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Abstract Poor immune recovery is characteristic of bone
marrow transplantation and leads to high levels of
morbidity and mortality. The primary underlying cause is
a compromised thymic function, resulting from age-induced
atrophy and further compounded by the damaging effects of
cytoablative conditioning regimes on thymic epithelial cells
(TEC). Several strategies have been proposed to enhance T
cell reconstitution. Some, such as the use of single
biological agents, are currently being tested in clinical
trials. However, a more rational approach to immune
restoration will be to leverage the evolving repertoire of
new technologies. Specifically, the combined targeting of
TEC, thymocytes and peripheral T cells, together with the
bone marrow niches, promises a more strategic clinical
therapeutic platform.
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Immune reconstitution

Introduction

Fungal, viral and bacterial infections contribute significant-
ly to patient morbidity and mortality during the prolonged
immunosuppressive states that follow bone marrow trans-
plantation (BMT) or, now more commonly, mobilised
haematopoietic stem cell transplantation (HSCT). Strategies
to enhance immune reconstitution have thus become an

important area of clinical investigation. Robust cell-medi-
ated immunity also provides a primary means of minimis-
ing disease relapse either directly or via cancer vaccines. T
cells, particularly the CD4+ subset, are critical to these
immune protective functions for reducing transplant-related
morbidity and significantly improving clinical outcome in
terms of overall survival, opportunistic infections and non-
relapse mortality [1]. Not surprisingly, therefore, the
kinetics of T cell recovery is of great significance, with
the faster return of CD4+ T cell numbers correlating with
better survival outcomes [2].

The cytoreductive regimes of chemotherapy and radia-
tion therapy are, by necessity, often applied in such high
levels that they evoke the need for HSCT because of the
profound collateral destruction of the haematopoietic
compartment. Associated damage to the thymic and bone
marrow (BM) niche stromal cells can delay immune
recovery because it compromises engraftment of donor
haematopoietic stem cells (HSCs) and the development of
all haematopoietic and lymphopoietic lineages. The age of
the patient also influences the rate of haematopoietic and
immune recovery [3]. More specifically and certainly
paradoxically, the thymus naturally involutes with age,
particularly noticeable during the early teenage years.
Hence, damage by chemotherapy to an already age-induced
atrophied thymus further compounds delays in immune
reconstitution.

What induces the involution of the thymus and this age-
correlated shift from an activated state to a atrophic milieu?
Whilst the mechanisms of ageing are not well understood,
implications for changes in the neuroendocrine-immune
axis are suggested by either increases or losses in the
production of particular hormones and growth factors. Can
we utilise this knowledge to develop strategies to increase
the rate of T cell recovery following HSCT? Furthermore,
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as the thymus relies throughout life on the continual
seeding of BM derived haematopoietic precursors in order
to produce T cells, any alterations in the BM that
compromises the number or quality of lymphoid precursors
can directly impact on thymic function and naïve T cell
output. Deciphering the physiology of stem cell niches in
the BM and effects thereon of age or damage from
conditioning regimes thus becomes highly relevant to
achieve long-term T cell reconstitution.

This review will briefly introduce thymic development,
ageing and the problems associated with the damage to the
BM and thymic stromal cell micro-environments by HSCT
conditioning regimes. The mechanisms underlying thymic
atrophy and decreased immune function with age will also
be discussed, as well as how this information can be
exploited to form therapeutic strategies to enhance T cell
reconstitution for immune recovery.

Development and degeneration of the thymus

Understanding the processes that occur during thymic
organogenesis should provide a logical basis to enabling a
more focussed approach to targeting particular molecules or
stem cell populations that may have potential in rejuvenat-
ing a damaged thymus for immune reconstitution. It will
also be of importance to develop strategies for more
complex applications, such as steering embryonic stem
(ES) cells down a thymic epithelial cell (TEC) lineage.

The common thymic epithelial primordium develops
from an outpocketing of the third pharyngeal pouch
endoderm around embryonic day 10 in mice (E10) and is
marked by the expression of Foxn1, a member of the
forkhead-box family of transcription factors [4]. Foxn1 is
functionally required for the differentiation and prolifera-
tion of immature TECs into cortical and medullary subsets
and for subsequent thymocyte infiltration [5, 6]. Homozy-
gous deletions in Foxn1 give rise to a nude phenotype,
which is characterised by congenital athymia and results in
severe immunodeficiency secondary to the absence of T
cells. Although previously thought to contain ectodermal
contributions, many studies have now demonstrated a sole,
endodermal origin of the thymic epithelium that contributes
to both functional components—cortex and medulla (see
review [7]). Other transcriptional networks involved in
thymic organogenesis include the Hox, Pax, Six families,
the eyes absent (Eya) protein tyrosine phosphatases and T-
box transcription factor TBX1 (see reviews [8, 9]).

Whilst these early stages of epithelium differentiation are
thymocyte independent, they do involve essential interac-
tions with mesenchyme that provide for example, bone
morphogenic proteins which play a major role in cell
signalling. The primitive thymic epithelial primordium

recruits pharyngeal mesenchymal cells as it differentiates.
Around E10 to E12, mesenchymal cells derived from the
neural crest and mesoderm of the pharyngeal arches
initially encapsulate the thymic epithelial rudiment before
they migrate inwards to establish an intra-thymic network
of fibroblasts [10, 11], which in turn facilitates later
vascular invagination via the formation of trabeculae. The
mesenchyme provides critical molecules such as fibroblast
growth factor (Fgf)-7 and Fgf-10, which regulate prolifer-
ation of FgfR2IIIb-expressing epithelium [12, 13].

The avascular thymic primordium is seeded at E11 in
mice and week 7–8 gestation in humans by liver-derived
haematopoietic progenitors [14, 15]. Once the thymus is
vascularised later in gestation, the haematopoietic compo-
nent is continually replenished by circulating BM-derived
lymphoid progenitors migrating into the thymus at the
corticomedullary junction. Upon entering, the lymphoid
progenitors closely interact with specialised thymic stromal
cells, which supply growth factors and other signalling
molecules important for the in situ T lineage commitment,
migration, development and selection of haematopoietic
cells. In turn, the committed T cell precursors supply the
signals for the maturation and differentiation of TECs in a
continual interplay known as thymic ‘crosstalk’ [16].

The ageing thymus

The thymus involutes with age, a process that becomes
apparent as early as the first year of life in humans and is
most pronounced in puberty. By 25 years of age, the
thymus has decreased to approximately 50% of its size at
birth and to 10% by mid-life (50 years) [17]. Parallel with
these changes, there is not only a decline in the frequency
of early T lineage progenitors (ETP) but their differentia-
tion capacity is also diminished [18]. Functional thym-
poietic tissue is replaced over time by peri-vascular spaces
and adipose tissue, which disrupt the thymic architecture
[19]. A gradual loss in the production and export of
thymus-derived naïve T cells results. Homeostatic mecha-
nisms subsequently counteract this loss by expanding the
existing peripheral T cell pool (Fig. 1). As a consequence,
an increase in the ratio of memory to naïve T cells and a
decrease in the CD4 to CD8 T cell subset ratio develops,
leading to an increased susceptibility to microbial and viral
infections. Furthermore, the resultant T cell receptor (TcR)
repertoire is more limited and has hence a reduced capacity
to recognise and respond to new antigens when compared
to that of younger individuals. Paralleling the reduced
output of thymus-derived naïve T cells with age, the
remaining naive peripheral TcR repertoire becomes even
further skewed due to progressive contact with environ-
mental pathogens, further limiting the capacity to mount an
effective immune response to new infections. Mortality
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rates are often two to three times higher in older patients
due to infections; somewhat paradoxically, there is an
increased prevalence of auto-immune diseases probably due
to a loss of Treg cells or breakdown in thymus-based
central tolerance, or both [20].

A number of cytokines, chemokines and growth
factors produced by the thymus have been found to alter
with age (Table 1). Some of these have been implicated in
age-induced thymic atrophy, such as the reduction in
growth hormone (GH) and its mediator insulin-like growth
factor-1 (IGF-1; see review [21]) and increases in
oncostatin M, stem cell factor, interleukin (IL)-6 and
leukaemia inhibitory factor [22]. TGFβ has also been
suggested to play a suppressive role with quantitative
genetic variation in thymic involution being associated
with variable levels of TGFβ2 production [23]. Hauri-
Hohl et al. further showed that the specific deletion of
TGFβRII in TECs led to reduced thymic atrophy with age
[24], supporting a contributing role of TGFβ in thymic
involution. These changes in levels of soluble mediators
may be cell intrinsic but they are also likely to be due to
shifts in the status of the relevant stromal cell sub-type
producing them—not all components of the thymic micro-
environment age equally.

It is not clear whether the overall loss of thymic tissue
results from an intrinsic ageing defect in epithelial stem
cells such as poor self-renewal and thus a gradual loss in
cellularity or that an ageing micro-environment can no
longer fully sustain efficient thymopoiesis. Whilst a more
precise understanding of this ageing process is yet to be
elucidated, the success of any long-term T cell reconstitu-
tion strategies will need to address the age and integrity of
the thymic micro-environment.

Cytoreductive cancer treatment regimes affect thymic
stromal cells

High-dose BMT conditioning regimes, such as chemother-
apy and radiation, result in the severe depletion of virtually
all haematopoietic and immune system cells. Both alkylat-
ing chemotherapeutics and irradiation target highly prolif-
erative cells [65–67], including developing and naïve
lymphocytes [68]. Immune recovery, particularly of the
fundamentally important naïve CD4+ T cells, is critically
dependent on the functional status of the two primary
lymphoid organs—the thymus and bone marrow. However,
the overall cellularity of the thymic stromal cell population
and architectural organisation of the micro-environment are
affected by the damaging conditioning regimes (Goldberg,
submitted manuscript). As a consequence, the restoration
of heterogeneous T cell populations and re-establishment of
immune competence is often slow and incomplete. Of
particular importance is a recently discovered major loss in

Table 1 Alterations in the thymus with age

Factor Mouse/rat Human

IL-2 ↓ [25] ↓ [22]
IL-3 ↓ [26–28]
IL-4 ↑ [28, 29]
IL-5 ↑ [30]
IL-6 ↑ [31, 32] ↑ [17, 21, 22, 31]
IL-7 ↓ [33–36] = [22]
IL-9 ↓ [22]
IL-10 ↓ [22]
IL-12 = [37]
IL-13 ↓ [22]
IL-14 ↓ [22]
IL-15 = [38]; ↑ [30] = [22, 38]
IFN-γ ↓ [39] = [22]
G-CSF = [22]
M-CSF ↓ [33] ↑ [21, 22]
SCF ↑ [22]; ↓ [33] ↑ [21, 22]
LIF ↑ [21, 22]
OSM ↑ [21, 22]
KGF ↓ [40, 41]
TSLP ↓ [42]
IGF I ↓ [43]; = [44] ↓ [45]
IGF II = [44] ↓ [46]
TNF-α ↑a [47, 48]
TGF-α ↑ [32]
TGF β ↓ [36]
CXCL12 (SDF1) ↑ [49]
CCL25 (TECK) ↑ [49]; = [50]
CCL21 (SLC) ↑ [49]
P-Selectin = [50]
Thymulin ↓a [51]; ↓ [52] ↓a [53, 54]
Thymopoietin ↓ [55]
Thymosin-α1 ↓ [55, 56]
Ghrelin ↓ [57]
GH ↓ [58, 59] ↓ [45, 58]
NGF ↓ [60, 61]
BDNF ↓ [62]
PAC1-R = [63]
FoxN1 ↓ [36]
E2A ↓ [36]

Table updated from Garcia-Suarez et al. [64]
IL- interleukin, IFN-γ interferon-gamma, G-CSF granulocyte colony-
stimulating factor, M-CSF macrophage colony-stimulating factor, GM-
CSF granulocyte-macrophage colony-stimulating factor, SCF stem
cell factor, LIF leukocytosis-inducing factor, OSM oncostatin M, KGF
keratinocyte growth factor, TSLP thymic stromal lymphopoietin, IGF-
I insulin-like growth factor-I, TNF-α tumor necrosis factor-alpha,
TGF-α transforming growth factor-alpha, TGF-β transforming growth
factor-beta, CXCL- C-X-C-chemokines, CCL- CC-chemokines, GH
growth hormone, NGF nerve growth factor, BDNF brain-derived
neurotrophic factor, PAC1-R G-protein-coupled receptor, specific for
PACAP, E2A transcription regulator of TCRβ rearrangement, Flt3-L
FMS-like tyrosine kinase 3-ligand, ↑ increase, ↓ decrease, = no
change
a Change in serum
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major histocompatibility complex (MHC) class II high
expressing medullary epithelial cells (mTEChi) following
cyclophosphamide treatment (Fletcher, submitted manu-
script). These cells express the auto-immune regulator (Aire)
gene which regulates the expression of peripheral self-
antigens in the thymus (see review [70]). In young mice,
the population of mTEC that express high amounts of Aire
(designated mTEChi) recovers within 10 days after cessation
of treatment, alongside development of CD4+ and CD8+
thymocytes. Depending on the level of contact required with
these specialised mTECs for tolerance induction, developing
auto-reactive thymocytes may escape negative selection,
leading to a pre-disposition to auto-immunity. Immunosup-
pressive treatments such as cyclosporine A have also been
found to reduce thymic Aire expression due to the damaging
effects on mTEChi cells. This may well explain the
associated increase in clinical susceptibility to some auto-
immune diseases following CsA treatment [71]. Thymic
damage can also inhibit the development and function of T
regulatory cells (Tregs), inducing another tier in compro-
mised tolerance [72]. Graft versus host disease (GvHD) in
the allogeneic HSC transplant setting can further diminish
thymic mass [69]. How quickly and completely the atrophied
aged thymus can regenerate after further treatment-related
damage, particularly this specialised mTEC subset, is
currently under investigation and will be important in re-
assessing conditioning protocols.

A number of thymic cytokines, chemokines and growth
factors are altered after chemotherapy and irradiation
(Table 2). Depending on the time point analysed post-
treatment, these will include direct changes due to the
damaging effects on the stromal cells, as well as changes
induced by the lymphopenic state and therefore form part of
the recovery process. For instance, in young mice following
immune depletion, there is an up-regulation in growth
factors and chemokines such as IL-7, stromal derived
factor-1 alpha (SDF1α; CXCL12), thymus-expressed che-
mokine (TECK; CCL25) and secondary lymphoid tissue
chemokine (SLC; CCL21) [49]. How effectively the
stromal micro-environment recovers in the aged setting
after damage, however, will be more clinically relevant.
Indeed, adults, whose thymi have involuted, are signifi-
cantly impaired in their ability to recover immune capacity
following chemotherapy, compared to children [3, 73, 74].
Whilst CD8+ T cell recovery in both young and aged
patients is quite rapid [75], they are predominantly derived
extra-thymically by clonal expansion [76]. Although
delayed, substantial immune recovery is possible up until
middle-age, however, in older patients, the peripheral naïve
T cell receptor repertoire is never fully restored [77].

The recovery of B cells and NK cells is also severely
impaired in aged compared to young patients [77].
Furthermore, much like the TcR repertoire, the B cell

repertoire is severely diminished after chemotherapy and
suffers a prolonged recovery [78]. Quiescent HSCs are
largely numerically spared from many chemotherapeutic
and low-dose radiation regimes [79]; however, their
haematopoietic function appears to be significantly im-
paired [80, 81]. Importantly, this was also shown with
human CD34+ HSCs [82] suggesting that the standard
clinical practice of collecting autologous HSCs from
patients in remission, often after prolonged chemotherapy
treatment, may lead to poorer transplant outcomes. Fur-
thermore, radiation or chemotherapy was shown to cause
enhanced senescence in HSCs that was coupled with an up-
regulation in p19Arf and p16ink4A [81, 83], mimicking some
of the effects seen with age.

The BM niche and development of T cell precursors

Maintaining the integrity of the BM niche is critical for the
survival and continued production of HSCs throughout life.
This minimises undesired differentiation cues and apoptotic
stimuli and promotes the homeostatic differentiation into
circulating blood and immune cells that include lympho-
cytes and myeloid cells. In this regard, the BM has direct
relevance to the thymus in the quality and quantity of T cell
precursors available for thymic uptake and T cell develop-
ment. Whilst the mechanisms involved in HSC survival,
renewal, differentiation and migration have been well
studied, the complex BM stromal environments adjacent
to the endosteum or within the central more vascularised
regions are not precisely understood. A critical study by
Nilsson et al. found that transplanted carboxyfluorescein
succinimidyl ester labelled LT-HSCs lodge and engraft in
the endosteal region, whilst more committed HSCs lodge
in the vascular niche, indicating a quiescent stem cell niche
at the endosteal surface [105, 106]. However, using the
signalling lymphocyte attractant molecule markers for
identification of HSCs in steady-state BM, Kiel et al. found
that whilst there was localisation of LT-HSCs in the
endosteum, there was also significant association with
sinusoidal (vascular) endothelium in the BM [107]. Taken
together, these studies suggest that there are at least two
stem cell niches in the BM—the endosteal and sinusoidal
niches. However, these are not necessarily distinct; secreted
factors may diffuse into adjacent niches (see review [108])
and so the HSC ‘niche’ could be a continuum between
these regions. Within these niches, two major types of
stromal cells—bone forming osteoblasts and CXCL12
abundant reticular (CAR) cells, have been identified as
playing critical roles in maintaining HSC quiescence, self-
renewal, adhesion and differentiation. Osteoblastic cells are
located at the endosteal surface and are an essential
regulatory component of the HSC niche [109–111]. They
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produce proteins that not only can both inhibit and
stimulate HSC proliferation and therefore exquisitely
regulate their fate but also can effect HSC homing, trans-
marrow migration and engraftment. Osteopontin, produced

by osteoblasts, acts to negatively regulate HSC activity by
maintaining stem cell quiescence [112, 113]. Alterations in
its production can lead to an imbalance in self-renewal and
inadequately regulated activation of stem cells [109–111].

Table 2 Alterations in the thymus (or change in serum) due to BMT conditioning regimes

Factor Mouse/rat Human

Changes post-irradiation
IL-1 ↑ t D3 [84] ↑1–4 weeksa [85]
IL-2 ↓ [84, 86]
IL-3 ↓D3, 5, = D7 [84]
IL-4 = [84]; ↓a [87]
IL-6 ↑ t [63, 84] ↑week 1–7a [88]

↑D15–60, = D90, ↓D150, ↑D210a [89]
IL-7 ↑ t [49]; ↓ [90]

↓D3, 5,↑D7 [84]
IL-8 ↑ t [91]
IL-10 ↑ t D5, ↓D7 [63, 84] = D15–150, ↑D210a [89]
IFN-γ ↓t D3 [84]; ↑a [87]
G-CSF = week 1–5, ↑week 6–7a [88]
LIF ↓c [92]
KGF ↓ [41]
IGF I ↓a [93]
TNF-α ↓D5, ↑D7 [84] ↑d45, = D120–180,↑D210a [89]
TGF β = [84]; ↑ [94] ↓week 3–7a [88]
CxCL12 (SDF1) ↑ t [49]
CCL25 (TECK) = [49]
CCL21 (SLC) ↑ t [49]
GH ↓a [93]
PAC1-R ↓ [63]
Flt3L ↑ [95] ↑ [96]
Changes post-chemotherapy
IL-1 ↓(6 month–1 year)a [97]; ↓a [98]; =a [99]
IL-2 ↑ (3 month–1 year)a [97]; ↑a [98, 100]; =a [99]
IL-6 ↑b; ↑a [101] ↓(3 month–1 year)a [97]; ↓1 weeka [102];

↑a [98–100]
IL-7 =D2b,↑D7,14b Slightly ↑1–4 monthsc [103]
IL-10 ↑a [100]
IFN-γ ↑a [98]
GM-CSF ↑a [98]
SCF ↓ t D2b, = D14b

KGF ↓ t D2b, = D14b

IGF I ↓a 6 weeks [104]
VEGF
TNF-α =(3 month–1 year)a [97]; ↓a [98]; ↑a [99]
CxCL12 (SDF1) ↑b

CCL25 (TECK) ↑b

CCL21 (SLC) ↑ t D2b, ↓ D14b

CCL19 (ELC) ↓t D7b, = D14b

IL- interleukin, IFN-γ interferon-gamma, G-CSF granulocyte colony-stimulating factor, GM-CSF granulocyte-macrophage colony-stimulating
factor, SCF stem cell factor, KGF keratinocyte growth factor, IGF-I insulin-like growth factor-I, TNF-α tumor necrosis factor-alpha, TGF-α
transforming growth factor-alpha, TGF-β transforming growth factor-beta, CxCL- C-X-C-chemokines, CCL- CC-chemokines, GH growth
hormone, PAC1-R G-protein-coupled receptor, specific for PACAP, Flt3L FMS-like tyrosine kinase 3-ligand, ↑ increase, ↓ decrease, = no change,
t transient change, D day
a Change in serum
bGoldberg et al. submitted manuscript
c Change in PBMCs
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Bone formation and re-modelling can also play a role in
regulating the endosteal niche. The dynamic equilibrium
between bone-forming osteoblasts and bone resorbing
osteoclasts can influence the regulation of haematopoietic
progenitors near the endosteum (see review [108]). The
reticular (CAR) stromal cells and endothelial cells produce
growth factors for differentiation and proliferation such as
IL-7 and chemokines such as CXCL12—important for
stem cell homing (see review [114]). These detailed
studies regarding the micro-environmental interactions
with developing HSCs reveal a complex scenario that is
still evolving.

Declining bone marrow function with age

As for the thymus, age-related changes in the BM can
directly impact on HSC maintenance, proliferation and
differentiation. Donor HSC trans-marrow migration and
attachment to the stem cell niche following transplant is
also reduced. Not surprisingly, a loss in osteoblasts can
result in a direct reduction in HSC production (see review
[115]). Increased infiltration of adipocytes associated with
age can also lead to a dysregulated cytokine and growth
factor milieu, impacting upon HSC production, survival
and differentiation. A number of age-related alterations
have been proposed, such as reduced adhesion of HSC and
progenitor cells to the stroma [116], attenuation of the
homing and engraftment potential of aged HSCs [117],
decreased responsiveness to IL-7 [118] and skewing in
lineage differentiation away from lymphoid cells [119].
However, the full impact of age-induced alterations on HSC
number and function [120] and overall immunosenescence
remains to be elucidated. Nevertheless, BM ageing appears
to occur at both an intrinsic level in HSCs as well as
extrinsic alterations in the HSC niche (see review [115,
121]). Hence, ideally, regeneration of both the BM and
thymus environments should be considered in long-term
immune reconstitution strategies.

Restoration of bone marrow niche and function

Regeneration of the BM niche would obviously have
particular relevance following the damaging cytoablative
conditioning regimes of HSC transplantation. Treatment
with human parathyroid hormone (PTH) stimulates osteo-
blast cells leading to enlargement of the HSC pool,
protection from chemotherapy and enhanced engraftment
following BMT. Collectively, this offers significant thera-
peutic potential [115]. Another strategy has been to co-
transplant donor BM cells of non-haematopoietic origin,
including stromal cells and osteoblast progenitors, together
with the HSC into non-ablated hosts. This has led to
improved HSC engraftment, possibly by increasing the

number of competent osteoblasts lining the endosteum
[122, 123]. Another BM stromal cell population gaining
importance in regenerative medicine is the mesenchymal
stem cell (MSC). These cells have the important property of
being naturally immunosuppressive and have been shown
to successfully diminish graft versus host disease in cancer
patients receiving an allogeneic HSC transplant [124]. They
also prolong the acceptance of allografts [125] and,
importantly, may facilitate the induction of mixed donor–
host HSC chimerism (see review [126]). However, whether
sustained engraftment potential can be achieved in the
clinical setting, particularly in the aged or damaged BM
niche, is a current point of contention.

Strategies for thymic regeneration post-HSCT

Can we apply our knowledge of the mechanisms leading to
thymic involution, to reverse the aging process and to
induce thymic regeneration? Several theories have been
proposed for thymic atrophy. These include reduced
production of important growth factors such as IL-7 and
GH, increase in atrophic factors such as the TGFβ family
of cytokines and reduced levels of chemokines or adhesion
molecules that attract and facilitate entry of precursors into
the thymus. Changes in the neuroendocrine-immune axis
have evolved as a likely trigger to promote thymopoiesis,
but it will most likely be a multi-faceted process involving
both BM-derived haematopoietic progenitors and the
thymic stromal cell niches that convert them to T cells.

Targeting endocrine influences

Sex steroid ablation therapy

It is well established that immune cells are inhibited by
adrenal and gonadal steroids and an increased rate of
thymic atrophy has been associated with the onset of sexual
maturation (see review [127]). Hence, endocrine-based
strategies were developed in animal models in an attempt
to regenerate the ageing, atrophied thymus. The results
were dramatic. Sex steroid ablation (SSA) resulted in a
rapid (within 2 weeks) reversal of this degenerative state.
Castrate levels of sex steroids can be achieved via surgical
removal of the gonads or bio-chemically by using a
luteinising hormone-releasing hormone analogue (LHRH-
A) which is reversible and, as such, more clinically
applicable. LHRH-A has been widely used in the clinic to
treat endocrine-related disorders such as endometriosis
[128], prostate cancer [129], precocious puberty [130] and
breast cancer [131]. Pre-treatment with LHRH-A has also
been used to protect against high-dose chemotherapy-
induced sterility in females undergoing HSCT [132].
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Both surgical and chemical SSA effect a delayed onset
of thymic atrophy in young mice—and its reversal in the
aged—in both male and female rodents, albeit to a lesser
extent in females [133–139]. Morphologically, SSA reju-
venated the atrophic thymic micro-environment of aged
mice, including reappearance of well-defined corticomedul-
lary boundaries and decreased peri-vascular spaces, to
similar levels observed in the thymus of young mice [140,
141]. Functionally, SSA restored defective thymopoiesis
and enhanced export of naïve T cells, leading to an
expanded TcR Vβ repertoire and augmented function of
the peripheral T cell pool [141, 142] (Fig. 1).

In pre-clinical models of lymphopenia induced by anti-
neoplastic therapy such as cyclophosphamide, SSA restored
T cell-mediated immunity [142, 143]. Within the thymus,
SSA increased the recovery of all thymocyte and TEC
populations ([143]; Goldberg, submitted manuscript).
Importantly, SSA enhanced restoration of the Aire express-
ing mTEChi population, compared to sham-treated control
animals (Goldberg, submitted manuscript), which would
facilitate the appropriate negative selection of re-emerging
thymocyte populations [144, 145]. Furthermore, in studies
of HSCT, SSA led to enhanced cellular recovery of both the
thymus and BM following immunoablative conditioning in
animal models of autologous and allogeneic BMT [146,
147]. In addition, SSA therapy increased both engraftment
and function of donor T cells post-allogeneic transplant and
did not exacerbate GVHD [146].

In line with the murine data, we found SSA induced
increases in naïve T cell output; however, the recovery in
humans was much slower due to the obvious physiological
differences between mouse and human and the impact of
aging on the thymus. In a cohort of elderly patients
(>60 years) receiving routine LHRH-A therapy for the
treatment of prostate cancer, thymic regeneration was
apparent with increased numbers of TcR excision circles
(TREC) in T cells observed by 4 months after onset of the
drug. This indicates some efficacy of SSA to improve
human thymic function [141]. It was also associated with
an increase in T cell infiltration of the prostate gland,
adding another dimension to the positive impact of SSA on
prostate cancer patients. These data collectively contributed
to the development of a protocol for a pilot phase II clinical
trial for LHRH-A therapy in patients with haematologic
malignancies (acute leukemia, chronic leukemia, lympho-
ma, multiple myeloma) or non-malignancies (myelodyspla-
sia, aplastic anemia) undergoing BMT/HSCT [148]. A total
of 80 male and female patients (40 LHRH-A treated, 40
control, non-randomised) ranging in age from 17–69 years
were given LHRH-A over 4 months starting treatment
3 weeks prior to transplant such that sex steroids would be
at castrate levels at the time of transplant. Despite the fact
that being an agonistic LHRH variant, which causes a

profound initial surge in sex steroid production over the
first 7–10 days, within the first month of treatment LHRH-
A treated patients showed increased neutrophil levels and
decreased time taken to engraft. Most significantly, LHRH-
A treated patients demonstrated enhanced recovery of naïve
CD4+ T cells from 5–6 months, confirmed by increased
TRECs and increased TcR diversity [148]. These patients
also showed a significant increase in their T cell response to
direct-TcR stimulation.

Despite its efficacy in restoring thymic function, the
exact mechanisms underpinning sex-steroid removal remain
ill defined. In mice, SSA-mediated thymic regeneration is
abolished via re-administration of testosterone [134]. The
target cells may include both the thymocyte and thymic
stromal cell populations since both express the androgen
receptor [146, 149]. Androgen administration induced
thymocyte apoptosis in thymic organ culture [150], and
conversely, removal of androgen resulted in increased
proliferation of thymocytes both in vivo and following in
vitro stimulation, indicating a direct influence on thymocyte
development [143, 151, 152]. It is likely, however, that
androgen removal also indirectly affects thymocyte devel-
opment via modulation of the thymic stromal cell niche.
Indeed, chimeric studies using AR-deficient mice have
demonstrated that thymic atrophy only occurs when
functional ARs are expressed by non-haematopoietic
stromal cells, but not when only on thymocytes [153],
indicating a fundamental role for the thymic stromal
compartment in SSA-mediated thymic regeneration.

ARs are expressed on both TEC and non-TEC popula-
tions, including cortical epithelial cells, mTEC and subsets
therein defined by MHCII high or low expression, as well
as MTS-15+ fibroblasts ([146] and Search, unpublished
observations). Whilst still speculative, it is possible that
removal of the suppressive influence of sex steroids
initiates functional changes within thymic stromal popula-
tions, such as increasing the production of thymopoiesis
promoting chemokines and growth factors. These in turn
can enhance the uptake and/or proliferation of T cell
progenitors, apparent early following SSA [143, 151]. The
subsequent expansion of mature thymocyte subsets may
then feed back to the thymic stroma, particularly the
neighbouring mTEC, increasing their proliferation and cell
number via mechanisms of thymic cross talk [16]. On the
other hand, LHRH itself can have a direct effect on cell
types that express its receptor, such as thymocytes and
splenocytes, inducing an upregulation of IL-2 receptor
expression and potentially improving their proliferative
capacity [154]. To enhance this potential and diminish the
initial LHRH agonist-induced flare in sex steroid produc-
tion, combined treatment with androgen or estrogen
receptor blockers could be used in the first week of
LHRH-A therapy [127]. Alternatively, LHRH antagonists
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could be administered to prevent the damaging initial flare
in sex steroids, but they would not embrace the potential
direct stimulatory capacity of LHRH on the thymus.

Initial molecular analysis of whole thymic stromal cells
from SSA-treated mice revealed little change in the
production of thymic growth factors or cytokines pertinent
to thymopoiesis [141, 147]. More specific and sensitive
analysis of defined stromal cell sub-populations, however,
has indicated that removal of sex steroids may initiate
molecular changes as early as 48 h post-SSA. This was
reflected in the differential expression patterns of various
transcription factors, cytokines, chemokines and growth
factors involved in thymopoietic regulation (Chidgey,
manuscript in preparation). In addition to influences on
the thymic stroma, SSA also impacts upon BM function, as
evidenced by increased circulating B cells and early pro-B
cells in the BM [155]. Increased haematopoietic engraft-
ment, B cell differentiation and T cell progenitor number
were found following combined SSA and HSCT in mice
[146]. Possible side effects of SSA treatment may include
an increase in osteoporosis, however, this would not be an
issue with short-term SSA therapy. SSA may thus contrib-
ute to thymic regeneration at multiple levels (Fig. 1). To
this end, investigations are ongoing to assess the impact of
sex steroid removal on the haematopoietic compartment of
the BM and, importantly, the supporting stromal cell
niches.

Growth hormone/IGF1

GH is predominantly produced by the anterior pituitary
gland, but of relevance in the context of thymic function
and possibly regeneration, GH is also produced by
thymocytes and thymic epithelial cells [21]. Its receptor
(GHR) is present on both TEC and thymocytes, suggesting
that GH can function in an autocrine and paracrine fashion
[156]. The decreased production with age of GH and its
mediator, IGF1, has implicated GH as a contributory factor
to thymic involution (reviewed in [21]). Prior studies have
shown administration of GH restores thymic function in
aged rodents [157] and improves immune reconstitution
after allogeneic, T cell depleted, BMT [59]. However, the
level and duration of thymic recovery and the effective
translation from animal models to the clinic has been
unclear. Napolitano et al. recently performed clinical trials
on HIV-1-positive patients that were simultaneously under-
going anti-retroviral treatment and carrying a low viral load
[158]. A 2-year cross-over study was performed on 22 HIV-
1-positive male patients (age ranging 40–76 years in GH
arm and 37–65 years in control arm) in a randomised,
prospective, open-labelled study. GH-treated patients
showed significant increases above baseline levels in
proportion and absolute number of circulating naïve CD4+

T cells and in TRECs of unfractionated PBMCs at 6 months.
Whilst this study provided encouraging results towards the
potential for GH to replenish a polyclonal population of CD4+
Tcells, there were major safety issues. There was the necessity
for daily injections of GH and there weremultiple adverse side
effects such as arthralagias, abnormal glucose metabolism,
edema and carpal tunnel syndrome, causing nine patients to
discontinue the treatment. This is likely to hinder broad
acceptance of GH as a therapy; however, the outcome from
this study warrants further investigations into reducing the
frequency and dose of administration. GH may also find
important clinical utility as an adjuvant for other thymic
regrowth strategies.

Administration of growth factors

Interleukin-7

IL-7 is a pleiotropic cytokine produced by stromal cells in
the BM, thymus, gut and by keratinocytes. It is a non-
redundant cytokine important for T and B cell development,
promoting cell survival, differentiation and proliferation.
Signalling is regulated through the IL7Rα and in the
context of T cells, is expressed in a stage specific manner
on developing thymocytes and on resting peripheral T cells
and is down-regulated once cells are activated—possibly
due to IL-2 signalling [159]. IL7Rα expression is highest
on immature triple negative thymocytes and mature single
positive thymocytes. The post-thymic expression is highest
on recent thymic emigrants (RTE), naïve and memory cells

Fig. 1 Impacts of age and regeneration by sex steroid ablation on
lymphopoiesis and peripheral lymphocytes. a Lymphopoiesis in the
BM and thymus progresses through developmental steps that result in
the formation of mature B and T cells for export. This leads to a
combination of naïve and memory cells in the periphery ready to ward
off infection. b With age, there is an increase in HSCs—particularly in
CD34− Flt3− LT-HSC and a corresponding decrease in CD34+ Flt3+

MPP. In the BM, this leads to a reduction in the number and function
of LCP and subsequent decline in B-lymphopoiesis. In the thymus,
there is a decline in the differentiation capacity of ETP and
architectural disruption leading to a reduced output of naïve T cells,
intrinsically altering the function of the thymus with age. These
changes in BM and thymic lymphopoiesis lead to a reduction in the
peripheral B and T cell receptor repertoires, thereby reducing the
ability to fight new infections and impairing immune recovery
following immunodepletion. The decrease in export of naïve lympho-
cytes from the BM and thymus results in a clonal expansion of pre-
existing memory cells. Many of these processes in lymphoid
degeneration with age have been associated with the negative
regulation of sex steroids on the micro-environment; however, they
have also been shown to directly impact on the earliest lymphoid
progenitors in the BM. c Removal of sex steroids, by either chemical
or surgical means, has been shown to regenerate thymic and BM
function to levels observed in the young. LT-HSC Long-term
repopulation HSCs, MPP multi-potent progenitors, LCP lymphoid
committed progenitors, ETP early T cell progenitors

b
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and least on effector cells and late memory/senescent
populations. Pre-clinical studies in rodents and primates
have shown that IL-7 administration following BMT [160,
161] can enhance peripheral T cell reconstitution without
aggravating GVHD [162], although some studies have
demonstrated an IL7 induced bone loss [163]. Expansion of
naïve CD4+ and CD8+ T cells, increased TREC levels per
T cell and improved functional response to influenza

vaccine, collectively suggest both thymic and peripheral
effects [164].

The first clinical trial using human recombinant IL-7
(rhIL-7; Cytheris) was performed on four sequential cohorts
of three patients (11 metastatic melanoma and one
metastatic sarcoma; age range 20–59 years), each receiving
graded doses of rhIL7 delivered subcutaneously every
3 days for eight doses [165]. The administration of IL7
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was well tolerated. Increases in both CD4 and CD8
lymphocytes were evident in a dose dependent manner,
with a trend towards increased CD45RA+ naïve cells. No
increases in Foxp3 expressing Tregs were evident and there
was no impact on circulating B cells or NK cells, although
some, but not all, patients showed an increase in B
progenitor cells in a BM biopsy.

Recently, in a phase 1 dose-escalation clinical trial
administering rhIL-7, 16 patients with non-haematological,
non-lymphoid cancer refractory to standard therapy (age
range 20–71 years) [166] were subcutaneously administered
every other day a total of eight doses. rhIL7 did not appear
to induce thymic regrowth, although this is not surprising
given the short duration of the treatment. However, the
rhIL-7 preferentially expanded peripheral RTEs, naïve T
cells and central memory CD4+ T cells and unlike rhIL2
therapy, the T regulatory cells were not expanded dispro-
portionately. The increased TcR receptor diversity appears
to have derived from the expansion of pre-existing RTEs,
potentially restoring balance to an otherwise skewed ageing
repertoire. Only two patients withdrew from the trial due to
dose limiting toxicity, namely elevations of transaminases
and hypertension and chest pain.

This important study suggests that rhIL-7 has the
potential to enhance T cell reconstitution following BMT.
Whether this treatment can induce long-term effects by
enhancing thymopoiesis has yet to be clarified, however, as
for GH, it could be used as an important adjuvant to other
more robust therapies that target TEC regeneration.

Keratinocyte growth factor

Keratinocyte growth factor (KGF; also known as Fgf-7), is
a member of the fibroblast growth factor family and is a
potent mitogen for many epithelial cell types, regulating
their growth, differentiation and morphogenesis [167–175].
In the thymus, mesenchyme-dependent production of Fgf-7
and Fgf-10 regulate the development and proliferation of
thymic epithelium expressing a specific isoform of the Fgf
receptor 2, FgfR2IIIb. Mature SP thymocytes may also
provide a source of KGF [12, 40, 176]. Removal of the
thymic mesenchyme at day 12 of embryogenesis (E12), as
well as a deficiency of FgfR2IIIb or its ligand Fgf-10,
significantly impaired development of the thymic epithelial
compartment, resulting in a functional, but severely
hypoplastic thymus [12, 13]. In contrast, the function of
KGF appears redundant in the steady-state thymus, which
is of normal size in KGF deficient mice. However, KGF
appears to play a crucial role in aiding thymic recovery in
situations of thymic damage [177].

Systemic administration of KGF has been shown to
significantly increase both thymic weight and function in
young mice and reverse age-associated thymic atrophy of

15-month-old mice for up to 8 weeks following a single
KGF time course (5 mg/kg per day administered subcutane-
ously over 3 days). Repeated monthly injections were able to
sustain thymus growth for 12 weeks [178]. In pre-clinical
studies, KGF significantly enhanced thymic recovery
and function following radiation—and chemotherapy—
conditioning for allogeneic BMT in mice [41] and autolo-
gous HSCT in rhesus macaques [179]. It increased the
peripheral reconstitution of naïve T cells and subsequent
immune response to T cell-dependent neo-antigens. TECs
are directly damaged by irradiation therapy [90] and KGF
may provide their cytoprotection, similar to that reported for
epithelial tissue of the lung [175, 180], gastrointenstinal tract
[168] and mouth [181, 182]. KGF treatment has also shown
potential to reduce the severity of GVHD induced in mice
receiving allogeneic BMT [183, 184] and following adoptive
allogeneic T cell transfer [185] and may do so by reducing
the production of inflammatory cytokines. Whilst basic
thymic structure and normal thymopoiesis were seemingly
restored in models of chronic GVHD, KGF treatment failed
to preserve the expression of Aire in mTEC [185], raising
the potential for escape of auto-reactive T cells.

Recently, the combined treatment of KGF and LHRH-A
was demonstrated to enhance thymic recovery and peripheral
reconstitution of naïve T cells in an additive fashion following
total body irradiation (TBI) and allogeneic BMT in mice
[186]. This included recovery of the thymic stromal
compartment and importantly, restoration of the mTEChi

Aire expressing subset, above that of either LHRH-A or
KGF treatment alone. Interestingly, this study demonstrated
an equivalent loss of TEC number post-transplant, regardless
of KGF treatment, indicating that accelerated TEC recovery,
rather than a generalised cytoprotection of the epithelial
compartment, may be responsible for enhanced thymopoietic
recovery, at least in this setting of TBI for allogeneic BMT.

Clinically, combination therapy of KGF and LHRH-A
may reduce the dosage of each yet still enhance the
restoration of T cell-mediated immunity in situations of
severe thymic atrophy or dysfunction following intensive
conditioning regimes. Recombinant human KGF (palifer-
min) treatment has shown clinical effectiveness in reducing
the duration and severity of chemotherapy-induced muco-
sitis in patients with haematological malignancies [181].
However, its application in other malignant disorders, in
particular those of epithelial origin, needs to be addressed
with some caution, due to potential protection or prolifer-
ation of FgfR2-expressing tumorigenic cells [187].

Flt3 ligand

Fms-like tyrosine kinase 3 (Flt3; also termed Fetal liver
kinase 2) is a tyrosine kinase receptor with homology to c-
kit, c-fms and platelet-derived growth factor receptors and
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plays a well-reported role in the regulation of haematopoi-
esis and to a lesser extent thymopoiesis [188]. In the BM,
Flt3 is not expressed in self-renewing HSCs but is enriched
on haematopoietic progenitor cells, including lymphoid
progenitors. It regulates homeostasis of multi-potent and
early lineage committed progenitors via interaction with
Flt3 ligand (Flt3L) expressed by the local BM niche
environment [189–194]. Examination of the BM of Flt3-
deficient mice revealed reduced numbers of haematopoietic
progenitor cells and an impaired ability to competitively
reconstitute lethally irradiated recipients, most significantly
in the generation of T and myeloid lineages [195, 196].
Conversely, pre-treatment of mice with progenipoietin (a
dual receptor agonist of Flt3 and granulocyte colony-
stimulating factor; G-CSF) prolonged survival of lethally
irradiated mice via radioprotection of the haematopoietic
compartment [197] and is superior to G-CSF treatment
alone, in the prevention of GVHD following allogeneic
HSCT [198].

Murine T cell reconstitution studies have indicated that
treatment with Flt3L can enhance recovery of the peripheral
T cell pool via both thymic-dependent and -independent
means [95, 199, 200]. In such situations, it may indirectly
influence homeostatic expansion and function of the
peripheral T cell pool, by mediating the expansion and
availability of dendritic cell (DC) populations [199]. In
addition, Flt3L treatment increased the number of naïve,
donor T cells following irradiation and HSCT, indicating
direct modulation of thymic function [199]. Furthermore,
the expression of Flt3 receptor on a sub-population of T cell
progenitors in the BM—the common lymphoid progenitor,
as well as on the earliest intra-thymic progenitors [201,
202], suggests its action may also occur at the very early
stages of haematopoietic and T lymphopoietic recovery.
Indeed, enhanced thymopoiesis and peripheral T cell
generation following Flt3L treatment and BMT was
preceded by an increase in BM lymphoid progenitor cells
[200, 203]. The thymic autonomous nature of Flt3L was
recently demonstrated by its expression on thymic stromal
cells, particularly the mesenchymal cells, early in thymo-
poietic reconstitution following lethal irradiation and HSCT
[95]. Interestingly, whilst Flt3L strongly enhanced periph-
eral T cell recovery following BMT, co-administration of
Flt3L and IL-7 showed no additive effects [200].

In humans, Flt3 expression appears in both the BM and
cord blood HSC populations capable of long-term recon-
stitution, extending to progenitors of the lymphoid and
granulocyte/macrophage lineages [204]. Flt3 signalling
prevents spontaneous apoptotic cell death, suggesting an
important role in cell survival [205]. Whilst Flt3L appears
to effect T cell recovery at multiple levels, the different
distribution of Flt3 in mouse and human haematopoiesis
warrants further investigation in disease specific models.

Adult stem cell therapy

The appeal of stem cells for therapeutic application lies in
their unique ability to replenish themselves as well as their
capacity to differentiate into multiple cell lineages. These
characteristic properties are fundamental to not only tissue
organogenesis during development but also in tissue
replenishment, maintenance and repair in the adult. The
need for specialised tissues and organs progressively
restricts the development of stem cells to being either
multi-potent or uni-potent, such that post-natally, specialised
niches in various tissues serve as reservoirs for stem cells.
The importance of such niches is their protective micro-
environment for stem cell survival, regulating asymmetric
versus symmetric division and protection of the stem cell
genetic profile [206, 207]. Constant dialogue between the
stem cells, niche cells—including mesenchyme and extra-
cellular matrix and cues from the surrounding tissue—are
crucial to the maintenance of cellular homeostasis, balanc-
ing quiescence and activity (see review [115]).

There is now a growing list of tissue-specific markers for
adult stem cells and their specialised niche micro-environ-
ments are increasingly being characterised (see review
[114]). Being able to specifically target these for focal
tissue regeneration would be ideal clinically, minimising the
risk of systemic, invariably detrimental, side effects. In
turn, this requires a detailed knowledge of the complex
signalling pathways directing stem cell differentiation and
these are now slowly being unravelled. An important
consideration for such therapies to be effective is the age
of the patient. Recent work has demonstrated age-related
alterations in stem cell niches that could contribute to
deficient stem cell number and/or activity including cell
fate plasticity, expansion capacity, telomere length and
lifespan (for example [121, 208–211]), leading to a decline
in regenerative potential—a hallmark of ageing.

Thymic epithelial stem or progenitor cells: TEC
maintenance and damage recovery

The epithelial and structural complexity of the thymus and
the importance of its integrity for generating normal T cells
represents a particular challenge for regenerative medicine.
Do all the epithelial subsets derive from a single stem cell
or are there region-specific progenitors? The existence of
resident bi-potent thymic epithelial stem cells has been
demonstrated in the mouse embryo [212–214] and indi-
rectly in the young adult through reversion of a conditional
Foxn1 mutation in TECs [215], with single cells able to
generate both cortical and medullary TEC phenotypes.

Thymic epithelial stem cell studies have mostly been
functionally confirmed in rodents by grafting putative
progenitor epithelial cells isolated from the embryonic
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thymus, re-aggregated ex vivo, then grafted under the
kidney capsule of athymic mice. By 4 weeks, clear
formation of functional vascularised thymic tissue can be
achieved with the necessary micro-environments to attract
haematopoietic precursors, sustain full T cell differentiation
and present self-peptides for negative selection. MTS24, an
antibody developed from thymic stromal cells [216]
identifies the antigen Plet-1 [217] and binds to putative
thymic epithelial progenitor cells in the embryo. MTS24 is
expressed in the emerging E10.5 mouse thymic anlage in
the endodermal layer of the third pharyngeal pouch and is
gradually restricted in expression as the thymus develops
and expands such that by E15.5 it is expressed on less than
50% of TECs [212, 213]. Grafting of only 5,000 E15.5
MTS24 expressing cells under the kidney capsule forms a
complete thymus by 4 weeks. However, equivalent grafting
experiments using the post-natal thymus as a source have
been unsuccessful, prompting the question of whether the
MTS24 identifies thymic progenitor capacity at the com-
pletion of development. Furthermore, if larger quantities of
embryonic cells are re-aggregated (such as 100,000 cells),
both MTS24+ and MTS24− populations can form a thymus
[218], questioning the uniqueness of Plet1 in identifying
true progenitor TECs.

In the adult, Plet1 (identified by MTS24 expression) is
preferentially expressed on a subset of mTECs, the majority
of which represent a more quiescent population expressing
low levels of MHCII (Fletcher, submitted manuscript). In
addition, the expression of molecules characteristic of
pluripotential cells (Oct4, Nanog, Sox2, Ehox, DPPa3)
and developmental regulators of TEC differentiation
(FoxN1, Pax1, Eya1, Hoxa3, Pax9, lymphotoxin β recep-
tor) have been found to be expressed in sub-populations of
mTECs [219]. Thus, whilst the precise identity of a single
thymic epithelial stem cell (TESC) type is as yet unresolved
in the adult, there is increasing evidence for its functional
presence, given the capacity of the young adult thymus to
rebound following severe injury, although theoretically this
could also occur through self-renewal of pre-existing
mature TEC subsets. Whether TESC reduce in number or
function with age and contribute to age-induced involution
also needs resolving if they are to be a target for
regenerative strategies and thymus-based tolerance induc-
tion. Unfortunately, the human equivalent of TESCs is yet
to be identified.

Developing a de novo thymus

Understanding the precise phenotype of TESCs would
provide a means of potentially developing a thymus de
novo, both in vivo and also in vitro. Seeding three-
dimensional (3D) bio-matrices with patient or donor TESC,
in combination as appropriate with mesenchyme, donor

haematopoietic precursors (T cell and DC precursors) and
requisite growth factors to encourage growth and vascular-
isation, may create a thymus. The ensuing T cells would not
only restore immune competence, but they would also be
donor (and host)-tolerant (Fig. 2). Such an artificial thymus
could then be implanted into the host, providing a means of
both overcoming graft rejection and enhancing T cell
reconstitution. Although a number of issues remain with
regard to safety and development of non-pathological T
cells, human skin epidermal keratinocytes in combination
with HSC have been reported to create human T cells [220]
ex vivo. Murine thymic stromal 3D ‘organoids’ were also
able to support human T cell development from CD34+
HSCs [221], albeit at very low efficiency. An interesting
alternative to the provision of growth factors to encourage
angiogenesis and overcome the problems of ischemic
growth limitations is the use of a novel in vivo tissue
engineering construct in which a macro-vascular arteriove-
nous shunt loop is enclosed in a poly-carbonate chamber in
which cell populations, growth factors, matrices and other
essential factors can be seeded [222, 223]. Whilst these
strategies are unlikely to be translated into the clinic for
some time, they do serve as a proof of concept. Working in
parallel with the host thymus, enhanced T cell reconstitu-
tion and tolerance to both donor and host antigens may be
achieved.

Future applications: embryonic stem cell therapy

There is enormous potential in regenerative therapies from
ES cell approaches; however, there are controversial ethical
and safety issues surrounding their use. Because ES cells
can form teratomas when implanted, some in vitro lineage
commitment will initially be required. Tolerance issues will
therefore need to be addressed to ensure the foreign
transplant will not be rejected (see review [224]). Alterna-
tive sources of pluripotential cells have recently emerged.
Epithelial stem cells derived from amnion [225], if stored at
birth, can be a source of self stem cells without the
associated ethical controversy. These human amnion epi-
thelial cells have been demonstrated to retain pluripotency
that is being able to form cell derivatives from all three
germ layers (endoderm, ectoderm, mesoderm); they there-
fore have enormous clinical potential. Furthermore, the
developing technology around induced pluripotential stem
cells (iPS), which involves re-programming of somatic cells
to become ESC-like cells by transducing with ESC-
associated factors—including Sox2, Oct3/4, Nanog and
Klf-4 [226], offers potential for autologous cell-based
regenerative therapies, therefore avoiding the obvious
issues of immune rejection. Not withstanding their potential
importance as diagnostic or drug testing tools, given the
enormity of genetic and epigenetic modification involved in

468 Semin Immunopathol (2008) 30:457–477



iPS, there are still various safety concerns for their clinical
utility.

The tissue specific morphogenetic cues required to
trigger the activation of specific differentiation signalling
pathways is quite complex, requiring directed differentia-
tion of ESCs initially into definitive endoderm and then
thymic epithelium. It is likely to be some time before this
can be achieved for clinical application.

Can stem cell therapies be practically applied to the clinic?

Given that most diseases are multi-factorial in aetiology, it
would be predicted that their therapeutic management
would involve combination treatments. Whilst major
advances are being made in the derivation of tissue-specific
cell types from ESCs and the identification of other
allogeneic stem cells, their clinical utility will be hampered

by the confrontation of such cells with a normally hostile
host immune system, as for any transplanted non-self cell,
tissue or organ. This is certainly the case with many
degenerative diseases. They will require tissue-specific
stem cells or their immediate derivatives, retardation of
the immune response to prevent rejection and subsequently
rebuilding of a donor tolerant immune system. In the case
of auto-immune disease, it is also necessary to silence the
pathological arm of the immune system. To overcome the
rejection problem and for long-term low morbidity graft
acceptance, it would be ideal to utilise the body’s normal
thymus-based mechanisms for inducing self-tolerance,
rather than rely on long-term immunosuppressive regimes.
Strategies for developing appropriate Tregs are now
emerging but it is unclear how long they can last in vivo.
As discussed in this review, the pre-clinical and clinical
studies on the restoration of thymic function in adults, such
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as using reversible, hormonally (LHRH)-based sex steroid
reduction, have thus provided fundamentally new thera-
peutic platforms for addressing T cell-based deficiencies
and disorders, paramount amongst which are enhancement
of T cell reconstitution and induction of transplantation
tolerance.

Protocols for stem cell-based thymic regenerative ther-
apies (Fig. 2) could proceed with:

(a) Endogenous thymus: combined administration of
LHRH-A and other therapeutic agents such as KGF,
GH, Flt3L to initiate in situ thymus recovery and
reduce damage from cytoablative regimes. PTH and
MSCs could be included to improve BM function to
facilitate subsequent HSC engraftment and IL-7
administration to enhance T cell development and
naïve T cell proliferation.

(b) ‘De novo’ thymus production: transplantation of ESC
or iPS derived TEC or ex vivo expanded TEC biopsy.

(c) Creation of donor tolerance: transplantation of donor
HSCT to create a chimeric thymus and peripheral
immune system.

(d) Further expansion of naïve T cells if necessary by IL-7
administration and possibly Flt3L.

Conclusion

HSCT stands as one of the pivotal breakthroughs in the
clinical management of disseminated haematological ma-
lignancies. Despite its global acceptance as a standard of
care, however, the legacy of HSCT is profound immune
deficiency resulting from age-related thymic atrophy, which
is further exacerbated by the necessary cytoreductive
conditioning. The immune deficiency leads to high levels
of morbidity and often mortality and also underlies the
inability to retard cancer relapse either directly or via
response to cancer vaccination regimes. Hope that this
immune deficiency can be overcome has recently stemmed
from a combined research platform incorporating knowl-
edge of the cellular and molecular basis to thymic
organogenesis and its age-related atrophy. The rapidly
emerging science of stem cell biology has also provided
an important new impetus to these studies, facilitating the
ability to reconstruct a thymus in vitro, or induce
regeneration of the atrophic thymic remnant.

Currently, the most logical, clinically feasible approach
would be to use agonist variants of LHRH to remove the
inhibitory effects of sex steroids, which induce thymic
atrophy (particularly post-puberty) and compromise BM
function. LHRH-A may also provide a direct stimulatory
effect on thymocytes cells. LHRH-A would be combined
with one or more of KGF and GH, to promote TEC

restoration and Flt3L and IL-7 to enhance T lymphoid
progenitors. Chimeric thymic re-growth through allogeneic
HSCT also induces donor tolerance. It is clear, however,
that both the kinetics and degree of T cell recovery need
improvement. The integration of strategies targeting thymic
epithelial stem cells is emerging as the most rational and
progressively feasible approach to achieve this.
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