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Abstract Cancer cells, both in vivo and in vitro, have been
demonstrated to release membranous structures, defined as
microvesicles or exosomes, consisting of an array of
macromolecules derived from the originating cells, includ-
ing proteins, lipids, and nucleic acids. While only recently
have the roles of these vesicular components in intercellular
communication become elucidated, significant evidence has
demonstrated that tumor exosomes can exert a broad array
of detrimental effects on the immune system—ranging from
apoptosis of activated cytotoxic T cells to impairment of
monocyte differentiation into dendritic cells, to induction of
myeloid-suppressive cells and T regulatory cells. Immuno-
suppressive exosomes of tumor origin can be found within
neoplastic lesions and in biologic fluids from cancer
patients, implying a potential role of these pathways in in
vivo tumor progression and systemic paraneoplastic syn-
dromes. Through the expression of molecules involved in
angiogenesis promotion, stromal remodeling, signaling
pathway activation through growth factor/receptor transfer,
chemoresistance, and genetic intercellular exchange, tumor
exosomes could represent a central mediator of the tumor

microenvironment. By understanding the nature of these
tumor-derived exosomes/microvesicles and their roles in
mediating cancer progression and modulating the host
immune response will significantly impact therapeutic
approaches targeting exosomes.
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Introduction

The release of nano-sized membranous vesicles by viable
tumors was initially described by our group over three
decades ago [1] and has since been verified in multiple
tumor and cell types. These membranous vesicles have
been identified by various terms, from “high molecular
weight complexes,” “membrane fragments,” “microve-
sicles,” “microparticles,” and “exosomes.” While restrictive
definitions have been applied to these vesicular structures
[2], considerable overlap exists between various circulating
cell-derived vesicles isolated from cancer patients, suggest-
ing the distinctions may not be clear-cut, and these different
terms may include the same components.

The term “exosome” was coined by Trams et al. in 1981
[3] for “exfoliated membrane vesicles with 5′-nucleotidase
activity.” The “exosome” term originated from a discovery
of the secretion of neoplastic cell line-derived exfoliated
vesicles, which mirrored the 5′-nucleotidase activity of the
parent cells [3]. Subsequently, the canonical pathway of
“vesicle” release following multivesicular endosome fusion
with the cell surface was demonstrated in cultured sheep [4]
and rat [5] reticulocytes. After purification by ultracentri-
fugation, the sedimented microvesicles were found to
contain transferrin receptors, which were also found in
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native reticulocytes [6]. These microvesicles were redefined
as “exosomes” [7].

The release of tumor-derived microvesicles was initially
demonstrated in ovarian cancer patients [1, 8, 9]. Within
this patient population, intact membrane fragments or
vesicles from the peripheral circulation and malignant
effusions (ascites and cyst fluids) were found to express
molecular markers that were inherent to the tumor plasma
membrane, 5′-nucleotidase, and placental-type alkaline
phosphatase [10, 11]. In addition to tumor cells and
embryonic cells, microvesicles/exosomes are released by a
variety of cells, particularly activated cells of the immune
system, including dendritic cells, macrophages, B cells, T
cells, and NK cells [12–14]. We now recognize that these
shed microvesicles are key intercellular communication
vehicles, serving to regulate normal immune responses.
Exosomes from activated dendritic cells can present
antigens in the context of MHC II to Tcells [15]. Exosomes
from activated T cells can mediate “activation-induced cell
death” in a cell-autonomous manner, defined by the nature
of the initial T cell activation events and can play central
roles in both central and peripheral deletion events involved
in tolerance and homeostasis [16]. Exosomes released by
tumors may elicit a tolerogenic response and participate in
other immune mechanisms, such as platelet activation, mast
cell degranulation, germinal center reaction, and potential
engulfment of apoptotic cells. Since, under normal condi-
tion, microvesicles/exosomes are enriched in MHC class I
and II antigens and costimulatory molecules, they are
thought to be an alternative antigen delivery pathway
mediated by cell surface molecules. The aberrant release
of exosomes by tumors may allow them to circumvent
these immunoregulatory antigen delivery pathways and
evade immunosurveillance [10].

Microvesicle/exosome formation

There are multiple mechanisms leading to the release of
cellular components into the extracellular space. Three
mechanisms have been proposed for the release of
membranous vesicles. These are exocytic fusion of multi-
vesicular bodies (MVBs) resulting in exosomes, budding of
vesicles directly from the plasma membranes resulting in
shed “microvesicles,” and cell death leading to apoptotic
bodies [17]. The first two mechanisms are properties of
viable cells and are energy-requiring events. While most
isolation protocols readily exclude apoptotic bodies, they
do not differentiate exosomes from shed “microvesicles.”
Thus, these extracellular vesicle populations may include a
mixture of exosomes and microvesicles, which may
confuse interpretation of biochemical data. In terms of their
characteristics, exosomes/microvesicles derived from the

extracellular environment of tumors, either in vitro or in
vivo, exhibit overlapping similarities in size (defined by
dynamic light scattering), morphology (defined by electron
microscopy), density (defined by of sucrose gradient
centrifugation), and protein markers of both the endosomes
and plasma membranes (defined by western immunoblot-
ting and mass spectrometry) [18, 19]. We have compared
the vesicle populations obtained from biologic fluids of
ovarian cancer patients by both the technique described to
isolate exosomes and our original chromatographic method
isolating “microvesicles” [18]. This comparative study
demonstrated that these in vivo-derived vesicles from both
techniques isolated cup-shaped vesicles, with a density
between 1.13 and 1.17 g/ml, a diameter between 50 and
100 nm, and expressing CD63, Alix, VPS35, galectin 3,
HSP90, fibronectin, and placental alkaline phosphatase
(Fig. 1). Thus, these patient-derived circulating vesicles
fall within the definition of exosomes. However, it is
unclear whether this distinction between exosomes and
shed microvesicles is critical to understand the biologic
activities of these vesicles as they can interact with target
cells of the host as a mixture. This review focuses on the
vesicle populations actively released by viable cells.

The increased release of exosomes/microvesicles and
their accumulation appear to be important in the malignant
transformation process. Although extracellular shedding of
exosomes occurs in other types of cells under specific
physiological conditions, the accumulation of membranous
vesicles from non-neoplastic cells is rarely observed, in
vivo [20]. In contrast, exosomes released by tumor cells
accumulate in biologic fluids, including sera, urine, ascites,
and pleural fluids. Exosome release and its accumulation
appear to be important features of the malignant transfor-
mation. Shed tumor-derived exosomes do not mirror the
general composition of the plasma membrane of the
originating tumor cells, but represent ‘micromaps,’ with
enhanced expression of tumor antigens [21, 22].

While the exact mechanisms of exosome/microvesicle
release remain unclear, this release is an energy-requiring
phenomenon, modulated by extracellular signals. The most
common process is the release of large biomolecules
through the plasma membrane by a process termed
exocytosis, which has regulatory and signaling functions.
Exocytosis can be either constitutive (non-calcium-triggered)
or regulated (calcium-triggered) [23]. Constitutive exocytosis
occurs in all cells and serves to secrete extracellular matrix
components or to incorporate newly synthesized proteins
into the plasma membrane following fusion with transport
vesicles. Regulated exocytosis is critical to events, such as
neurologic signaling, as synaptic vesicles fuse with the
membrane at the synaptic cleft. The formation of these
endosomes is initiated cell surface-mediated invagination to
generate endocytic vesicles that migrate and fuse with the
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early endosome [24]. Exosomes appear to form by invagi-
nation and budding from the limiting membrane of late
endosomes, resulting in vesicles that contain cytosol and that
expose the extracellular domain of transferring receptors at
their surface. Using electron microscopy, studies have shown
fusion profiles of multivesicular endosomes with the plasma
membrane, leading to the secretion of the internal vesicles
into the extracellular environment [24].

Since the formation of these membrane vesicles has an
endocytic origin, this mechanism is a secretion process of the
endosomal system, including endocytic vesicles, early endo-
somes, late endosomes, and lysosomes. These endocytic
vesicles form through clathrin- or non-clathrin-mediated
endocytosis at the plasma membrane and are transported to
early endosomes [25]. The late endosomes develop from
early endosomes via acidification, changes in their protein
content, and their ability to fuse with vesicles or other
cellular membranes. Early endosomes are localized near the
outer margin of the cells and exhibit a tubular appearance, in
contrast, late endosomes are localized proximal to the
nucleus and are spherical in shape. A critical step in the
formation of MVBs from late endosomes is reversed
budding. In this step, limiting membranes of late endosomes
“bud” into their lumen, resulting in a continuous enrichment
of internal luminal vesicles [26] (http://www.sciencedirect.
com/science?_ob=ArticleURL&_udi=B6T75-4M4KJ04-

1 & _ u s e r = 1 3 4 7 7 9 & _ c o v e r D a t e = 11% 2 F 1 5%
2F2006&_rdoc=1&_fmt=high&_orig=search&_origin=-
s e a r c h & _ s o r t = d & _ d o c a n c h o r = & v i e w = -
c&_acct=C000011238&_version=1&_urlVersion=0&_user-
id=134779&md5=347321f447ba003d55a8380cc328666d&-
searchtype=a-bib6). MVBs have been demonstrated to be
involved in the exocytic fusion of their external membrane
with the plasma membrane of the cell, resulting in release of
their segregated vesicles to the extracellular space.

The molecular composition of the cell surface can be
modulated by endosomes, facilitating segregation of pro-
teins destined for degradation from proteins destined to be
recycled [27]. As a consequence of multiprotein complex,
the Endosomal Sorting Complexes Required for Transport
(ESCRTs), specific proteins and lipids of the MVB external
membrane are enriched in the exosomes, while other
components are excluded. The formation of MVBs relies
on ubiquitin-binding proteins [28]. The protein-sorting
mechanisms include ubiquitination of the target protein
and preferential sorting. The ligation of one ubiquitin
molecule (mono-ubiquitinylation) can serve as a signal for
endocytosis and segregation into MVBs; however, the
attachment of multiple ubiquitin molecules (poly-ubiquiti-
nylation) can earmark proteins for degradation in the
proteasome [29]. Some studies have also suggested that
oligoubiquitination may also be a sorting signal for

Fig. 1 Schematic diagram of a tumor-derived exosome, presenting protein components defined by ion trap mass spectrometry
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trafficking to MVBs, which may increase MVB sorting
efficiency. ESCRT-I, -II, and -III recognize monoubiquiti-
nated cargoes and promote their inclusion in MVBs [30].
The ESCRT complex recognizes the ubiquitinylated pro-
teins via vacuolar protein sorting (VPS)-27 [31]. Subse-
quently, VPS27 recruits an additional ESCRT complex and
TSG101, activating AIP/Alix. This complex initiates sort-
ing specific proteins into the budding vesicles. Although
mono-ubiquitinylation prompts their uptake into MVBs, not
all proteins in exosomes are ubiquitinylated, potentially
resulting from a passive mechanism involved in protein
sorting to MVBs. It has been proposed that the signals
responsible for the “passive” processes are, in some cases,
the presence of tetraspanin-enriched [32] or cholesterol-
enriched (i.e., lipid rafts) membrane microdomains [33]. A
similar but unclear mechanism is potentially associated
with the accumulation of specific cytosolic proteins in the
exosome lumen.

Exosome/microvesicle characterization/composition

Exosomes have been described as microvesicles containing
5′-nucleotidase activity that are released from neoplastic
cells [3]. These small nanovesicles, present within MVBs
(endosomes), contain transferrin receptors, a marker used to
identify endocytosis and recycling of internalized plasma
membrane proteins [34]. Biophysically, exosomes are
equivalent to cytoplasm enclosed in a lipid bilayer with
the external domains of transmembrane proteins exposed to
the extracellular environment. Exosome composition varies
depending on the cell type of origin.

The lipid and protein content of exosomes has been
extensively analyzed by various techniques including
western immunoblotting, fluorescence-activated cell sorting,
immuno-electron microscopy, and mass spectrometry.

Ultrastructural studies, western blot, and mass spectrom-
etry analysis of exosomes from different sources have
allowed the distinction between commonly expressed
proteins, as well as cell type-specific proteins [22, 35].
Exosomes contain a number of common protein compo-
nents. Based on their endosomal origin, exosomes, inde-
pendent of the parental cell of origin, exhibit multiple
proteins involved in MVB formation (annexins, Rab family
GTPases, and ESCRT complex proteins (TSG101, Alix))
[36]. Additional protein markers linked with exosomes
include tetraspanins (CD81, CD63, and CD9) and heat
shock proteins (HSP60, HSP70, and HSP90) [22].
Exosome-associated HSP70 and HSP90 can facilitate
peptide loading onto MHC class I and class II proteins.
Exosome express cell type-specific markers, such as class I
and II MHC, co-stimulatory proteins (CD80 and CD86) on
antigen presenting cell-derived exosomes [37], integrin

CD41a and Von Willebrand factor on platelet-derived
exosomes [38], and perforin and granzyme on cytotoxic T
lymphocyte-derived exosomes [39]. The cytosolic proteins
present on exosomes include Rabs, which promote exo-
some docking and the membrane fusion events [40]. The
annexins, including annexin I, II, V, and VI, may regulate
membrane cytoskeleton dynamics and membrane fusion
events [41]. Adhesion molecules, including intercellular
adhesion molecule-1, CD146, CD9, EGFRvIII, CD18,
CD11a, CD11b, CD11c, CD166, and LFA-3/CD58, have
also been identified in exosomal preparations [42, 43]. One
of the characteristic features of exosomes is the presence of
tetraspanins, including CD9, CD63, CD81, and CD82 [44].
Exosomes are also enriched in proteins that participate in
vesicle formation and trafficking, such as the lysobi-
sphosphatidic acid (LBPA)-binding protein, Alix [45].
Other proteins demonstrated to be present exosomes
include metabolic enzymes, such as peroxidases, pyruvate
and lipid kinases, and enolase-1 [46].

Recently, we have analyzed the patient-derived exosomal
proteome using ion trap mass spectrometry (Table 1). This
study identified 232 unique proteins. These proteins were
classified as percent of the identified total proteins into
molecular chaperones (8.5%), vesicle fusion (8.5%), cyto-
skeletal proteins and proteins involved in the assembly/
disassembly of the cytoskeletal networks (17.6%), anionic
and cationic ion transport channels (3.7%), proteins
involved in lipid (6.9%), carbohydrate (3.2%), and amino
acids (2.1%) metabolisms, proteins involved in DNA
replication (6.9%), messenger RNA (mRNA) splicing
(5.3%), transcription/translation (5.3%), post-transcriptional
protein modification (13.8%), and signal transduction (2.7%).
Our studies demonstrated that cytosolic proteins were highly
represented, and we observed a diverse array of cytoskeletal
constituents (actin, α-actinin-1, cofilin, filamin-A-B-C, tubu-
lins, gelsolin, profilin-1, spectrin, symplekin, talin, vinculin,
and myosins). We identified that transmembrane proteins
were also abundant, including multiple integrins (β1, α3, and
αv), intercellular adhesion molecule 1 (ICAM-1), and mucin-
4. A variety of channels were observed, such as the voltage-
dependent anion-selective channel protein 2 and 3, chloride
intracellular channel protein 1, sodium/potassium-transport-
ing ATPase subunit β-3, long of sodium/potassium-trans-
porting ATPase subunit α-1, and transitional endoplasmic
reticulum ATPase. In line with their endocytic origin,
exosomal proteins belonging to the ESCRT complex that are
important protein complexes involved in ubiquitin-dependent
exosome biogenesis have also been observed. These ESCRT-
associated proteins include vacuolar protein sorting-
associated protein 35 (VPS-35), Alix, ubiquitin-like
modifier-activating enzyme, and ubiquitin carboxyl-terminal
hydrolases. We demonstrated that proteins involved in
membrane trafficking and fusion processes were enriched
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(annexin A2, A5, A6, clathrin heavy chain 1/2, coatomer
subunit β, Rab1b, Rab2a, and Rab7a). A group of
markers of endosomes and lysosomes were also detected
(cathepsin-C, -D, EH domain-containing protein 1, and
β-hexoaminidase), and several chaperonnes were identi-
fied (HSP70, HSP90, HSC70, HSPA4, -8, -9, HSPA1A/B,
HSPB1, HSP47, HSPA5, HSPβ1, HSPD1, HSP90AB1,
B1, AA1; T-complex protein 1, endoplasmin, and protein
disulfide-isomerase A3, A4, and A6).

The initial identification of exosome release by tumor
cells was envisioned as the discovery of a new cell-free
source of tumor antigens for in vivo immune priming or
tumor vaccine design [47]. Exosomes are close replicas of
the originating cells in terms of selected protein content and
express a large array of tumor antigens when secreted by
neoplastic cells, including highly immunogenic antigens
MelanA/Mart-1 and gp100; colon carcinoma cells express
CEA and HER2. This antigenic content is not only a feature
of in vitro-released exosomes but also can be found in
microvesicles isolated from plasma of cancer patients as
well, evidence that demonstrates the tumor origin of these
organelles [48].

Exosomes as vehicles for intercellular communication

Tumor-secreted exosomes have recently gained increased
attention as a “vehicle” for intercellular communication
with extensive autocrine/paracrine functions. One of the
most important functions of cell-derived microvesicles/
exosomes appears to be intercellular communication. By

exposing cell type-specific adhesion receptors or ligands,
exosomes can interact with specific cells and deliver their
“signals,” including bioactive lipids, cytokines, growth
factors, receptors, and genetic materials. Thus, the micro-
vesicle/exosomal pathway may constitute a mechanism for
local and systemic intercellular transfer of information, with
a complexity superior to that of secreted soluble factors, but
similar to that observed with direct cell–cell contact.

Exosomes provide stable conformational conditions for
their protein content (due to maintenance of their three-
dimensional transmembrane structure), conserve bioactivity
of their proteins (based on the protective membrane
structure), improve bio-distribution (based on their capacity
to circulate in biologic fluids and migrate to secondary
sites), and support an efficient interaction with target cells
(due to the fusogenic properties of exosomes) [49, 50]. Due
to these features, tumor-derived exosomes are efficient
platforms for the in vivo transfer of cross-talk signals. The
multiplicity of bioactive molecules associated with exo-
somes suggests that they exhibit a central role in generating
the tumor microenvironment [51, 52]. Exosomes have the
ability to transfer specific proteins to homologous and
heterologous target cells for the delivery of signaling path-
ways [53, 54]. The presence of tumor-derived exosomes can
increase matrix metalloproteinase (MMP) secretion and
VEGF expression in target cells through the expression of
proangiogenic molecules, such as members of the tetraspanin
family, thereby promoting neoangiogenesis even at second-
ary metastatic sites [55]. The released MMPs can digest the
extracellular matrices where they arise. This degradation is
enhanced when MMPs are co-released with exosome-

Name Name

Abhydrolase domain containing protein 12 Guanine nucleotide binding subunit beta 4

Alpha-1 acid glycoprotein-1 Haptoglobin

Alpha-1-antitrypsin Heparin cofactor 2

Alpha-2 macroglobulin Immunoglobulins

Annexin A2 Insulin-like binding protein 3

Ankrd26-like family C member Keratin type I and II

Antithrombin-III Kininogen 1

Apolipoprotein (A, B-100, D, H) Lipopolysaccharide binding protein

Armadillo repeat containing protein Moesin

Calmodulin Profililin-1

Cellular retinoic acid binding protein 2 Serum amyloid

Choline transporter-like protein 4 Serum paraoxonase/arylesterase

Complement and complement fragments Talin

Disheveled associated activator of morphogenesis 2 Triose phosphate isomerase

Ezrin Trypsin 3

Fibrinogen Ubiquitin

Fibronectin Vitronectin

Galectin 3 binding protein

Table 1 Proteomic analysis of
tumor-derived exosomes, isolat-
ed from the peripheral circula-
tion and defined by ion trap
mass spectrometry
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associated extracellular matrix metalloproteinase inducer
(EMMPRIN) [56].

Studies have shown that cancer ascites-derived exosomes
carry extracellular matrix-remodeling enzymes, such as
metalloproteinases 2 and 9 (MMP-2 and MMP-9) [57, 58],
and urokinase plasminogen activator [59], leading to an
increase in extracellular matrix degradation. The expression
of matrix-remodeling enzymes increases the tumor's invasive
phenotype and promotes metastasis. The presence of
proangiogenic factors supports neovascularization of the
developing tumor. A common cellular component of the
tumor microenvironment is the monocyte/macrophage.
Within the microenvironment, these tumor-associated macro-
phages have been shown to assist in tumor progression by
angiogenesis, growth, metastasis, and immunosuppression
[60].

When shed vesicles fuse with their target cells, they can
transfer important membrane components, such as receptors
and ligands. The transferring of receptors between exo-
somes and target cells was demonstrated by the observation
that bystander B cells acquire antigen receptors from
activated B cells by membrane transfer [61]. This transfer
allows the amplified expansion of antigen-binding B cells
with the ability to present a specific antigen to CD4 Tcells.
Exosomes can transfer the adhesion molecule CD41 from
platelets to endothelial cells or to tumor cells, conferring
pro-adhesive properties to the target cell [62]. Exosome-
mediated transfer of Fas ligand from tumor cells induces
apoptosis of activated T cells favoring tumor immune
escape [63]. Exosomes can also be protective for cells that
remove from their membranes to the extracellular compart-
ment the potentially harmful molecules, such as Fas or the
membrane attack complex.

Exosomes have also been postulated to contribute to the
spread of infective agents, such as human immunodefi-
ciency virus (HIV) type 1 [64]. In macrophages receiving
chemokine receptors, this can induce an increased risk of
HIV infection together with resistance to apoptosis. The
transfer of the chemokine (CXC motif) receptor 4 and the
chemokine (CC motif) receptor 5, chemokine co-receptors
for HIV type I by released exosomes, can enhance the
entry of the virus into cell types other than the lympho-
hemopoietic lineage [65]. In addition to transferring
receptors, exosomes can transfer viruses, contained within
exosomes, by the “Trojan exosome hypothesis” involving
direct delivery [66].

In human gliomas, only a fraction of the cells, exhibiting
a transformed phenotype, expressed the truncated epidermal
growth factor receptor, EGFRvIII, associated with dysregu-
lated tumor growth [67]. Al-Nedawi et al. [68] demonstrat-
ed transfer of the oncogenic EGFRvIII from human glioma
cancer cells expressing the receptor to glioma cells without
the EGFRvIII via the fusion of exosomes. After transfer, the

glioma cells, lacking the receptor, were transformed to
express EGFRvIII-regulated genes, including VEGF, Bcl-
xL, and p27 [69]. Subsequent studies demonstrated that the
oncogenic EGFRvIII from human squamous cell carcinoma
cells was transferred via exosomes to tumor-associated
endothelial cells to activate MAPK and Akt cell signaling
pathways and promote endothelial VEGF expression [69].

The occurrence of epigenetic changes has been frequently
reported in cancer. Epigenetic regulation of gene transcription,
mediating cell proliferation, differentiation, and survival are
additional targets in tumor progression, resulting in genomic
instability [70]. One explanation for this genomic instability
lies in the mediation by microvesicular horizontal transfer
[71]. Horizontal transfer via microvesicles has been validated
in a number of tumor-associated cells including gliomas,
monocytes, mast cells, and T cells [72]. One explanation of
this phenomenon is the transfer of genetic information
between cells. It has been shown that tumor-derived
exosomes may transfer not only surface determinants but
also mRNA of tumor cells to monocytes. Janowska-
Wieczorek et al. [73] demonstrated that exosomes derived
from murine embryonic stem cells (ESCs) could induce
epigenetic reprogramming of target cells. ESC-derived
exosomes were shown to improve survival of hematopoietic
stem/progenitor cells, to induce upregulation of early
pluripotent and early hematopoietic markers, and to induce
phosphorylation of mitogen-activated protein kinase p42/44
and Akt. ESC-derived exosomes were shown to express
mRNAs for several pluripotent transcription factors that can
be delivered to target cells and translated to their
corresponding proteins [74]. As RNase treatment inhibited
their exosome-mediated biological effect, the involvement of
mRNA in the observed biological effects was suggested.
Yuan et al. [75] have shown that in addition to mRNA,
exosomes can transfer microRNA to target cells. They
demonstrated that exosomes derived from ESCs contain
abundant microRNA and that they can transfer a subset of
microRNAs to mouse embryonic fibroblasts in vitro. Since
microRNAs are regulators of protein translation, this
observation opens the possibility that stem cells can alter
the expression of genes in neighboring cells by transferring
exosomal microRNAs. When shed vesicles fuse with their
target cells, the portion of cytosol segregated within their
lumen is discharged to and integrates with the cytosol of the
target cell. Because this transfer can also include transmis-
sion of specific mRNAs, it can ultimately contribute to the
epigenetic and proteomic properties of target cells.

It has been suggested that tumor cell progression could
use multiple forms of exosome/microvesicle-mediated
communication to simultaneously affect multiple effector
populations, based on release of tissue factors, immunor-
egulators, and oncogenic molecules. Thus, the signals
transferred to neighboring cells via exosomes may mirror
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the transcriptional status of the parent cell, but due to the
exosomal mRNA and microRNA being transferred, their
consequences on the translational machinery of the target
cells are extensive.

Exosomes/microvesicles as mediators immune
regulation

Cancer cells are postulated to modulate components of the
microenvironment and affect immune system function,
primarily through pathways involving cell-to-cell contact
and the release of suppressive soluble factors. However, a
unique alternative mechanism has emerged that involves
the active release of immunosuppressive microvesicles/
exosomes by tumor cells [76, 77]. As tumor-derived
microvesicles/exosomes are abundant in the blood and
malignant effusions derived from cancer patients [78, 79],
their release appears to be important features of intercellular
communication. Evidence supports the concept that tumors
constitutively shed exosomes with pleiotropic immunosup-
pressive effects [80, 81] that are protective and supportive
of the tumor to facilitate escape from lymphocyte immu-
nosurveillance [82]. Since released exosomes express
molecules with biologic activity (such as Fas ligand, PD-
1, MICA/B, mdr1, MMPs, CD44, and autoreactive anti-
gens), the ability of exosomes to modulate lymphocyte and
monocyte functions has been analyzed [83–85]. The
immunological significance of exosomes, while far from
clear, has been linked with their potential to modulate the
host's immune system, which may be their major function.
Supporting this view is that the topology of the macro-
molecules displayed on exosomes is analogous to that
observed on the tumor's plasma membrane, making them
well positioned for interactions with target cell surface
receptors. This positioning can mediate signal transduction
without the need for direct cell–cell contact. Further, these
microvesicles can also fuse with the recipient cell, leading
to the acquisition of novel molecules by the cells and the
delivery of mRNA and miRNA through this route.

Tumor exosome release has been described as capable of
modulating the evasion from anti-tumor immune responses
[86]. It has been suggested that the anti-tumor immune
response can be divided into three different phases, and
tumor-derived microvesicles/exosomes can exhibit roles in
each phase [87]. The first step includes the recognition of
tumor cells by innate immune cells. The progression and
development of tumors is coordinated by biochemical and
biophysical signals from the tumor microenvironment [88].
After growing to a certain threshold size, solid tumors
exceed their capacity to acquire oxygen and nutrients in this
hypoxic environment [89, 90]. For tumor progression to
occur, the “angiogenic switch” has been reported to be

required [91]. The “angiogenic switch” promotes the
transition of the tumor to a highly vascularized and
progressive outgrowth [51]. This process further induces
extracellular matrix remodeling and the production of a pro-
inflammatory environment leading to the recruitment of
innate immune cells, including NK, macrophages, and
dendritic cells and the mediation of T cells into the tumor
microenvironment [57–59].

Recent studies have demonstrated that the MHC class I-
related chain (MIC) A and MICB ligands for the NK cell
activating receptor NKG2D is released by tumor cells as a
component of exosomes [92]. This shedding of MICA/B by
tumors not only prevents recognition of MICA/B-express-
ing tumor cells but also results in the downregulation of
NKG2D expression on circulating CD8 T cells, NK cells,
and γδT cells, leading to impairment of the antitumor
immune response [93]. Ashiru et al. [92] demonstrated that
treatment of NK cells with MICA-expressing exosomes
suppressed NK expression of NKG2D on the cell surface
and also suppressed NK cytotoxicity, which is indepen-
dent of NKG2D ligand expression. Thus, their findings
demonstrated exosomal MICA/B expression as a mech-
anism of NK suppression, facilitating immune escape and
progression.

The second phase of an anti-tumor immune response
involves the maturation and migration of tissue dendritic
cells and priming of naïve T cells. Blood-derived exosomes
from melanoma patients have been shown to promote the
generation of myeloid-derived suppressor cells (MDSCs)
from peripheral blood monocytes [94], which acts as one of
the major mechanisms used by tumors to escape immune
recognition [95]. MDSCs have potent immunosuppressive
functions that can suppress T cell immune responses by a
variety of mechanisms [96–99]. Further, tumor exosomes
have been shown to be involved in the regulation of the
adaptive immune responses to cancer cells in animal
models and cancer patients [12, 100] by impairing
peripheral blood monocyte differentiation into dendritic
cells [101]. As a result, the generation of tumor-specific T
cells has been reported to be a very inefficient process.
Most importantly, tumor exosomes have the ability to
induce a series of functional defects in tumor reactive-
effector T cells [102], through the expression of apoptosis-
inducing ligands, such as FasL and TRAIL [103] or PDL-2,
which directly stimulate their T cell targets to negatively
regulate T cell activation [104]. For example, ovarian
cancer patient-derived exosomes inhibit T cell functions
by increasing expression of FasL (on the exosome surface)
and suppressing CD3-zeta (on the T cells) to collectively
induce T cell apoptosis [105]. An investigation of human
prostate cancer exosomes added to activated Tcells exposed
a dose-dependent inhibition of CD8+ T cell proliferation
stimulated by Fas–FasL interaction [106]. Additionally,
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tumor-derived exosomes block innate immune effector cell
function as seen in NK cells via production of exosome-
associated MICA/B to downregulate NKG2D expression,
thereby decreasing NKG2D-mediated killing [107, 108].
Production of tumor exosome-associated MICA/B and
FasL has been shown to decrease the effectiveness of not
only the innate immune system but also the adaptive
immune system to reject the tumor [109, 110]. It has been
theorized that these released exosomes modulate lympho-
cyte functions by mimicking “activation induced cell death”
(AICD) [111, 112]. Lymphoid cells appear to release
exosomes following activation, and these appear to play
an essential role in immunoregulation, by preventing
excessive immune responses and the development of
autoimmunity [113]. It was postulated that exosome release
by tumor cells is a re-expression of the fetal cell exosomes
and that both constituted pathways to circumvent immuno-
surveillance.

The third and final phase involved in the anti-tumor
response is the generation and homing of tumor-specific T
cells. Tumor-reactive CD4+ and CD8+ Tcells homing to the
primary tumor site is an important step in eradicating the
tumor [114, 115]. Tumor exosomes express membrane
bound ICAM-1 that efficiently blocks the interaction
between lymphocytes and endothelial cells [42] and
therefore decreases the recruitment of adaptive immune
cells. Several studies have shown that tumor-infiltrating T
cells are impaired by the tumor and display altered
expression in intracellular signal transduction molecules
such as CD3-zeta [108, 116]. Tumor exosomes co-
incubation with T cells leads to a decrease in CD3-zeta,
which suggests that tumor exosomes may be an additional
mechanism used by tumors to evade immune recognition
[82, 108]. The alteration of TCR-CD3-zeta has been
observed in several types of tumors namely malignant
melanoma [117], ovarian [118], and pancreatic [119].
Furthermore, studies have reported that cancer patients
display a high frequency of suppressive peripheral blood
regulatory T cells when compared to normal controls [120–
122]. These cells have been shown to infiltrate the tumor
and are involved in the induction of CD8+ tumor-reactive
cytotoxic T lymphocyte (CTL) apoptosis [42, 123, 124]. A
study from Szajnik et al. shows that tumor-derived micro-
vesicles expand and promote the suppressive activities of
human regulatory T cells (Treg) by upregulating the
expression of FasL, interleukin (IL)-10, TGF-β1, CTLA-
4, granzyme B, and perforin [125]. Therefore, the immu-
noregulatory properties attributed to tumor-derived exo-
somes might be essential in regulating peripheral tolerance
and promoting immune evasion of tumors [53]. Collective-
ly, these studies support a role for exosomes in adapting the
host microenvironment to allow escape from immune
surveillance via stimulation of angiogenesis and metastasis

of tumors [126, 127], which suggests that tumors may use
exosomes to keep the host immune system under control
without a direct interaction with host immune cells.

Critical components of the immune response, such as
antigen presenting cells, are significantly affected by
interactions with tumor exosomes. These microvesicles
not only impair the capacity of circulating monocytes to
differentiate into functional DCs but they also skew the
differentiation of these cells towards altered CD14+ mono-
cytes expressing low or absent levels of HLA-DR [128].
These cells, which are present in relatively high numbers in
PBMCs of melanoma patients, exert suppressive activity on
lymphocyte proliferation and impair the expression of
effector molecules (such as perforin and IFN-γ) in a TGF-
β-mediated fashion. CD14+HLA-DR−/low cells behave as
MSC, undergoing in vivo expansion upon administration of
GM-CSF. These hallmark alterations induced by tumor
microvesicles on target immune cells in vitro can also be
detected on immune cells isolated from cancer patients,
which supports the hypothesis that these suppressive path-
ways are present in vivo.

These exosomes activated a stronger pro-inflammatory
response in the form of NF-κB activation and TNF-α
release from untreated macrophages as compared to macro-
phages exposed to control exosomes. Parallel evaluations of
the structural components of tumor-derived microvesicles
demonstrated enhanced expression of tumor antigens on the
vesicular surface [129, 130]. In murine B16 melanoma
cultures, the expression of surface glycoproteins on the
isolated microvesicles represented a profile similar to that
found in the melanoma cell membrane [130]. Continued
characterization of tumor-derived microvesicles was
achieved through biochemical analyses, which identified
molecules with immunologic and biologic activity. Micro-
vesicles released by late stage tumor cells were found to
exert a dose-dependent suppression of MHC II in mono-
cytes/macrophages in comparison to early stage tumor cells
[131, 132]. In addition, microvesicles suppressed lympho-
cyte activation induced by phytohemoglutinin, anti-CD3,
concanavalin A [10, 11, 130], and IL-2 [133].

As evidence of the pleiotropic effect of tumor-secreted
exosomes, tumor exosomes can interfere directly with Tcell
effector functions. Exosomal expression of bioactive FasL
and TRAIL has been shown on exosomes derived from
human tumors to induce apoptosis in activated tumor-
specific T cells. This phenomenon highly resembles the one
utilized under physiological conditions not only by T cells
to downsize immune responses [134] but also by placenta
cells that recently have been shown to promote a state of
immune privilege by inducing FasL-mediated apoptosis and
defects in the expression of crucial TCR signaling
components (such as CD3-zeta and JAK3) in local T cells,
which have been reported with microvesicles isolated from
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plasma of cancer patients and may help to explain the high
frequency of apoptotic or CD3-zeta− lymphocytes that are
often found in the peripheral circulation of these patients
[135, 136]. Natural killer cells lose their cytolytic potential,
through the suppression perforin expression, upon encounter
with tumor-secreted microvesicles.

A pro-inflammatory microenvironment is associated with
the development and progression of cancer. Macrophages are
prominent in the development of the pro-inflammatory
environment, with IL-1β serving as a “master” cytokine
regulator. Macrophages are critical for the resolution of
inflammation by producing anti-inflammatory cytokines and
chemokines and by increasing phagocytic activity. Based on
Th1/Th2 polarization, phenotypically polarized macrophages
are termed pro-inflammatory M1 (classically activated) and
anti-inflammatoryM2 (alternatively activated) [137]. In vitro,
macrophages can be polarized to the M1 state by treatment
with IFN-γ and inducers of TNF-α, such as lipopolysac-
charide (LPS) [138]. These M1 macrophages induce
synthesis of pro-inflammatory cytokines and chemokines,
including TNF-α, IL-12, IL-6, CCL2, and IL-1β, as well as
increased production of reactive oxygen species [139, 140].
Elevated levels of IL-1β are present in M1 polarized
macrophages due to activation of the NF-κB and MAPK
pathways [141], while no IL-1β protein is found in M2
polarized macrophages [142]. Using cytochalasin D, a

known inhibitor of actin polymerization, while a dramatic
suppression of exosome internalization was observed, this
internalization was not essential for the induction of IL-1β
mRNA and protein, following the exposure to exosomes.

IL-1β exhibits profound effects on immune cell function
during inflammation. Components of the extracellular
matrices have been demonstrated to be capable of stimu-
lating the expression of IL-1β [143]. Fibronectin is highly
expressed in injured tissues [144] and appears to be
positioned to modulate the expression of IL-1β in diseased
tissues [143]. In vitro, fibronectin stimulates the expression
of IL-1β mRNA and its translation into the 31-kDa
intracellular precursor protein, along with secretion of the
17-kDa active form in human mononuclear cells [145].
This effect of fibronectin is mediated by specific cell
surface α5β1 integrin receptor, which activates poorly
understood intracellular signals to induce IL-1β expression
[146]. Fibronectin contains a sequence, termed Arg-Gly-
Asp (RGD), which promotes its attachment to integrin
receptors [147]. Monocytes and macrophages have been
shown to possess fibronectin receptors that recognize the
RGD motif and mediate pro-inflammatory cytokine pro-
duction. The effect of fibronectin has been shown to be
dependent on binding of the RGD sequence of fibronectin
to integrin receptors, as this effect could be inhibited by
integrin receptor blocking peptides (anti-RGD sequence

Fig. 2 Schematic presenting exosome-associated fibronectin induction and release of IL1-β by macrophages
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mimics) [148]. The use of RGD antagonists demonstrates
that exosome-induced IL-1β production by macrophages is
mediated by exosome-associated fibronectin (Fig. 2).

Shedding vesicles released by various cell types are
now known to participate as well [149, 150]. Their role
can vary depending on the stage of the process. At an early
stage, the vesicles shed by neutrophils stimulate the
release of anti-inflammatory factors such as TGFβ1 and
IL-10 from macrophages with reduction of TNFα and IL-
8 [151, 152]. At later time points, however, shed vesicles
can become pro-inflammatory, mediating the transfer of
chemokine receptors, such as CCR4 and CCR5, and
stimulating release of other mediators, such as IL-6 and
the monocyte chemotactic protein 1 (MCP1), which
induce and strengthen inflammatory responses [153].

Conclusions

It has become increasingly clear, as new exosome studies are
published, that these small bioactive vesicles are important in a
number of biological functions. Exosomes exhibit important
roles in intercellular communication, and under normal
conditions, this communication mediates the activation of the
immune response. However, in cancer, tumor exosomes can
induce apoptosis of activated cytotoxic T cells, impairment of
monocyte differentiation, induction of myeloid-suppressive
cells and T regulatory cells, and suppression of lymphoid
activation signaling molecules. Tumor-derived exosomes ex-
press molecules involved in angiogenesis promotion, stromal
remodeling, signaling pathway activation through growth
factor/receptor transfer, chemoresistance, and genetic intercel-
lular exchange. Tumor exosomes induce a pro-inflammatory
environment from macrophages due to expression of exosomal
fibronectin. As a result of these exosomal effects, they can
represent a central mediator of the tumor-supportive microen-
vironment. From the removal of unwanted proteins from
maturing reticulocytes to their role in immune surveillance,
the inventory of functions continues to grow.
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