory diseases. In human infection caused by L. donovani,
IL-17 and IL-22 are associated with protection against kala
azar [22, 23]. With regard to American CL, four studies
have investigated the production of and possible roles for
IL-17 in L. braziliensis infection. Bacellar et al. [24] first
reported in 2009 that lymphocytes obtained from patients
with ML and CL produce higher levels of IL-17 than did
lymphocytes obtained from uninfected control subjects, im-
plying a role for IL-17 in the pathogenesis of the inflamma-
tory reaction in leishmaniasis. This group also compared
cytokine profiles in PBMCs of subclinical infection, patients
with CL, and healthy subjects [25]. They found no major

roles for regulatory cytokines such as IL-10 and IL-27, but
the subclinical group tended to have higher levels of IL-17
than the other two groups. A similar association between IL-
17 and protection was found in individuals exposed to L.
donovani during an outbreak of VL [23] (see below). A
possibility of IL-17 in an innate immune response to L.
braziliensis infection is suggested by the authors, but not
thoroughly investigated. Boaventura et al. evaluated the
involvement of the IL-17-type response in the inflammatory
infiltrate of biopsy specimens from ML patients. They found
that IL-17+ T cells and neutrophils, as well as IL-17-
inducing cytokines (IL-1β, IL-23, IL-6, and TGF-β), were
readily detected in the ML biopsies, and that these staining
patterns were coincident with those of neutrophil elastase,
myeloperoxidase, and MMP-9 [26]. In models of arthritis,
Th17 cells have been identified to be osteoclastogenic and
mediate bone desorption [27, 28], so these cells may simi-
larly drive the destructive processes in ML. Therefore, IL-17
may contribute to ML pathogenesis through several mech-
anisms, including neutrophil activation, tissue injury, and
osteoclast activation (as illustrated in blue in Fig. 1).

More recently, Castellano et al. [29] found that following
stimulation with L. braziliensis antigens, there was a de-
creased frequency of IL-17+CD3+CD4+ cells in circulating
T cells from an HIV-positive ML patient; however, the
biological significance of this alteration remained unclear.
Collectively, these clinical studies indicated that the regulat-
ed production of IL-17 contributes to infection control,
while excessive IL-17 can promote neutrophil influx and
tissue damage, thereby increasing the risk of ML. Addition-
al studies will verify this hypothesis and reveal the major
producers of IL-17 at early versus late stages of infection.
Furthermore, in light of the previous finding of reduced IL-
10 receptor expression in ML compared to CL lesions [30],
the role of IL-10 in regulating the IL-17-driven inflamma-
tory response needs additional investigation. Since human
neutrophils and monocytes can express two IL-8 receptors,
CXCR1/IL-8RA and CXCR2/IL-8RB [31], it is important
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to examine whether the differential expression of these
receptors has any functional significance in proinflamma-
tory activities of neutrophils during Leishmania infection.
Along this line, there is a report of an association of ML
with the rare derived G allele at CXCR1 and for a positive
role of neutrophils in preventing this form of the disease
[32]. Additional immunological studies are warranted to
define the regulation of IL-17 and CXCR1 in neutrophil-
mediated responses.

Roles of IFN-γ- and TNF-a-related mediators

IFN-γ and TNF-a are key cytokines in the protective
responses against intracellular pathogens, and their gene ex-
pression levels are regulated by single nucleotide polymor-
phisms (SNP) [33, 34]. Analysis of TNF polymorphisms in
Venezuelan CL patients clearly indicates a positive association
with ML [34]. Matos et al. conducted an IFN-γ SNP study
with 78 CL and 58 ML cases and 609 healthy controls in
Brazil. They found no association between IFN-γ polymor-
phism and American CL forms, but reported that gene poly-
morphisms can influence parasite-induced IFN-γ production
[35]. Given that excessive production of IFN-γ and TNF-α is
a hallmark for ML, it is also possible that L. braziliensis
parasites are intrinsically potent in stimulating host responses,
favoring cellular recruitment and disease severity. To test this
hypothesis, our group examined the response of healthy vol-
unteer PBMCs to L. braziliensis and used L. amazonensis as
an infection control [36]. We observed that while L. brazil-
iensis infection induced the production of CXCL10 (also
known as IP-10) and IL-10 in human PBMCs and blood
monocytes, an enhanced expression of CXCL10 and its re-
ceptor CXCR3 was predominantly detected in CD14+ mono-
cytes. The chemoattractant factors secreted by L. braziliensis-
infected cells were more efficient in recruiting uninfected
PBMCs (predominantly CD14+ cells) than were L. amazonen-
sis-infected cells. Also, we found that sera of L. braziliensis-
infected patients (especially the ML cases) had significantly
elevated levels of CXCL10, CCL4, and soluble TNF receptor
II [36]. Therefore, L. braziliensis parasites are highly compe-
tent in stimulating the host to produce multiple inflammatory
mediators, and different chemokines may affect the predomi-
nance of cell infiltration in distinct clinical manifestations.
CXCL10 is secreted mainly by monocytes, fibroblasts, and
endothelial cells in response to stimuli (e.g., viral infection,
LPS, IL-1β, and IFN-γ) and involves the recruitment of
monocytes, MΦs, and T cells to sites of inflammation (see
review in [37]). The investigation of CXCR3 ligands
(CXCL9, CXCL 10, and CXCL11) and other inflammatory
chemokines, in the context of IFN-γ/TNF-α production, in
localized versus disseminated lesions has shed new light on
the complex regulation of inflammatory responses during L.
braziliensis infection [38].

Non-healing human diseases associated with L.
amazonensis and Leishmania mexicana infection

Parasites in the L. L. mexicana complex (L. mexicana, L.
amazonensis, and Leishmania pifanoi) are the etiological
agents for a broad spectrum of leishmaniasis in Central and
South American countries, including mild and localized CL,
DCL, and rarely fatal VL [39]. DCL is a rare, but severe, form
and is not limited to patients in South America. In patients
with Leishmania tropica, L. major, or L. donovani infections
in India and Africa, DCL or disseminated CL is also consid-
ered a clinical indicator of HIV co-infection [40, 41]. There is
also a case report of DCL that developed in the context of the
immune reconstitution inflammatory syndrome in a man with
AIDS following initiation of antiretroviral therapy [18]. Gen-
erally speaking, patients with DCL share some clinical char-
acteristics. For example, the lesions have a presentation of
numerous non-ulcerating nodules and are histopathologically
characterized by heavily parasitized MΦs. These patients of-
ten have a negative reaction to the leishmanin skin test and
poor antigen-stimulated T cell proliferation in vitro, although
some patients remain responsive to other antigens such as
tuberculin and lepromin [39]. These profound impairments
in cell-mediated immune responses partially explain the rela-
tively poor responses and frequent relapses of DCL patients
following anti-Leishmania chemotherapy. This antigen-
specific T cell anergy is likely due to alterations in the activa-
tion of DC and MΦ following infection with L. amazonensis
(see review in [15, 42] and illustration in blue in Fig. 1).

Impaired host innate immunity

Among the Leishmania species that are pathogenic to humans,
only the L. mexicana complex parasites are capable of form-
ing huge parasitophorous vacuoles that contain numerous
amastigotes. Under cell-free and in vitro conditions, L. ama-
zonensis parasites (especially the amastigote form) are highly
resistant to neutrophil- or MΦ-derived leishmaniacidal mole-
cules, or anti-Leishmania drugs, compared to other Leishman-
ia species [43, 44]. These are indicative of biological features
that are unique and intrinsic to these parasites. L. amazonensis
amastigotes are superior in silent invasion, preventing the
activation of NK, DC, and MΦ triggered by exogenous stim-
uli such as LPS [42, 45]. The intracellular events triggered by
L. amazonensis infection inMΦs have been described in detail
[45, 46]. The suppression of host cell activation can be initi-
ated at early stages of amastigote–host contact. On one hand,
L. amazonensis amastigotes can infect human DCs through
multiple receptors such as Fc receptors, complement recep-
tors, heparin-binding proteins, and DC-SIGN [47]. Signaling
through these receptors can lead to altered DC activation and
impaired responsiveness to exogenous stimuli through MAP
kinase-mediated mechanisms [48]. On the other hand, L.
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amazonensis amastigotes can expose phosphatidylserine (PS)
on their surface, leading to enhanced parasite growth and host
suppression through IL-10 and TGF-β production by host
cells [49]. Although the origin and biochemical nature of PS
detected on amastigote surface remains undefined, PS expo-
sure may contribute to the suppression of anti-Leishmania
immunity [50], as reported for other pathogens such as Toxo-
plasma gondii and Vibrio cholerae [51, 52]. No doubt, L.
amazonensis and its related parasites have evolved complex
strategies to down-modulate host innate immune responses,
leading to T cell malfunction (as illustrated in black in Fig. 1).

The quality of T cell responses to L. amazonensis
and L. mexicana

In a recent report, Campanelli et al. [53] analyzed leukocytes
isolated from early skin lesions (<30 days of infection), late
lesions (>60 days of infection), and DCL lesions (>10 years).
Compared with the early-infection lesions, the late-infection
lesions showed a reduced frequency of CXCR3+ cells, but an
increased frequency of CCR4+ and IL-10+ T cells. Compared
with the CL lesions, the DCL lesions exhibited a reduced
frequency of CCR3-, CCR4-, CCR5-, and CCL17-positive
cells, but an increased frequency of CCL7-positive cells.
These changes correlate with the impaired T cells responses
observed by other groups [17, 54], implying a poor quality of
T cell responses to L. amazonensis antigens. This notion is
further supported by a recent study of Macedo et al. [55],
which compared the quality of T cell responses induced by
promastigote crude antigens of L. braziliensis and L. amazo-
nensis in PBMCs from healed CL patients. Their multi-
parametric flow cytometric studies indicated that L. brazil-
iensis antigens induced an important proportion of multi-
cytokine-producing CD4+ T cells (28 % of the total Th1
response evaluated), whereas L. amazonensis antigens mostly
(68%) induced single-positive cells, 57% of which were IFN-
γ single positives. Since the percentages of total IFN-γ-
producing CD4+ T cells induced by both antigens were com-
parable, this study emphasizes the importance of Th1 response
quality, not just its magnitude, in the study of diverse immu-
nopathogenesis of leishmaniasis.

The role of CD8 cytotoxicity in DCL versus CL patients is
less clear. Hernandez-Ruiz et al. [56] compared the overall
immune effector functions of CD8+ Tcells for ten CL and four
DCL Mexican patients diagnosed with L. mexicana infection.
They found that in comparison to the CL group, peripheral
CD8+ T cells from DCL patients displayed impaired effector
functions, as judged by their levels of IFN-γ production in
vitro and cytotoxicity against L. mexicana-infected autolo-
gous MΦs. This impaired CD8 function correlated with the
reduced numbers of CD8+ Tcells and TUNEL+ apoptotic cells
in lesions of DCL patients. These authors have suggested a
functional exhaustion of CD8+ T cells in DCL patients and

provided some evidence for restoring their effector functions,
following the stimulation of these CD8+ T cells with TLR2-
specific agonists such as Pam3Cys and L. mexicanaLPG [56].
This is the first in vitro study for TLR2-mediated restoration
of effector functions for CD8+ T cells derived from DCL
patients. Given that DCL patients lack effective innate and
adaptive immune responses for controlling parasite infection
and anti-Leishmania drugs only achieve transitory remission
in DCL patients, this report, together with related studies in
patients and mice, highlights the need for comprehensive
treatment schemes for patients infected with L. amazonensis
and L. mexicana. Since the number of CD8+ T cells tends to
increase during the healing process of the skin lesions of DCL
patients [57], it is important to further define the overall
effector mechanisms of CD8+ T cells in human leishmaniasis.

Animal models of L. braziliensis and L. amazonensis
infection

While genetically resistant and susceptible strains of mice
are valuable for defining polarized Th1 and Th2 immune
responses, as well as the contribution of Th17 and Treg,
during L. major infection [5], the susceptibility of mice to
the New World Leishmania species is diverse and complex,
depending on the parasite species under investigation. In
general, all commonly used inbred strains of mice (includ-
ing BALB/c mice) are genetically resistant to L. braziliensis
infection. The gene-targeted deletion of key molecules in-
volved in NO production can increase mouse susceptibility
to L. braziliensis. Although mice are also generally resistant
to L. guyanensis, L. panamensis, and L. peruviana, chronic
skin lesions can be successfully induced following infection
of BALB/c mice with percoll-purified promastigotes of L.
panamensis [58]. For parasites in the L. Viannia subgenus,
hamsters are a more suitable model than mice for the path-
ological study of localized and metastatic lesions [59]. In
contrast, commonly used inbred strains of mice are geneti-
cally susceptible to L. amazonensis infection (see review by
[60]). The deletion of either the IL-4 or IL-10 gene has no
major effect on mouse susceptibility to L. amazonensis;
however, deleting functional CD4+ T cells or B cells mark-
edly reduces lesion pathology [61, 62], implying a complex,
Th2-independent regulation of host susceptibility to L. ama-
zonensis infection (see review by [63]).

Self-healing infection caused by L. braziliensis

L. braziliensis infection is self-healing in all inbred strains of
mice, and small lesions reach their peaks at about 4–6 weeks
post-infection. Parasite clearance is primarily due to the
efficient activation of DC, MΦ, and T cells at the site of
infection and in the draining lymph nodes, and to the
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intrinsic susceptibility of this parasite to microbicidal activ-
ities of the host cell. The interaction of neutrophils with L.
braziliensis-infected MΦ also promotes parasite killing via
TNF-α- and superoxide-associated mechanisms [64]. To
further test the notion that L. braziliensis infection efficient-
ly triggers innate and adaptive responses, we generated
axenic amastigotes of L. braziliensis and examined DC
and MΦ responses to L. braziliensis and L. amazonensis.
By using fluorescence-labeled promastigotes and amasti-
gotes, we found that L. braziliensis (but not L. amazonensis)
infection-induced DC activation/maturation and IL-12p40
production in both infected and bystander cells, and that
DC activation was accompanied by upregulation of the
JAK/STAT signaling pathway, especially in regard to the
expression of phosphorylated-STAT1 and -STAT3, IFN reg-
ulatory factor 1 (IRF-1), and ISG15. Moreover, L. brazil-
iensis-infected DCs were highly efficient in priming naïve
CD4+ T cells to proliferate and produce IFN-γ and IL-17
[42, 65]. These new findings from mouse models aid in our
understanding as to how the host mounts immune responses
against L. braziliensis. However, L. braziliensis-infected
mice are not good models for studying ML, partially due
to the relatively high sensitivity of their promastigotes and
axenic amastigotes to NO-mediated killing (Fig. 2a) and to
the relative ease of the mouse MΦs to produce NO (in
comparison to human or hamster MΦs [66]).

Non-healing CL caused by L. amazonensis

In sharp contrast, L. amazonensis infection is non-healing in
all inbred strains of mice (see review by [60]). Skin lesions
become evident after 2–4 weeks and progress continuously
for a few months, and some of these lesions can be ulcerated
at late stages. The dermal lesions of L. amazonensis-infected
mice have a dense cellular infiltrate, composed mainly of
parasitized, vacuolated MΦs, and scattered T and B lym-
phocytes [61, 62]; these histopathological features closely
resemble those of non-healing lesions observed in DCL
patients [39, 67]. Although promastigotes of L. amazonensis
can transiently trigger a low level of DC and MΦ activation,
amastigote-carrying cells show little signs of activation
(Fig. 2b). In general, L. amazonensis-infected DCs are poor
antigen-presenting cells, and their co-cultured T cells are
poorly activated (Fig. 2c) [42, 65, 68]. Therefore, repression
of host cell activation by Leishmania parasites appears to be
species-specific, and L. amazonensis amastigote infection
may represent an anergic pathogenicity extremity [17].
Yet, lesion pathology in mice relies on activation of patho-
genic CD4+ T cells that produce low levels of IFN-γ, IL-10,
IL-17, and other cytokines/chemokines [68, 69]. On one
hand, these low-quality T cell responses are ample for
recruiting monocytes/MΦs, but are insufficient for activat-
ing them fully. Of note, L. amazonensis amastigotes

are relatively resistant to NO-mediated parasite killing
(Fig. 2a), as well as to neutrophil-mediated parasite killing
[44]. L. amazonensis may also be unique in sensing both the
external and internal arginine pool by regulating two
transporter-coding genes, or in utilizing host innate machin-
eries (e.g., the autophagic and lipid metabolic pathways) for
their favored intracellular growth [63, 70]. Therefore, L.
amazonensis parasites are extraordinary in their ability to
repress host cell activation, resist host anti-microbial ma-
chinery, and utilize host resources for their own growth (as
illustrated in blue in Fig. 1).

The implication of the new and interesting findings is that
a multi-pronged treatment regimen may be desirable for L.
amazonensis infection. Thus, for example, an anti-Leish-
mania therapy in conjunction with immune stimulation
may be optimal. We therefore tested whether pre-exposure
to L. braziliensis can stimulate anti-L. amazonensis
responses. We found that pre-exposure to L. braziliensis
can partially protect mice against L. amazonensis infection
by increasing the magnitude of T cell responses [69]. It will
be interesting to identify the T cell-stimulating antigens of L.
braziliensis unique to this species or common to other spe-
cies. Such antigens would be of value for monitoring human
and mouse T cell responses at different stages of infection
with L. braziliensis and for potential development of pro-
phylactic or therapeutic vaccines against leishmaniasis.

Spectrum and immunopathogenesis of progressive VL
in humans

Infection with L. donovani and Leishmania infantum/Leish-
mania chagasi can be asymptomatic or subclinical
(oligosymptomatic) in a majority of individuals. Less than
10 % of infected people develop active VL or kala azar,
which is characterized by fever, fatigue, anorexia, weight
loss and cachexia, hepatosplenomegaly, and pancytopenia.
The course of disease typically runs over several months
and is usually fatal unless the patient receives specific
treatment. Asymptomatic Leishmania infection is detected
by a positive DTH response, whereas subclinical or non-
progressing oligosymptomatic infection is usually evident
due to a positive serological test with a few mild and non-
specific symptoms [71, 72]. Both retrospective and prospec-
tive studies have demonstrated that asymptomatic or sub-
clinical infections are six- to tenfold more common than
active VL [73]. Individuals who have had an asymptomatic
infection have been shown in limited epidemiological and
human challenge studies to be protected from the develop-
ment of active disease. The immunopathogenic mechanisms
of VL in humans are not fully understood. Most information
has been gained by comparing parasite antigen-induced
immune responses between asymptomatically infected
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(putatively resistant) individuals and those with active dis-
ease (putatively susceptible). This approach makes the ten-
uous assumption that susceptibility is driven solely by the
host immune response and not modified by parasite or
environmental factors.

Cytokines, T cell responses, and Treg cells

PBMCs from asymptomatic skin test-positive subjects in
VL endemic areas demonstrate strong antigen-induced
IFN-γ responses and induction of intracellular parasite kill-
ing, whereas PBMCs from active VL patients produce low
levels of IFN-γ. Furthermore, low IFN-γ production is
characteristic of individuals with subclinical infection that
subsequently progressed to VL. While these descriptive
studies identify immunological features of active disease,
they do not differentiate a permissive host response that led
to active disease from a host response that is modulated by
the infection. Several pieces of evidence indicate that the
production of IFN-γ is insufficient to confer a protective
immune response to the visceralizing Leishmania. First,
there is elevated expression of IFN-γ (and IL-12) in the
plasma of patients with active VL [74, 75]. Second, there is

a high level of IFN-γ mRNAs in the lymph node [76],
spleen [77], and bone marrow [78] of patients with active
VL. Third, whole blood stimulation assays indicate IFN-γ
production by blood cells during active VL [79]. Lastly, not
all Leishmania-reactive, IFN-γ-producing T cell clones de-
rived from a subclinically infected individual were able to
activate infected MΦ to kill intracellular parasites [80].
Th17 cells and IL-17 have been shown to play a protective
role against some, but not all, intracellular pathogens [81],
but also may be responsible for the excessive inflammation
seen in some pathological states, including ML [26]. Re-
cently, individuals exposed to L. donovani during an out-
break of VL in eastern Sudan were found to be most
protected against the development of VL when their PBMCs
produced IL-17 and IL-22 in response to stimulation with
heat-killed parasites [23].

The finding that a robust proinflammatory and type 1
cytokine response does not mitigate progressive VL in
humans prompted the consideration that other cytokines
known to impair MΦ-mediated killing of Leishmania could
have a pathological role [82, 83]. IL-4 and IL-13, which
play a prominent disease-promoting role in L. major infec-
tion [84], were found to be increased in the serum of some,

A

2:1 4:1 8:1
0

1

2

3

4

5

6

7

*

**

**

IL
-1

2p
40

 (
n

g
/m

l)

0

1

2

3

4

5

6

7

*
* *

Lb

La

IL
-1

2p
40

 (
n

g
/m

l)

B Promastigote

Amastigote

Cytokine responses
IFN- IL-10 IL-17

0

200

400

Control
La
Lb

**

***

**

800

1100

1400

*

C
yt

o
ki

n
e 

(p
g

/m
l)

C

Parasite-to-DC ratio

Fig. 2 Differential responses of Leishmania amazonensis (La) and
Leishmania braziliensis (Lb). a Kinetics of NO-mediated killing of
La and Lb parasites. CFSE-labeled promastigotes (Pm) and axenic
amastigotes (Am, 1×107/ml) were exposed to 10 mM NaNO2 in
PBS pH 4.5 at 23 °C. The intensity of CFSE was determined by flow
cytometry. For untreated parasites, only the 90-min data are shown. b
Bone marrow-derived DCs were generated from C57BL/6 mice and

infected with promastigotes and axenic amastigotes of La and Lb at the
indicated ratios. At 24 h post-infection, the levels of IL-12p40 in
culture supernatants were assayed by ELISA. c DC (infected for
24 h) were co-cultured with naïve CD4+ T cells (2×106/ml) at an
1:10 DC-to-T ratio for 4 days. The levels of cytokines in culture
supernatants were assayed by ELISA. *p<0.05; **p<0.01; ***p<
0.001. b and c were adapted from Vargas-Inchaustegui et al. [65]
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but not all, patients with active VL [74, 85–87]. The impor-
tance of IL-10 in the pathogenesis of human VL is more
strongly supported [82]. Patients with VL have elevated
levels of IL-10 in serum or plasma [74, 86–88] and in-
creased IL-10 mRNA expression in the spleen and bone
marrow [85]. Circulating levels of IL-10 correlated strongly
with parasite loads in the blood of patients with VL [89]. In
vitro neutralization of IL-10 in PBMC cultures from patients
with VL resulted in enhancement of Th1 cell responses to
Leishmania antigens, but more notably, neutralization of IL-
10 in ex vivo cultured cells from splenic aspirates promoted
parasite clearance [90]. T cell IL-10 production in VL may
be driven by the proinflammatory cytokine IL-27, as the
expression of IL-27's subunits (IL-27-28 and EBI-3) was
upregulated in a CD14+ MΦ-enriched fraction of spleno-
cytes isolated from patients with active VL [91]. In this
same study, increased T cell expression of IL-21, which
can amplify IL-27 production, was identified in the spleens
of patients with VL, and treatment of cells with IL-27 and
IL-21 significantly enhanced the antigen-induced produc-
tion of IL-10. Recently, a disease-promoting proinflamma-
tory cytokine response was attributed to increased bacterial
translocation from the gastrointestinal tract and endotoxin-
mediated immune modulation in patients with VL [92].

Treg (CD4
+ CD25+ Foxp3+) cells are a source of IL-10 and

contribute to chronic infection in murine L. major infection
[93]; however, their possible role in VL has been somewhat
controversial. CD4+CD25+ cells that also expressed Foxp3
mRNA and produced IL-10 were also found at increased
levels in the spleens and lymph nodes of mice infected with
L. infantum [94]. Before treatment, CD4+CD25+ cells were
also elevated in the peripheral blood of patients with VL
compared to findings post-treatment and when compared to
those in endemic controls [95]. However, the CD4+CD25+

population may also include activated, conventional T cells
and will not allow the discrimination of Treg without includ-
ing the Foxp3+ marker. Elegant work by Nylen et al. and
Maurya et al. showed that CD25+Foxp3+ Treg do not accu-
mulate in the spleen [85, 96] and are not a major source of
IL-10 in patients with active VL [85]. They proposed that IL-
10-producing CD4+CD25−Foxp3− T cells are likely a major
contributor to the pathogenesis of VL [85]. However, recent
work by Rai et al. identified an increased accumulation of
CD4+CD25+Foxp3+ cells (but not conventional activated
CD4+CD25+Foxp3− T cells) in the bone marrow of patients
with VL compared to the patient's peripheral blood or to
bone marrow from healthy controls [97]. This finding of
increased Treg in the bone marrow [97] but not in the spleen
[85, 96] is puzzling and deserves further investigation. In
patients with post-kala azar dermal leishmaniasis (PKDL),
the expression of mRNAs for Foxp3, CD25, and IL-10
correlated with tissue parasite loads, implying the accumu-
lation of natural Treg cells [98].

Impact of malnutrition

Epidemiologic studies have documented a greatly increased
risk for VL in the malnourished host (reviewed in [99]). In
fact, one could argue that since VL is a disease of the
severely impoverished, rarely does it occur in the well-
nourished host. Malnutrition was identified as a risk factor
for severe disease and death from VL in both children (OR
5.0) and adults (OR 11.0) [100]. Malnutrition-related VL is
particularly evident in displaced and impoverished popula-
tions [101, 102], and the recently described movement of
transmission into peri-urban slums is likely to lead to an
increase in the malnutrition-infection synergism [103].
Although the immunopathogenic basis for the malnutrition-
related risk of VL has not been investigated, investigations in
a murine model of polynutrient deficiency (deficient protein,
energy, zinc, and iron) [104–106], which closely mimicked
moderate acute malnutrition, revealed an increased rate of
early dissemination following cutaneous infection with L.
donovani [105]. Notably, this dissemination was related to
the loss of lymph node barrier function and early parasite
escape from the draining lymph nodes in the polynutrient-
deficient mice. Other investigations in this murine model
revealed alteration of the innate MΦ response [104, 106] and
impaired adaptive immunity (reduced IFN-γ production) in
mice vaccinated against L. chagasi [107].

Impact of HIV co-infection

The cruel synergism between L. donovani and HIV is in-
creasingly evident, as there is an expansion of regions in the
world where co-infections occur. It is estimated that HIV
increases the risk of VL development in L. donovani-ex-
posed populations by several hundred-fold [3], through
either decreased resistance to a new primary infection or
reactivation of a previous subclinical infection [108]. Co-
infection studies in primary human monocyte-derived MΦs,
DCs, and tonsillar tissue demonstrated that each pathogen
has a detrimental effect on containment of the other—Leish-
mania infection enhances HIV replication via chronic im-
mune activation, and that HIV promotes Leishmania
infection by suppressing a protective host defense
[109–112]. The latter is corroborated by higher levels of L.
donovani parasitemia in HIV co-infected individuals [113]
and low CD4+ T cell counts despite suppression of viral load
by antiretroviral therapy [114].

Mouse and hamster models of VL

The immunopathogenesis of visceralizing Leishmania infec-
tion has been most commonly studied in murine models of
systemic infection. Mice infected by the intravenous route
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develop an acutely increasing visceral parasitization, followed
by control of parasite replication and reduction in parasite load
in the liver over 4–6 weeks and a more chronic infection in the
spleen. Although the chronic parasitism does not lead to
significant overt morbidity or mortality, the model has been
instructive in elucidating immunoprotective and immunopa-
thogenic mechanisms in both the liver and spleen.

Control of hepatic infection in mice

Resolution of hepatic infection is mediated by several crit-
ical immunological processes: (1) generation of a type 1 T
cell response, (2) effective granuloma formation, and (3)
induction of classical macrophage activation (reviewed in
[115, 116]). Polarization of T cells to a Th1 phenotype is
evident early in the course of infection and maintained by
the balance of ongoing stimulation/expansion and increased
apoptosis. The critical requirement for IFN-γ-producing
Th1 cells is established by demonstration of impaired con-
trol of infection in IFN-γ-, STAT1-, and T-bet-deficient
mice [117]. IRF-7 and IRF-5, both of which are activated
by MyD88-dependent TLR7 signaling, are critical to the
generation of effector Th1 responses [118, 119]. Effector T
cell migration into the hepatic granuloma is dependent on
the expression of CCL19 and CCL21 [120]. Kupffer cells,
which make up the primary parasitized phagocyte in the
granuloma, present antigens to T cells to initiate the effector
response. Neutrophil responses to L. donovani contribute to
host defense directly through anti-parasitic effector activity
and indirectly by modulating the adaptive immune response
toward a protective type 1 phenotype [121]. Classical MΦ
activation by IFN-γ/TNF-α or other proinflammatory micro-
bial products leads to the generation of ROS and NO. Both
ROS and NO contribute to the control of parasite replication
in vivo because mice deficient in gp91phox (a component of
NADPH oxidase) have impaired early control of infection
(even though these mice ultimately resolve hepatic infection),
and NOS2-deficient mice have impaired early and late control
of infection [122]. Other, yet-to-be-identified MΦ effector
mechanisms also are likely to have a role [123].

The generation of an anti-leishmanial hepatic granuloma-
tous response requires the coordinated interaction of multi-
ple cell types, cytokines, and effector molecules [124]. The
production of chemokines (CCL2, CCL3, and CXCL10) by
Kupffer cells leads to an influx of inflammatory monocytes
and neutrophils within the first few days of infection. CD4+

and CD8+ T cells subsequently accumulate through recruit-
ment and local expansion, leading to the formation of an
inflammatory granuloma that generates IFN-γ and TNF-α
(reviewed in [115, 116]). A number of other proinflamma-
tory cytokines [IL-2, IL-12, lymphotoxin, and granulocyte
macrophage-colony stimulating factor (GM-CSF)] also con-
tribute to granuloma formation and function. Although Th2

cytokines are generally considered to have an immunopa-
thogenic role in some CL models, they play an important
role in granuloma formation and protection against L. dono-
vani. In mice deficient in IL-4, IL-13, or IL-4Rα, there was
impaired granuloma maturation and control of hepatic rep-
lication of L. donovani [125, 126].

Non-resolving splenic infection in mice

L. donovani infection is not as readily controlled in the
murine spleen. Following systemic infection, L. donovani
parasitizes the marginal zone MΦs (MZM) and marginal
metallophilic MΦs in the splenic marginal zone (MZ). The
early production of IL-12 by DCs that have migrated from
the MZ into the periarteriolar lymphocyte sheath (PALS) in
response to CCL19 and CLL21 was found to be critical for
the generation of effector T cells and control of parasite
replication early in the course of infection [120]. However,
these early responses are inadequate to clear parasites from
the spleen (in contrast to the resolution of infection in the
liver) because there is a slow increase in parasite burden
after several weeks, accompanied by splenomegaly and
extensive remodeling of the splenic micro-architecture
(reviewed in [115, 116]). Splenic expression of IL-10, but
not IL-4, contributes to the maintenance of parasite replica-
tion (reviewed in [83]). Moreover, IL-10-deficient mice
have shown an increased resistance to experimental L. dono-
vani infection [127, 128].

Central to the splenic remodeling is the widely distribut-
ed and excessive production of TNF-α (as noted above,
moderate levels of TNF-α are required for the protective
immune response in the liver), which mediates the loss of
MZMs [129] and the depletion of stromal fibroblastic retic-
ular cells (FRC) in the PALS [130]. The FRC make up the
splenic conduits that are a critical source of the cytokines
CCL19 and CCL21, which mediate CCR7-dependent mi-
gration of DCs from the MZ to the PALS [131]. However,
the infection-induced depletion of splenic FRC over time
has been reported to lead to reduced chemokine expression
and less recruitment of CCR7-bearing DCs and naïve T cells
into the T cell zone of the PALS [130]. However, DCs
isolated from naïve mice were able to migrate into the PALS
of L. donovani-infected spleens, mediating a reduction in
splenic parasite loads, but DCs isolated from infected mice
had impaired migration related to reduced CCR7 expression
[130]. Thus, the reduced migration of DCs into the PALS is
probably a consequence of the suboptimal expression of
both the receptor and its ligands. As splenic infection pro-
gresses, the white pulp becomes shrunken and disorganized,
and there is destruction of follicular DCs and loss of germi-
nal centers. This destruction is associated with neovascula-
rization and infiltration of the white pulp with heavily
parasitized MΦs [132]. The neovascularization process
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was reversed to some degree by administration of the broad-
ly acting receptor tyrosine kinase inhibitor, sunitinib, which
also enhanced the generation of IFN-γ-producing Th1 cells
[132]. In parallel with the remodeling of the white pulp,
there was also expansion of the red pulp vasculature, which
was dependent on the influx of Ly6C+ inflammatory mono-
cytes [133]. The remodeled red pulp in the L. donovani-
infected spleen also showed enhanced myelopoiesis, evident
by a 20- to 30-fold increase in the numbers of colony-
forming units-granulocyte, monocyte (CFU-GM) [134].
This increase was in part due to the active proliferation of
progenitor cells and was dependent on increased GM-CSF
and TNF-a [134, 135]. This profound expansion of splenic
myeloid progenitor cells was accompanied by an increase in
parasite loads [134], implying that the accumulation of
myeloid cells supported parasite replication.

Progressive disease in hamsters

The Syrian hamster model of VL provides an opportunity
to investigate immunopathogenic mechanisms in a model
of disease that mimics the progressive, fatal disease of
humans. Hamsters infected with L. donovani were found
to develop a remarkably higher visceral parasite burden
than mice and suffer cachexia, massive splenomegaly,
pancytopenia, and ultimately death [136]. Following a
period of relatively silent infection, the splenic parasite
burden was reported to increase dramatically, and there
was an accompanying increase in splenic cellularity, pri-
marily the result of an expansion of the myeloid popula-
tion [137]. During the course of infection, hamsters
showed disrupted splenic architecture accompanied with
lymphoid depletion [138] and the loss of antigen-reactive
T cell responses [137, 139, 140]; however, the adherent
cell-free T cells isolated from hamsters were able to re-
spond to leishmanial antigens and to transfer parasite-
specific DTH reactivity to naïve hamsters [139]. Lympho-
cytes from the lymph nodes of L. donovani-infected ham-
sters were found to show both cell-cycle arrest and TGF-
β-triggered apoptotic death mediated through upregulation
of tyrosine phosphatase activity [140]. In the liver, there
was heavy parasitization of the Kupffer cells, which are
surrounded by an inflammatory infiltrate, but fully orga-
nized granulomas did not develop [138]. The uncontained
infection was found to occur despite a vigorous type 1
immune response with increased hepatic and splenic ex-
pression of IFN-γ, IL-2, IL-12, and TNF-α [141, 142], a
response that is associated with control of L. donovani
infection in mice. The paradoxical expression of IFN-γ
in the face of progressive infection is similar to the find-
ings in human VL. However, concomitant with the type 1
response, there was also increased splenic expression of
IL-4, IL-13, IL-10, IL-21, and TGF-β [136, 141]. The

roles of these cytokines in the pathogenesis of progressive
VL have not been defined.

In striking contrast to mouse MΦs, IFN-γ-activated ham-
ster MΦs expressed minimal NOS2 and did not generate
detectable NO; they were unable to restrict the replication of
intracellular L. donovani [136, 142]. The reduced transcrip-
tion of NOS2 mRNA in response to Leishmania infection
was related to a IFN-γ-hyporesponsive promoter (similar to
what was described for the human NOS2 promoter) and was
in part due to the absence of a cis-element for NF-IL6 (C/
EBPβ), which is a member of a CCAAT-enhancer binding
protein family of transcription factors, in the hamster NOS2
promoter [143]. The inability to control parasite replication
in VL was not only related to ineffective classical MΦ
activation (low NOS2) but also parasite-induced, STAT6-
dependent alternative MΦ activation with dominant arginase
1 expression and polyamine production [136]. Selective
knockdown of either arginase 1 or STAT6 led to a reduced
parasite burden in this model. Interestingly, the expression
of arg1 and activation of STAT6 required the de novo
synthesis of protein, implying that additional co-activators
and/or pathways contribute to STAT6-dependent, L. dono-
vani-induced arg1 expression. Recently, it was found that
IL-10 expressed in the spleens of mice infected with L.
donovani induced the upregulation of IL-4Rα, which was
required for arg1 expression [144]. Thus, synergy between
the IL-4/STAT6 and IL-10/STAT3 pathways may play a
central role in the pathogenesis of VL.

Subversion of macrophage function as a contributor
to non-resolving and progressive L. donovani infection

It is well described that Leishmania parasites can alter the
signaling pathways in mouse and human DC and MΦs
(reviewed in [145, 146], as marked in black in Fig. 1). These
alterations may play a role in human VL, by subverting the
innate immune response and rendering the infected cells less
responsive to activating stimuli. For the most part, however,
corroborative studies of MΦs from the site of infection, espe-
cially in human VL, are lacking. There are a number of
mechanisms by which L. donovani escapes MΦ effector ac-
tivity (see Table 1). Most notably, L. donovani inhibits protein
kinase C (PKC) andmembers of theMAP kinase families, and
impairs IFN-γ-mediated MΦ activation, largely, but not ex-
clusively, due to broad activation of cellular protein tyrosine
phosphatases (PTPs). Several recent findings deserve to be
highlighted. Efforts to illuminate the mechanisms of Leish-
mania-mediated activation of cellular PTPs revealed that sev-
eral Leishmania proteins, including EF-1α [147, 148],
fructose-1,6-bisphosphate aldolase [149], and GP63 [150]
are exported from the phagolysosome into the cytosol and
activate PTPs (reviewed in [146]). Impairment of PKC sig-
naling is known to be critical for L. donovani survival in MΦs
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(reviewed in [151]). Recently, the role of PKC isoforms in the
regulation of cytosolic phosphatases and downstream MAP
kinase signaling and cytokine production was defined [152].
Infection of mouse MΦs with L. donovani led to upregulation
of uncoupling protein 2 (UCP2), a mitochondrial membrane
protein that is a negative regulator of ROS generation [153].
Functional knockdown of UCP2 led to enhanced ROS gener-
ation and ROS-mediated inhibition of protein tyrosine phos-
phatases [153], which are known to subvert MΦ activation
pathways that lead to generation of NO and parasite killing
[154]. L. donovani infection of human MΦs led to phosphor-
ylation of CREB and inactivation of glycogen synthase
kinase-3beta (GSK-3β), which resulted in IL-10 production
[155] and parasite replication. Since IFN-γ expression in
infected tissues is characteristic of VL, it is of considerable
interest to understand why this response is ineffective in
curbing parasite replication. In L. donovani-infected murine
MΦs, IFN-γ receptor expression and receptor–ligand interac-
tion were unaltered; however, co-localization of the two IFN-
γ receptor subunits was impaired due to infection-mediated
increase in membrane fluidity and cholesterol quenching
[156]. IFN-γ signaling and parasite killing could be recovered
by delivery of cholesterol to the MΦ membrane [156].

Concluding remarks

The emerging evidence from recent studies has uncovered
the complex host–Leishmania interactions that contribute to
delay in healing or non-healing lesions (summarized in
Fig. 1). At the early stages of the infection, host, parasite,
or vector factors that promote sustained neutrophil influx
and altered neutrophil functions can facilitate promastigote
infection in the host and parasite spread to other target cells
[157, 158]. At the subsequent stages, multiple and complex
mechanisms of immune dysregulation act alone or in com-
bination, resulting in persistent infection and/or tissue dam-
age, depending on the involving parasite species.

Firstly, IL-17-producing T cells, as well as IL-17-
inducing cytokines (IL-1β, IL-6, IL-23, and TGF-β), seem
to have complex and dual roles, depending on the infection
stages and involving parasite species. Their protective roles
are likely to be in conjunction with Th1 cell activation.
Their detrimental roles are mediated via the regulation of
additional waves of neutrophil recruitment, promoting le-
sion progression and tissue damage, as elegantly illustrated
in L. major-susceptible mice [159, 160] and suggested in the
above-mentioned human infections with L. braziliensis.

Table 1 Leishmania donovani-induced alteration of macrophage signaling

Signaling molecule/pathway Effect of L. donovani infection [Reference]

MAPK/ERK Impaired MAP kinase activation and c-Fos and Elk-1 expression [165]

Inhibition of p38 and ERK1/2 by activation of phosphatases [152]

Impaired activation of ERK1/2, p38, JNK; degradation of IκB-α [166]

Inhibition of ERK phosphorylation by ceramide-mediated activation of PTP [167]

Inhibition of p38 MAPK and activation of ERK1/2 leading to decreased
IL-12 and increased IL-10 production [168]

Inhibition of ERK phosphorylation by ceramide [169]

SHP-1-mediated inactivation of ERK1/2 [154]

IFN-γ/STAT1 Reduced co-localization of IFN-γ receptor subunits [156]

Reduced IFN-γ receptor alpha expression and phosphorylation [170]

Impaired STAT1 translocation [171]

Decreased expression of IRF-1 [171]

Proteasome-mediated degradation of STAT1 [172]

SHP-1-mediated inactivation of JAK2 [154, 173]

PKC Inhibition of PKC-α-mediated phagosomal maturation [174]

Ceramide-mediated dysregulation of PKC activation [175, 176]

Inhibition of PKC-β but activation of PKC-ε [177]

NF-κB/AP-1 SHP-1-mediated inactivation of NF-κB and AP-1 [154]

PPAR-γ-mediated inhibition of NF-κB activation [178]

PI3K/mTOR PI3K-dependent, mTOR-mediated upregulation of IL-10 [179]

Akt/GSK-3b/CREB Akt-2-mediated inactivation of GSK-3β leading to CREB induced IL-10 expression [155]

Ld L. donovani, IFN-γ interferon-gamma, PTP protein tyrosine phosphatase, SHP-1 Src homology region-2 domain-containing phosphatase-1,
MAPK mitogen-activated protein kinase, ERK extracellular signal-regulated kinases, STAT1 signal transducer and activator of transcription 1, JAK
Janus kinase, PKC protein kinase C, PI3K phosphatidylinositol 3-kinases, mTOR mammalian target of rapamycin, NF-κB nuclear factor kappa-B,
AP-1 activator protein 1
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Secondly, host factors that trigger MΦ alternative activation
(IL-4, IL-10, IL-13, and TGF-β insulin-like growth factor)
or MΦ suboptimal activation (low levels of IFN-γ and TNF-
α) can create a microenvironment in favor of amastigote
replication [46, 63]. Parasite growth within these MΦs can
be mediated via host arginase-dependent and -independent
mechanisms, as illustrated by mouse models of L. amazo-
nensis and L. mexicana infection and hamster models of L.
donovani infection [136]. Similarly, parasite-encoded argi-
nase and arginine transporters can serve as virulence factors,
subverting MΦ microbicidal activity [70, 161]. Thirdly, host
or parasite factors that repress NO or ROS production by
infected neutrophils or MΦs, or repress the activation of DC
and T cells, will delay parasite clearance and lesion control
[46]. In this regard, recent studies of NO-resistant L. ama-
zonensis and L. braziliensis isolated from patient lesions
have offered new insights into non-healing CL and non-
responsiveness of patients to antimony therapy [162–164].

It is clear that hyper- and hypo-immune responses both
contribute to non-healing American CL and severe VL, and
that the magnitude of these responses are regulated by DC and
Treg cells. The major challenge is to define the host and
parasite factors that lead to immune dysregulation at early
versus late stages of infection. It is particularly important that
the function of leukocyte populations be defined within the
tissue environment of the infection site to avoid the limitations
of in vitro models of infection/response. A better understand-
ing of how different species and stages of Leishmania para-
sites can selectively utilize host innate defense machinery and
adoptive immunity for immune evasion, intracellular growth,
and immunopathogenesis will lead to the rational design of
control strategies for this and other related infections.
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