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Abstract Autoimmune diseases such as multiple sclerosis
(MS) result from complex and poorly understood interac-
tions of genetic and environmental factors. A central role for
T cells in MS is supported by mouse models, association of
the major histocompatibility complex region, and associa-
tion of critical T cell growth regulator genes such as
interleukin-2 receptor (IL-2RA) and interleukin-7 receptor
(IL-7RA). Multiple environmental factors (vitamin D3 defi-
ciency and metabolism) converge with multiple genetic
variants (IL-7RA, IL-2RA, MGAT1, and CTLA-4) to dysre-
gulate Golgi N-glycosylation in MS, resulting in T cell
hyperactivity, loss of self-tolerance and in mice, a sponta-
neous MS-like disease with neurodegeneration. Here, we
review the genetic and biological interactions that regulate
MS pathogenesis through dysregulation of N-glycosylation
and how this may enable individualized therapeutic
approaches.
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Introduction

Multiple sclerosis (MS) is an autoimmune and neurodegen-
erative disorder of the central nervous system (CNS)
characterized by inflammatory demyelination, axonal de-
generation, and neuron loss [1–3]. Although mouse models
of MS, such as experimental autoimmune encephalomyelitis
(EAE), provide pathogenic insights, their relevance to MS is
indirect. For example, MOG-induced EAE in C57BL/6
mice is monophasic and may more closely mimic the non-
relapsing demyelinating disease acute disseminated enceph-
alomyelitis rather than MS. Even “relapsing models” such
as PLP-induced EAE in SJL mice do not closely recapitulate
relapsing MS. Relapses in MS are separated by months and
afflict new areas of the CNS, whereas SJL EAE relapses are
recurring episodes of motor weakness separated by days. A
direct approach to define pathogenic mechanisms in MS
would delineate how known disease risk factors function
and interact at the molecular level, utilizing mouse models
such as EAE to confirm pathogenic mechanisms.

As with other complex trait diseases, multiple genetic and
environmental factors combine to influence disease risk in
MS and many other human autoimmune disorders, includ-
ing systemic lupus erythematosus and type 1 diabetes (T1D)
[4, 5]. Epidemiological studies indicate that MS risk
is influenced by gender, sex hormones, ethnic origin, conti-
nental location/latitude/distance from the equator, smoking,
viral exposure (e.g., Epstein–Barr virus), and vitamin D3

status [6–9]. As vitamin D3 is synthesized from 7-
dehydrocholesterol in the skin following ultraviolet light
exposure, a link between latitude, hours of sunshine, and
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vitamin D3 status has been made. This connection is sup-
ported by the observation that migration from high-risk
areas with limited hours of sunlight to low-risk areas with
greater hours of sunshine prior to puberty affords some
protection against MS [10]. The latent viral or infectious
hypothesis has been proposed, but all attempts at isolating
and proving a causal role for a pathogen have failed, sug-
gesting that pathogens act through molecular mimicry to
drive pathogenic auto-reactive T cells.

A definitive role for genetics in MS was first demonstrat-
ed in elegant family studies by George Ebers and col-
leagues, where it was observed that first-degree relatives
and identical twins display ~20−40- and ~300-fold in-
creased risk over the general population, respectively [4].
Candidate gene studies have validated association of MS
with genes in the major histocompatibility complex (MHC)
region [11]. In African American patients, it was determined
that the primary association was with the DRB1 gene, which
was subsequently confirmed in large cohorts of patients of
European descent [12, 13]. More recently, genome-wide
association studies (GWAS) have identified approximately
50 potential genes associated with MS [14, 15]. A number
of these genes also associate with other autoimmune dis-
eases, such as IL7RA and IL2RA in T1D [16–18]. While the
IL-7 and IL-2 pathways have previously been demonstrated
to regulate autoimmunity and EAE in animal models [19,
20], such data are lacking for many of the other MS-
associated variants. Validation as true MS risk factors
requires much more than statistical association; rather, func-
tional characterization of the changes induced by the poly-
morphism and evidence for pathogenicity of the same
molecular pathway in animal models is necessary.

Although GWAS has identified approximately 50 genetic
loci associated with MS, many critical issues remain. First,
whether the detected polymorphism alters the biology of the
nearest gene, as often assumed and labeled as such, or a
more distant unrelated gene is left unresolved. Similarly,
whether the detected variant is causal in disease or simply
in linkage disequilibrium (LD) with a distant undetected
causal polymorphism is also not addressed. The critical
importance of these issues was best demonstrated by a
GWAS of sickle cell anemia [21], a disease where the single
genetic variant that induces disease has been established for
many years. Despite this, the GWAS identified 179 non-
causal polymorphisms with genome-wide significance that
encompassed a 2.5-Mb region harboring multiple LD blocks
and dozens of non-disease-related genes. Thus, many irrel-
evant variants and genes may be identified by GWAS anal-
ysis. A second critical issue of GWAS studies is the missing
heritability. Except for the human leukocyte antigen (HLA),
the identified variants in MS confer relatively small incre-
ments in disease risk and explain only ~20 % of the genetic
variance that we know exists [15, 22], questioning the

source of this missing heritability. Many explanations have
been suggested including additional common variants with
smaller effects or rare and highly penetrant variants that are
overlooked in the current genome-wide arrays that are re-
stricted to variants with allele frequencies of ≥5 % [21–24].
However, rare and highly penetrant variants often underlie
disorders with Mendelian-type inheritance that have little or
no environmental influences (e.g., cystic fibrosis). The fact
that comprehensive loci analyses to date have not accounted
for the predicted genetic variation in complex trait diseases
suggests that the resolution of this dilemma lies in the
complexity of the underlying genetics.

Susceptibility to complex trait diseases is multifactorial
and results from the interactions of multiple contributing
genes and environmental factors, each with potential to
interact in nonlinear ways. Epistatic interactions, where
two or more independent variants promote disease only
when combined [25], are likely to go undetected by genetic
screens such as GWAS that examine for point association.
Evidence consistent with epistatic interactions in autoim-
mune disease has been reported in both humans and mice
[26–28]. Moreover, MS concordance rates in monozygotic
twins are only ~30 % [4], implying direct environmental
impact on genetic risk. Indeed, Baranzini et al. have recently
reported that there is no evidence for genetic, epigenetic, or
transcriptome sequence differences that explain disease dis-
cordance in monozygotic twins discordant for MS [29]. It is
interesting to note that all twin pairs studied had identical
genotypes within the HLA loci and only one of the three
twin pairs had DRB1*1501, a genetic variant with the
strongest association with MS.

Despite the identification of multiple environmental and
genetic risk factors for MS, there appears to be no obvious
shared molecular mechanisms, although most appear im-
mune related [15]. Single-gene disorders displaying Mende-
lian inheritance disrupt molecular pathways at a single step.
However, a similar degree of pathway disruption may also
be obtained through small defects in multiple genes within a
single pathway. Thus, complex trait diseases like MS may
arise from epistatic and/or additive interactions between
multiple seemingly unrelated alleles and environmental fac-
tors that converge to dysregulate a critical final common
pathway. Indeed, we recently reported that multiple envi-
ronmental factors (vitamin D3 deficiency and metabolism)
converge with multiple genetic variants (IL-7RA, IL-2RA,
MGAT1, and CTLA-4) to dysregulate Golgi N-glycosylation
in MS. Defective N-glycosylation of the T cell receptor
(TCR) and cytotoxic T lymphocyte antigen 4 (CTLA-4)
induces T cell hyperactivity, promotes loss of self-tolerance
and in mice, induces a spontaneous MS-like disease [30–33].
Here, we review the genetic and biological interactions that
differentially regulate MS risk through dysregulation of N-
glycosylation, how this may promote pathogenesis, and the
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potential for individualized approaches to diagnostics and
treatment (Fig. 1).

N-glycosylation and regulatory mechanisms of growth
and differentiation

The majority of cell surface receptors and transporters are
modified by co-translational addition of asparagine (N)-
linked glycans in the endoplasmic reticulum, with further
modifications in the Golgi secretory pathway [34, 35]. Cell
surfaces and the extracellular matrix with which they inter-
act are heavily glycosylated, and the size, abundance, and
complexity of these glycan structures provide information
encoding distinct from the genome [36]. In contrast to
proteins and nucleic acids, production of complex carbohy-
drates is not template driven, but rather depends on enzy-
matic activities and metabolic supply of substrates.
Glycoprotein concentrations at the cell surface can be dif-
ferentially regulated according to their affinities for the
galectin family of endogenous lectins [30, 31, 37]. Galectins
are ubiquitously expressed at the cell surface and extracel-
lular matrix and interact with multivalent glycan ligands to
form a molecular “lattice” at the cell surface [31, 38, 39].
The minimal binding structure for galectins is N-acetyllac-
tosamine (Galactose β1,4N-acetylglucosamine) [40], with

binding avidity to glycoproteins increasing in proportion to
the number of N-glycans per protein (gene-encoded) and the
degree of branching/structural modifications per N-glycan
(context/environment dependent) [36]. N-glycan branching
produced in the Golgi is dependent upon the sequential yet
incomplete action of the Golgi α-mannosidases and N-ace-
tylglucosaminyltransferases I, II, IV, and V (encoded by
Mgat1, 2, 4, and 5), along with hexosamine pathway pro-
duction of the substrate uridine diphosphate N-acetylglucos-
amine (UDP-GlcNAc) [30, 41, 42]. Growth-promoting
receptors frequently have high numbers of N-glycans (n>5),
while growth inhibitory receptors frequently have few
N-glycans (n≤4). This allows differential association with
the galectin lattice dependent on Golgi branching activity,
thereby regulating cellular transitions from growth to arrest
[30]. This paradigm has been demonstrated for TCR/CTLA-4
in T cells and receptor tyrosine kinases/transforming growth
factor-β receptor (TβR) in epithelial cells [30].

The intricate interplay between growth stimulatory and
inhibitory signals shapes the T cell immune response and is
critical for T cell tolerance. Golgi-mediated changes in
N-glycan branching differentially control cell surface reten-
tion and endocytosis rates of glycoproteins, and in this
manner, the galectin–glycoprotein lattice appears to incor-
porate both genetic and metabolic cues to control cellular
function and cell fate decisions.

T cell growth: TCR signaling and CTLA-4 endocytosis 
T cell differentiation:  Th1/Th17 >> Th2

Hyper-active T cells

NeurodegenerationAltered APC function
Neuronal apoptosis
Axonal degeneration

Gliosis

MØ signaling and phagocytosis
DC tolerogenic function

Phenotypic output:

IL-2
IL-7

Cytokines Genetics

Metabolism/Nutrients
Sunlight / Vitamin D3 

Environment

IL-7RA
IL-2RA
MGAT1
CTLA-4

Risk factors:

Branched N-glycans

Fig. 1 Multiple risk factors decrease N-glycan branching to promote
diverse pathogenic mechanisms in multiple sclerosis. Human and
mouse data indicate that genetic factors, the environment, and cyto-
kines combine to decrease N-glycan branching. This in turn leads to
multiple pathogenic mechanisms in multiple sclerosis (MS), including
T cell hyperactivity, altered antigen-presenting cell (APC) function,

and enhanced susceptibility to neurodegeneration. Recent mouse data
also support a potential negative role for N-glycan branching in Treg
suppressor function and re-myelination by oligodendrocyte precursor
cells. Thus, defective N-glycan branching in MS results from multiple
inputs, which in turn results in multiple phenotypic outputs that likely
drive MS pathogenesis
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N-glycosylation and T cell-mediated autoimmunity
in mice

In mice, targeted deficiencies of factors that inhibit growth
of naïve T cells, such as CTLA-4, TβR, and regulatory T
cells (Treg), result in spontaneous autoimmunity. Similarly,
human autoimmunity is often associated with risk factors
that control T cell growth, including the MHC region,
CTLA-4 Thr17Ala (rs231775), IL2RA*T (rs2104286),
IL7RA*C (rs6897932), and vitamin D3 deficiency. N-glycan
branching is also a critical negative regulator of T cell
growth and when genetically disrupted in mice, results in
spontaneous autoimmunity [43]. Antigen independent and
antigen-induced TCR clustering and signaling are both sup-
pressed by galectin interactions with the TCR via N-glycans,
thereby suppressing both basal and activation signaling
[32]. IL-2 and IL-7, two well-described enhancers of T cell
growth, regulate mRNA expression of multiple Golgi genes
to suppress N-glycan branching and thereby enhance ligand-
induced TCR clustering and signaling [44]. After cell divi-
sion, N-glycan branching increases in T cell blasts, promot-
ing cell surface retention of CTLA-4 to induce growth arrest
[30].

After growth arrest, T cells differentiate into pro-
inflammatory T helper 1 (Th1)/T helper 17 (Th17) cells,
anti-inflammatory T helper 2 (Th2) cells, and/or induced T
regulatory cells (iTreg). Th2 cells secrete IL-4, IL-5, IL-10,
and IL-13 and provide host defense against extracellular
pathogens, assist B cells and humoral immunity, and are
generally anti-inflammatory. Th1 and Th17 cells are pro-
inflammatory effector cells that secrete IFN-γ and IL-17,
respectively, and have been shown to independently pro-
mote autoimmunity [45]. iTregs strongly inhibit growth of
other T cells and are crucial in downregulation of T cell
responses. The relative balance of these different cell types
dictates inflammatory, allergic, and autoimmune responses.
Deficiencies in N-glycan branching promote Th1 and Th17
responses over Th2 responses [46, 47] (Araujo and Demetriou,
unpublished data).

In summary, N-glycan branching is a critical negative
regulator of T cell growth, is directly downregulated by
cytokines (IL-2 and IL-7) that enhance growth, and inhibits
pro-inflammatory Th1/Th17 responses. Not surprisingly,
genetic deficiencies in N-glycan branching in mice promote
spontaneous autoimmunity. For example, mice deficient in
Mgat5 develop spontaneous autoimmune kidney disease
and display increased sensitivity to EAE [31]. Furthermore,
significant differences in N-glycan branching and Golgi
enzyme activity are observed among inbred mouse strains,
with strains susceptible to EAE displaying defective N-gly-
can branching in T cells [33]. The PL/J strain, with the
lowest levels of N-glycan branching, contains natural defi-
ciencies in multiple N-glycan branching enzymes (i.e.,

Mgat1, 2, and 5) as demonstrated by mass spectroscopy
and enzyme assays. PL/J mice with targeted deficiency in
Mgat5 develop a spontaneous, late-onset clinical MS-like
disease manifested by inflammatory demyelination and neu-
rodegeneration [33]. A much milder form of disease is
observed in wild-type PL/J mice, consistent with the defec-
tive N-glycan branching inherent to this inbred strain.

Autoimmunity and defective N-glycosylation in non-T
cells

Data in mice suggest that defective N-glycosylation may also
promote autoimmunity through dysfunction of non-T cells
(Fig. 1). For example, deficiencies in the galectin–glycopro-
tein lattice also alter antigen-presenting cell (APC) function.
Defective N-glycan branching and blockade of polylactos-
amine synthesis, which both weaken the galectin lattice, in-
crease sensitivity to cytokine signaling and lower antigen-
presenting cell activation thresholds [37, 48], consistent with
a regulatory role for N-glycosylation in tolerogenic signaling
in APCs. Indeed, galectin-1, through binding to cell surface
glycans and strengthening the galectin lattice, induce tolero-
genic dendritic cells that secrete IL-27 to promote IL-10-
mediated T cell tolerance and suppress EAE [49].

Defective N-glycosylation may also promote autoimmu-
nity through molecular mechanisms distinct from the galec-
tin–glycoprotein lattice. Spontaneous autoimmunity in mice
deficient in Golgi alpha-mannosidase-II (αM-II) is associ-
ated with minimal reductions in N-glycan branching in T
cells but marked deficiencies in other tissues such as the
kidney and red blood cells [50]. αM-II deficiency induces a
systemic lupus erythematosus-like syndrome in mice char-
acterized by elevated systemic anti-nuclear antibody titers,
dyserythropoietic anemia, glomerular deposition of immu-
noglobulins and complement component C3, and glomeru-
lonephritis leading to sclerosis, renal dysfunction, and
kidney failure [51]. Jamey Marth and colleagues have pro-
posed that αM-II deficiency induced increases in cell sur-
face mannose exposed N-glycans hyperactivates an innate
immune response through binding to mannose-binding lec-
tin receptors [51]. Mannose exposed N-glycans are normally
only seen at high density in pathogens [52], with increased
levels from αM-II deficiency potentially resulting in a de-
fect in self-tolerance by innate immune cells and chronic
activation.

Organ-specific autoimmune diseases such as MS may
also be influenced by increased sensitivity of target cells to
death. For example, in addition to inflammatory demyelin-
ation, MS is characterized by neuron loss and axonal dam-
age even in the absence of inflammation. Consistent with this,
Mgat5 deficiency in PL/J mice results not only in spontaneous
inflammatory demyelination but also neurodegeneration,
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characterized by neuronal loss and axonal damage in
both inflamed and non-inflamed CNS tissue [33]. More-
over, targeted deficiency of Mgat1 in neurons induces
their apoptosis in vivo, confirming that N-glycan branching
directly regulates neuronal viability [53]. These data suggest
that N-glycan branching independently promotes both T
cell-mediated autoimmunity and neurodegeneration, two
hallmarks of MS.

Environmental regulation of autoimmunity
via N-glycosylation

N-glycan branching in T cells is directly influenced by
metabolism and vitamin D3, thereby providing a molecular
mechanism for environmental regulation of T cell-mediated
autoimmunity. The N-glycan branching enzymes (Mgat1, 2,
4, and 5) all utilize the same sugar-nucleotide donor, namely
UDP-GlcNAc, but do so with declining efficiency [36]. The
Km of Mgat4 and Mgat5 for UDP-GlcNAc is ~5 and
~11 mM, respectively, whereas the Golgi concentration of
UDP-GlcNAc is only ~1.5 mM. Thus, these enzymes are
under-saturated for UDP-GlcNAc, and small changes in
UDP-GlcNAc concentration can lead to significant changes
in N-glycan branching, T cell growth/differentiation, and
autoimmunity [30, 41].

De novo synthesis of UDP-GlcNAc by the hexosamine
pathway requires highly regulated intermediates of carbo-
hydrate, nitrogen, and fatty acid metabolism [41], and in this
manner, N-glycan branching is sensitive to metabolic status
and the nutrient environment of the cell. Indeed, increased
supply of glucose, glutamine (a critical nitrogen metabolite),
or acetyl-CoA (the final metabolite of free fatty acids)
enhances N-glycan branching in T cells in vitro. UDP-
GlcNAc may also be synthesized through salvage of the
monosaccharides glucosamine (GlcN) and N-acetylglucos-
amine (GlcNAc). However, unlike GlcNAc, GlcN may
also be shunted into glycolysis and ATP production.
Indeed, when titrated in culture, GlcN first increases then
decreases N-glycan branching in T cells [41]. In contrast,
GlcNAc cannot enter glycolysis, is not metabolized, and
is observed to only enhance N-glycan branching [41, 54].
Indeed, GlcNAc supplementation in vitro and/or in vivo
suppresses T cell growth by limiting TCR signaling
and enhancing CTLA-4 surface retention, inhibits Th1
and Th17 responses, and suppresses EAE as well as
autoimmune diabetes [41, 47]. Moreover, Murch et al.
observed that oral GlcNAc therapy inhibited clinical dis-
ease in 8 of 12 children with treatment-resistant inflam-
matory bowel disease [55]. Thus, metabolism regulates
N-glycan branching and thereby influences susceptibility
to T cell-mediated autoimmunity in mice.

Vitamin D3 deficiency is a well-described environmental
risk factor associated with MS that we have recently shown
to regulate N-glycan branching in T cells to suppress growth
and EAE. Previous epidemiological investigations revealed
that MS risk increases with distance from the equator and
the corresponding decline in ultraviolet exposure [56, 57].
Vitamin D3 is synthesized from 7-dehydrocholesterol in the
skin upon ultraviolet sun exposure, and its deficiency
strongly associates with MS [8, 58, 59]. 1α,25-dihydroxy-
vitamin D3 (1,25(OH)2D3), the active form of vitamin D3,
inhibits T cell activation, Th1 differentiation, and suppresses
EAE in mice by acting on T cells [60–62], yet molecular
mechanisms have been unclear.

1,25(OH)2D3 increases N-glycan branching in activated
ex vivo T cells to suppress their growth [44]. Reducing
dietary supply of vitamin D3 in mice decreased N-glycan
branching in T cells, whereas intraperitoneal injection of
1,25(OH)2D3 increased N-glycan branching. Myelin basic
protein-induced EAE was inhibited by intraperitoneal injec-
tion of 1,25(OH)2D3 in the absence but not presence of
swainsonine, an inhibitor of N-glycan branching. Com-
bined, these data suggest that vitamin D3 suppresses T cell
growth and EAE by enhancing N-glycan branching in T
cells.

In summary, two independent environmental factors,
namely metabolism/nutrient supply and sunshine/vitamin
D3, influence T cell-mediated autoimmunity by regulating
N-glycan branching (Fig. 1). Metabolic homeostasis con-
sists of multiple feedback mechanisms, yet small changes in
homeostatic set points with age and environmental cues can
be clinically important in complex trait diseases such as MS.
Therapeutic intervention with oral GlcNAc and/or vitamin
D3 may provide a simple treatment to enhance N-glycan
branching and suppress MS.

Genetic and environmental dysregulation
of N-glycosylation in multiple sclerosis

Multiple genetic and environmental risk factors have been
linked to MS; however, defining how these combine at the
molecular level to promote disease has been a great chal-
lenge. The data described above define a critical role for
environmental and genetic dysregulation of N-glycan
branching in mouse T cells and autoimmunity, suggesting
similar mechanisms may be relevant to human T cells and
MS. Indeed, our group recently reported that multiple envi-
ronmental factors (sunlight/vitamin D3 and metabolism)
converge with multiple genetic variants (IL-7RA, IL-2RA,
MGAT1, and CTLA-4) to dysregulate N-glycosylation in MS
[44].

The IL2RA*T (rs2104286) and IL7RA*C (rs6897932) MS
risk alleles are the common alleles in Caucasian populations
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(frequency ~75%) and are associated with enhanced secretion
of soluble receptors that block signaling by cognate cytokines
[7, 16, 44, 63–66]. We observed that IL-2 and IL-7 are critical
regulators of N-glycan branching, thereby controlling T cell
growth [44, 67]. Consistent with this, soluble receptors asso-
ciated with the IL2RA*T and IL7RA*C MS risk variants
downregulate MGAT1 mRNA and N-glycan branching in
human T cell blasts (Fig. 1). As these two MS risk variants
directly regulated MGAT1, targeted sequencing of the human
MGAT1 gene was undertaken. An MS-associated haplotype
of MGAT1 (IVA and VT-T polymorphisms; rs7726005,
rs2070924, and rs2070925) was identified that reduced or
enhanced N-glycan branching depending on metabolism and
UDP-GlcNAc supply to the Golgi. The MGAT1 IVAVT-T

haplotype enhances mRNA levels and enzyme activity ~2
−3-fold, thereby increasing the N-glycan product of Mgat1
while also limiting UDP-GlcNAc supply to downstream
Mgat4 and 5. Mgat1, 2, 4, and 5 act in a sequential manner
but with declining efficiency as enzyme levels and catalytic
efficiencies of UDP-GlcNAc utilization decrease in the same
order. The Km of Mgat4 and 5 for UDP-GlcNAc is signifi-
cantly worse than Mgat1 (~5 and ~11 mM versus ~0.04 mM,
respectively); allowing increased Mgat1 protein to out-
compete Mgat4 and 5 for UDP-GlcNAc in the medial
Golgi [30]. Thus, under basal UDP-GlcNAc levels
(~1.5 mM), the MGAT1 IVAVT-T haplotype functions
dominantly to reduce N-glycan branching. However,
with increasing UDP-GlcNAc and/or Mgat5 levels, en-
hanced Mgat1 expression is not as effective in limiting
supply of UDP-GlcNAc to Mgat4 and 5, allowing
Mgat4 and 5 to act upon the increased supply of N-
glycan acceptors from MGAT1 IVAVT-T, resulting in
enhanced N-glycan branching. Thus, the phenotypic ef-
fect of the MS-associated MGAT1 IVAVT-T haplotype
directly depends on metabolic status of the cell and
production of UDP-GlcNAc; albeit basal UDP-GlcNAc
conditions and reduced N-glycan branching are expected
to predominate. Monozygotic twins are discordant for
MS ~70 % of the time. The MGAT1 IVAVT-T haplotype
provides an example of how the same genetic risk
factor may both promote and inhibit MS conditional
on the environment.

The MGAT1 IVAVT-T haplotype and the IL2RA*T and
IL7RA*C MS risk alleles influence N-glycan branching by
having opposing effects on Mgat1 expression. Consistent
with this, upregulation of Mgat1 by IL-2 and/or IL-7 sig-
naling enhances N-glycan branching when Mgat1 is sup-
pressed by IL2RA*T and IL7RA*C but further decreases
N-glycan branching when Mgat1 is already increased by
the MGAT1 IVAVT-T haplotype [44]. In other words, upre-
gulation of Mgat1 by IL-2 and/or IL-7 enhances or reduces
branching depending on baseline Mgat1 activity, which
differs based on the presence of the different MGAT1

variants. This provides a second conditional mechanism that
controls N-glycan branching in MS.

Genetically induced downregulation of N-glycan branch-
ing in human T cell blasts is expected to reduce CTLA-4
surface retention and thereby promotes T cell growth [30].
The Thr17Ala polymorphism in the human CTLA-4 gene
(49A/G, rs231775) encodes a signal peptide variant with
inefficient glycosylation [68, 69]. This non-synonymous
polymorphism associates with type 1 diabetes but not MS
[70, 71], reduces averageN-glycan occupancy at the twoN-X-
S/T sites from two to one, and decreases the number of
branched N-glycans and CTLA-4 surface levels to enhance
T cell growth (Fig. 1). The MGAT1 IVAVT-T haplotype also
limits CTLA-4 surface levels when expressed with the com-
mon CTLA-4 allele (CTLA-4 Thr17; two N-glycans), whereas
combining the MGAT1 IVAVT-T haplotype with the CTLA-4
Ala17 variant (one N-glycan) further reduces CTLA-4 surface
levels [44]. CTLA-4 surface expression is restored by increas-
ing UDP-GlcNAc levels with GlcNAc supplementation in all
genotype combinations, confirming an additional mechanism
regulated by metabolism.

In summary, the MGAT1 IVAVT-T haplotype lowers
N-glycan branching, T cell activation thresholds, and
CTLA-4 cell surface expression in a manner that is sensitive
to metabolic conditions (i.e., UDP-GlcNAc), activity of
other Golgi enzymes (e.g., Mgat5), the number of N-glycans
attached to CTLA-4, and IL2/IL-7 signaling (Fig. 1).

These biological interactions predict specific genetic inter-
actions in MS. Indeed, epistatic and additive interactions were
observed between the four variants as expected [44]. The
MGAT1 IVAVT-T haplotype increases MS risk when there are
less than four copies of the IL2RA*Tand IL7RA*C risk alleles,
whereas no association is observed in the presence of four
copies of the IL2RA*T and IL7RA*C variants, the latter con-
sistent with opposing effects on Mgat1 expression optimizing
Mgat1 activity and enhancing N-glycan branching. The
MGAT1 IVAVT-T haplotype also significantly associated with
MS in CTLA-4Ala17 carriers (one N-glycan), but not CTLA-4
Thr17 homozygotes (two N-glycans). Moreover, the MGAT1
IVAVT-T haplotype promotes MS when there are less than six
alleles of CTLA-4 Thr17, IL2RA*T, and IL7RA*C, whereas a
marginally significant protective effect was observed with six
alleles of CTLA-4 Thr17, IL2RA*T, and IL7RA*C [44]. The
latter combination is expected to be protective as Mgat1 activ-
ity,N-glycan branching, and N-glycan number on CTLA-4 are
optimized. Importantly, these genetic interactions are observed
despite lack of point association and marginal effects of
CTLA-4 Thr17Ala, indicative of epistatic interactions.

Vitamin D3 enhances N-glycan branching to suppress T
cell growth and EAE in mice, while deficiency of vitamin
D3 is associated with MS. To investigate possible interac-
tions with genetic variants, we examined the effects of 1,25
(OH)2D3 on human T cell blasts [44]. Remarkably, 1,25
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(OH)2D3 enhanced MGAT1 mRNA levels, similar to the
MGAT1 IVAVT-T haplotype but opposite of the IL2RA*T
and IL7RA*C risk alleles. Consistent with this effect on
Mgat1, 1,25(OH)2D3 enhanced N-glycan branching in T
cells with two or more copies of the IL2RA*T+IL7RA*C
risk alleles (where Mgat1 expression is reduced). In con-
trast, N-glycan branching in T cells homozygous for the
IL2RA*C and IL7RA*T protective alleles, where Mgat1
expression is not suppressed, was unchanged or reduced
[44]. As a very small minority of Caucasians is homozygous
for both the IL2RA*C+IL7RA*T protective alleles (~0.5 %),
vitamin D3 deficiency is expected to reduce N-glycan
branching in the majority of the Caucasian population.

IL2RA*T, IL7RA*C, CTLA-4 Ala17, and vitamin D3

deficiency also associate with T1D [16–18, 72]. The non-
obese diabetic mouse is deficient in N-glycan branching in T
cells, while oral GlcNAc is able to suppress development of
autoimmune diabetes in these mice [33, 41]. Another inde-
pendent variant of IL2RA (rs11594656) also associates with
both MS and T1D, but paradoxically in opposite directions
[16]. These data suggest that defective N-glycosylation also
contributes to T1D risk.

Conclusions

Complex trait diseases such as MS develop from multifac-
eted and poorly understood interactions between genetics
and the environment. While genetic and epidemiological
studies have identified a number of genetic and environ-
mental risk factors in MS, most appear to only marginally
increase risk, do not account for all heritability, and display
no obvious common molecular mechanism. Epistatic inter-
actions, where two or more factors promote disease only
when combined, are likely to go undetected in approaches
assessing only point association such as GWAS. Here, we
reviewed evidence suggesting that in MS, epistatic interac-
tions between multiple independent genetic variants and
environmental factors combine in a nonlinear fashion to
dysregulate a common biochemical pathway, namely Golgi
N-glycosylation. Each factor may only have a minor genetic
or biological effect on risk and N-glycosylation, but specific
combinations lead to more dramatic changes in N-glycan
branching. Moreover, the same variant may either increase
or decrease risk depending on co-inheritance of other var-
iants and/or environmental factors. This paradigm suggests
that future studies only examining point association, such
as GWAS, are unlikely to adequately define heritability.
Rather, molecular mechanistic studies of human variants
enlightened by mouse data are likely required to intelligent-
ly and selectively examine for epistatic interactions and
define disease mechanisms. For example, there are at least

~30 genes that alter N-glycan branching and may be
screened for functional variants and epistatic interactions.

Defective N-glycosylation in MS results from multiple
inputs, both environmental and genetic, but importantly also
results in multiple phenotypic outputs (Fig. 1). Human and
mouse data suggest that defective N-glycosylation contributes
to MS by affecting multiple cell types and molecular mecha-
nisms. In addition to defects in Tcell growth and self-tolerance,
defective N-glycosylation may also promote disease via hyper-
active innate immune responses and increased sensitivity of
neurons to death [37, 48, 49, 51, 53]. While the effects on T
cells are defined in both mouse and humans, additional work is
required to determine whether the genetic (e.g., MGAT1
IVAVT-T, IL2RA*T, and IL7RA*C) and/or environmental
(e.g., vitamin D3 and UDP-GlcNAc metabolism) factors also
directly alter innate immune activity and neurodegeneration in
human cells via defective N-glycosylation. For example, the
MGAT1 IVAVT-T haplotype increases the amount of mannose
exposed N-glycans in peripheral blood monocytes. If this
phenotype was also prominent in oligodendrocytes, exposure
of these cryptic mannose residues may hyperactivate innate
immune responses to promote demyelination.

Current treatment strategies for MS are predominated by
injectable therapies with modest efficacy, high cost, and
significant side effects, which can affect tolerability and
compliance. The limitations of current medications warrant
investigations into alternative therapeutic strategies, partic-
ularly those that directly target an underlying molecular
mechanism promoting disease, rather than nonspecific
immunomodulation and/or immunosuppression. Therapeu-
tic supplementation of the Golgi to increase N-glycan bio-
synthesis may provide such a therapy. Both vitamin D3 and
GlcNAc are orally active, reverse deficiencies in N-glycan
branching in mice and humans, and inhibit EAE and spon-
taneous autoimmune diabetes in mice [41, 61, 73]. More
recent data from our lab have shown that oral GlcNAc also
inhibits Th1 and Th17 responses and disease progression in
EAE when administered after disease onset [47]. A pilot
study of oral GlcNAc in pediatric treatment-resistant inflam-
matory bowel disease reported that 8 out of 12 children with
severe disease went into clinical remission with evidence of
histological improvement [55]. Three of the responders
relapsed within ~1 month following disruption of GlcNAc
therapy, but improved again once therapy was reinitiated
[55]. These data suggest that a human clinical trial of
GlcNAc in MS is warranted.
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