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Abstract NADPH oxidase of the phagocytic cells (Nox2)
transfers electrons from cytosolic NADPH to molecular
oxygen in the extracellular or intraphagosomal space. The
produced superoxide anion (O2

·−) provides the source for
formation of all toxic oxygen derivatives, but continuous
O2
·− generation depends on adequate charge compensation.

The vital role of Nox2 in efficient elimination of micro-
organisms is clearly indicated by human pathology as in-
sufficient activity of the enzyme results in severe, recurrent
bacterial infections, the typical symptoms of chronic
granulomatous disease. The goals of this contribution are
to provide critical review of the Nox2-dependent cellular
processes that potentially contribute to bacterial killing and
degradation and to indicate possible targets of pharmacolog-
ical interventions.
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Introduction

Neutrophilic granulocytes (or PMN, for polymorphonuclear
cells) play a key role in the antimicrobial defense of the

body. These cells are able to detect, pursue, engulf, kill, and
degrade various microbes. Final elimination of potentially
pathogenic microorganisms is a complex process that
requires directed migration, phagocytosis, production of
toxic oxygen (and nitrogen) metabolites, and release of
antibacterial proteins and enzymes stored in the different
granule types. Human pathology indicates that proper func-
tioning of all of these processes is vital as a deficiency in
integrins or production of toxic oxygen metabolites or secon-
dary granule proteins result in similar symptoms: recurrent,
severe, often life-threatening infections [53]. Thus, elimina-
tion of microorganisms can not be ascribed to any single
function or protein; it should rather be regarded as a joint
action of several, equally important mechanisms.

The active NADPH oxidase enzyme of phagocytic cells
consists of the transmembrane electron carrier (gp91 or Nox2)
and four other subunits (p22, p47, p67 and Rac) that stabilize
and activate Nox2. Only the properly assembled complex is
able to transfer electrons across the membrane from cytosolic
NADPH to molecular oxygen forming thereby superoxide
(O2

·−) either in the extracellular or in the intraphagosomal
space. In the present review, we refer to the enzymatically
active protein complex as Nox2. The discovery that chronic
granulomatous disease (CGD) is the consequence of a ge-
netic alteration in any one of the five essential subunits of
Nox2 indicates the vital function of the enzyme. There is,
however, controversy as to which “product” of the enzy-
matic activity has essential function.

The chemical product of Nox2 activity is O2
·−. There is

general agreement that O2
·− itself is not too toxic but several

of its derivatives are [44]. On the other hand, the trans-
membrane movement of electrons creates an electric
potential that serves as driving force for secondary ion
movements. It has been proposed that ion movements
initiated by the electrogenic nature of Nox2 may contribute
to the killing process [40, 120]. A new paradigm, developed
in the recent years, suggests that the major—perhaps only—
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role of Nox2 is to provide driving force for ion (mainly K+

and Cl−) movements in and out of the phagosome creating
thereby optimal conditions for the activity of granule enzymes
[10, 110, 121, 123].

The purpose of this review is to summarize the experi-
mental data on the role of Nox2 in the elimination of
microorganisms. As the basic function of other Nox enzymes
is also the transmembrane transport of electrons, most ideas
are relevant to the entire Nox/Duox family of proteins.

Toxic effects of oxygen metabolites

The term “reactive oxygen species” (ROS) includes
chemically reactive radicals and nonradical derivatives of
oxygen. Radicals harbor one or more unpaired electrons,
whereas nonradicals do not contain unpaired electrons. All
oxygen radicals are ROS, but not all ROS are oxygen
radicals [44]. Long before superoxide production by
phagocytes has been discovered, the in vitro toxicity of
hydrogen peroxide had been already known. Early reports
suggested H2O2 to be the bactericidal agent in the
antibacterial effect of notatin, a toxin from Penicillium
notatum [25, 76]. The antibacterial effect of the xanthine
oxidase system has been also shown [42]. But, the
physiological importance of superoxide and ROS derived
from superoxide was not recognized until phagocytosing
polymorphonuclear leukocytes had been shown to produce
superoxide anions [6]. Phagocytosing neutrophils undergo
an abrupt increase in oxygen uptake, which was first called
a “respiratory burst” but is not caused by mitochondrial
oxidative metabolism. The phagocyte NADPH oxidase
produces exclusively superoxide anions, which are the
precursors of more distant ROS (H2O2, HOCl,

1O2, OH
.).

ROS react with a wide range of biocompounds, including
nucleic acids, proteins, lipids, carbohydrates and molecules
of other structure.

Superoxide and hydrogen peroxide

Superoxide itself is only weakly reactive and reacts with a
few macromolecules, and its direct toxicity is still contro-
versial [118]. Superoxide is unstable, cannot reach very far
from the site of its production, and is not able to cross lipid
bilayers. Its reactivity, however, can be increased in a

hydrophobic environment (e.g., in the proximity of the
plasma membrane) or by lowered pH values since its
protonated derivative (HO2) is more reactive [72] and has
been shown to penetrate into Escherichia coli and inacti-
vate fumarase [79]. A toxic role of superoxide was shown
in a few studies where in vitro killing of bacteria was
achieved by addition of KO2 or inhibited by superoxide
dismutase (SOD; Table 1). However, it is a challenging task
to prove that superoxide anions kill directly since superox-
ide spontaneously dismutates into hydrogen peroxide and
two H2O2 molecules are able to produce distal ROS, for
example highly reactive OH.. Inhibition of killing by SOD
shows only the requirement of superoxide but does not
reveal if superoxide kills directly or through distal deriva-
tives. Two of these studies failed to show a clear direct role of
superoxide in killing since they also showed complete or
partial inhibition of killing by the H2O2 scavenger catalase
and the OH. scavenger mannitol [5, 114].

Hydrogen peroxide (H2O2) is formed by the spontaneous
or SOD-catalyzed dismutation of superoxide. Two supero-
xide anions will produce one hydrogen peroxide molecule by
incorporating two hydrogen ions and releasing one molecule
of oxygen (Fig. 1, reaction no. 1). H2O2 is a well-known
oxidizing agent capable of reacting with a wide range of
macromolecules. Hydrogen peroxide is relatively stable and
membrane permeable, so it can diffuse away from the site of
its formation. Early works have shown already that hydrogen
peroxide is toxic to a broad spectrum of microorganisms in
vitro (Table 2). These studies differed both in the source of
hydrogen peroxide and in the target bacterium used. Hydro-
gen peroxide can be added directly to the assay medium, can
be produced directly by the enzymatic reaction of glucose by
glucose oxidase (GO), or can be dismutated from superoxide
created by xanthine oxidase (XO) and its adequate substrate
(purine, hypoxanthine, xanthine, or acetaldehyde).

More distal derivatives

Although hydrogen peroxide is reactive, its toxicity can be
increased dramatically by forming further derivatives. One of
the most abundant neutrophil proteins is myeloperoxidase
(MPO), which is expressed only in polymorphonuclear
leukocytes, monocytes, and certain types of macrophages in
the human body. MPO resides in the primary granules of
neutrophils and is released into the phagosome upon en-

Table 1 In vitro studies showing role of superoxide in killing of microbes

Source Microbe Gram Buffer pH SOD inhibition Reference

Acetaldehyde/XO Staphylococcus aureus + 7.0 + [114]
Purine/XO Staphylococcus epidermidis + 5.3 + [5]
KO2 Escherichia coli − 7.3 − [111]
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gulfment of bacteria. MPO catalyzes the oxidation of different
substrates by hydrogen peroxide. The most common sub-
strates are halides: chloride, bromide, fluoride, or iodide;
MPO catalyzes their oxidation by hydrogen peroxide into
hypohalous acids. The halides by themselves and the
peroxidase on its own are not or only slightly antimicrobial,
whereas the oxidized products are highly reactive and kill

microbes easily [72]. The MPO/H2O2/I
− system has been

extensively characterized in vitro [70]. E. coli were killed in
an MPO-, hydrogen peroxide-, and halide-dependent manner.
Iodination or chlorination of bacteria is inversely proportional
to their survival meaning that killing must occur—at least in
part—by reacting with hypoiodous/hypochlorous acid [20,
70]. Several studies proved the in vitro toxicity of the MPO/
H2O2/halide system [51, 71, 90, 111] or HOCl itself [20, 45,
51, 87, 111]. The phagocytic NADPH oxidase is required
for the iodination of bacteria since CGD neutrophils fail to
do so [73]. Although iodide is the preferred substrate for
MPO among the halides [71], due to high concentrations of
chloride in the phagosome, hypochlorous acid is formed in
the highest amounts. Hypochlorous acid is a strong oxi-
dizing agent, it attacks a broad range of biologically relevant
compounds, but the preferred targets are: thiols, thioesters,
amines, phenols, unsaturated bonds; it is membrane perme-
able [45].

Although formation of hydroxyl radical (OH.), a very
reactive radical occurs in vitro from hydrogen peroxide ca-
talyzed by iron (Fig. 1 reaction nos. 2–4), its contribution to
killing remains doubtful since the iron released into the
phagosome by either the bacteria or the neutrophils is bound
to lactoferrin [15], and studies using electron paramagnetic
resonance failed to detect hydroxyl radical formation in
neutrophils following engulfment of iron-rich bacteria [24].

Singlet oxygen is an electronically excited state of mo-
lecular oxygen. There are many pathways suggested to form
singlet oxygen but the best established mechanism is the one
by H2O2 and HOCl [115] (Fig. 1 reaction no. 7). Singlet

Table 2 In vitro studies showing role of hydrogen peroxide in killing of microbes

Source Microbe Gram Buffer pH Cat. References

Acetaldehyde/XO Staphylococcus aureus + 7.0 + [114]
Hypoxanthine/XO Bacillus subtilis + Solid medium + [42]
Hypoxanthine/XO Micrococcus luteus + Solid medium + [42]
Hypoxanthine/XO Moraxella catarrhalis − Solid medium + [42]
Hypoxanthine/XO Proteus vulgaris − Solid medium + [42]
Hypoxanthine/XO Pseudomonas aeruginosa − Solid medium + [42]
Hypoxanthine/XO Staphylococcus aureus + Solid medium + [42]
Hypoxanthine/XO Streptococcus pyogenes + Solid medium + [42]
Purine/XO Escherichia coli − 5.3 + [5]
Purine/XO Staphylococcus epidermidis + 5.3 + [5]
Purine/XO Moraxella catarrhalis − 7.3 + [54]
Purine/XO Neisseria gonorrhoeae − 7.3 + [54]
Purine/XO Neisseria meningitidis − 7.3 + [54]
Purine/XO Neisseria perflava − 7.3 + [54]
Glucose/GO Neisseria gonorrhoeae − 7.3 + [54]
H2O2 0.5 μM Escherichia coli − 5.0 n.m. [70]
H2O2 1–100 mM Escherichia coli − 7,5; 6,5; 5,5 n.m. [111]
H2O2 1–100 mM Staphylococcus aureus + 7,5; 6,5; 5,5 n.m. [111]

Cat. Notes if the killing was inhibited by catalase, + inhibition, n.m. not measured

Fig. 1 Reactive oxygen species formed by phagocytes. The figure
shows the chemical formulae of radical and nonradical ROS and the
stoichiometric equations of chemical reactions leading to their
formation
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oxygen is a highly reactive and short-lived radical attacking a
wide range of biomolecules. Although singlet oxygen has been
suggested to be present in neutrophils’ phagosome [2, 129], the
contribution of singlet oxygen to killing in neutrophil
phagosome is still difficult to interpret due to imperfect speci-
ficity of singlet oxygen scavengers [23].

The production of ozone, a highly reactive ROS, by IgG
antibodies opsonizing bacteria has been suggested in phag-
ocytosing neutrophils [7, 137], but doubts have been raised
by others on the specificity of the probes used for ozone
detection in those studies [68, 69].

Human neutrophils do not produce large amounts of nitric
oxide (NO); they only do so when primed with a certain
cytokine cocktail [138]. NO can react with superoxide to
form peroxynitrite (ONOO−; Fig. 1, reaction no. 8), which
can be protonated (peroxynitrous acid) at physiological pH
and split into two radicals, hydroxyl radical and nitric dio-
xide (Fig. 1, reaction no. 9). The reaction between pero-
xynitrite and carbon dioxide results in nitric dioxide and
carbonate, two reactive radicals (Fig. 1, reaction no. 10). It
has been shown that the latter species together can destroy
molecules of biological origin and kill microbes [3, 98].
Nitrogen oxide and its oxygen-containing derivatives can be
classified as both ROS and reactive nitrogen species.

ROS and myeloperoxidase: pro and contra

The efficiency of the MPO/H2O2/Cl
− system to kill microbes

of different origins has been shown in vitro without any
doubt, but concerns have been raised if these experimental
settings apply to the neutrophil phagosome as well.

Contra These reconstituted in vitro systems used much lower
levels of MPO than the estimated concentration in the pha-
gosome; they were conducted at acidic pH (instead of the
close-to-neutral measured in the phagosome) and did not
contain high amounts of granule proteins present under
physiological conditions [111]. It has been proposed that
the function of Nox2 in the neutrophil phagosome is to
liberate and activate bound granule proteins (which would be
responsible after all for killing), and ROS produced are only
byproducts of the reaction, which need to be eliminated in
order to protect the neutrophil itself [121]. High levels of
MPO indeed protect Staphylococcus aureus from being
killed by the MPO/H2O2/Cl

− system in vitro [111]. The
activity of MPO at the reported pH in the phagosome (7.0–
8.0) is also very low compared to the optimal levels at
pH 5.0–5.5 [70, 111]. These findings might raise the
possibility that MPO helps to control the robust levels of
ROS in the phagosome besides converting hydrogen pero-
xide into HOCl. Most of the targets of the MPO-mediated
chlorination in the phagosome are indeed neutrophil and not
bacterial proteins [20, 111].

Pro On the other hand, many arguments support the im-
portance of ROS and MPO as toxic agents [74]. Two studies
have concluded that enough HOCl is produced in the
phagosome of neutrophils to kill engulfed bacteria [45, 58].
Chlorination of neutrophil proteins leads to the formation of
chloramines, which are still highly reactive and capable of
reacting with microbes. It is also questionable if neutrophils
do need to be protected against ROS since the cells die
anyhow soon after the initiation of phagocytosis. Helico-
bacter pylori incapable of deoxyribonucleic acid (DNA)
damage repair is sensitive to ROS-mediated killing [101].
OxyR-deficient E. coli are killed by neutrophils more effi-
ciently than wild-type bacteria [128]. S. aureus capable of
synthesizing antioxidant carotenoids has increased resistance
to neutrophil killing [85]. Neutrophil cytoplasts (neutroplasts)
do not contain nuclei and lost most of their granules (MPO
too) but harbor an intact respiratory burst [78, 113]. Neutro-
plasts engulf but do not kill S. aureus unless the microbes are
coated with MPO, which suggests that under these con-
ditions, the respiratory burst by itself is not sufficient to kill
the bacterium, but completed with MPO, it is [100].

The exact mechanism of oxidative killing of microbes in
neutrophils and its players (NADPH oxidase, MPO, granule
enzymes) is still a subject of debate. From an evolutionary
point of view, the ROS-producing phagocytic NADPH
oxidase is far too complex and dangerous if its primary
purpose is simply to create membrane potential changes
across the phagosomal membrane. Since CGD neutrophils
can kill most bacteria as efficient as normal neutrophils and
the list of pathogens in CGD patients is limited to only a few
characteristic bacteria and fungi, most probably both ROS and
the oxidase-induced membrane potential changes are very
important but only two of the numerous elements of
neutrophils’ weaponry.

Nox2: an electrogenic transporter

Transfer of electrons via Nox2 results in net flux of negative
charges across the membrane. This electron current can be
measured by the patch clamp technique [120], and it leads to
the change of the membrane potential. Resting PMNs have a
membrane potential of about −60 mV that is quickly raised
to approximately +60 mV or around 0 mV upon activation
by PMA or the chemotactic agent formyl-methionyl-leucyl-
phenylalanine (fMLP), respectively [56]. The electron cur-
rent was shown to be dependent on the transmembrane
potential difference and to cease when the membrane
potential reached +160 to +200 mV [31, 104]. Taking into
account the rate of O2

·− generation and the membrane capa-
citance, it was calculated that the enzymatic activity of Nox2
would shut down in approximately 250 ms in neutrophils
and in less than 20 ms in eosinophils [27, 31]. Evidently, the
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duration of the oxidative burst is significantly longer,
whether activation occurs by soluble or particulate agents
[30]. Thus, the critical factor in maintaining O2

·− production
is adequate charge compensation.

Theoretically, compensation of the electron flux via Nox2
could occur by moving a cation in the same or an anion in the
opposite direction or a combination of both processes (Fig. 2a).
In the following paragraphs, we summarize the experimental
data on movements of H+, K+, and Cl− as the most probable
ions for compensation of electron flux in PMN.

Charge compensation by H+ efflux

H+ efflux via electrogenic pathway(s) as charge compensa-
tion for O2

·− production has been proposed more than
20 years ago [49]. Movement of protons parallel to electrons
would avoid both strong acidification of the cytoplasm due
to liberation of H+ from NADPH and excessive alkaliniza-
tion of the phagosomal space due to dismutation of O2

·− ions
(Fig. 2b).

Indeed, electrogenic H+ transport has been detected and
characterized in PMN both by chemical (following pH
changes by fluorescent dyes) and electrophysiological (patch
clamp) techniques ([29, 32, 66], reviewed in [27]). Although
the molecular identity of the presumed H+ channels has not
yet been decided [27, 109, 117], there is general agreement
that under resting conditions, H+ conductance is very low.
Several factors have been described that increase the opening
probability and hence the H+ current (Table 3). All these
changes take place upon activation of PMN either by soluble
or by particulate stimuli. In accordance with the concerted

action of various factors upon the H+ channels, in activated
cells, the membrane potential was shown to correspond in a
wide range to the equilibrium (Nernst) potential for H+. This
finding clearly indicates that in the activated state, H+ con-
ductance largely exceeds the conductance of any other ion [8].

However, there is no perfect synchronization between
initiation of electron and H+ flux as most of the factors
leading to activation of H+ channels (see Table 3) are
consequences of Nox2 turnover. This is evident in changes
of the plasma membrane potential: There is a rapid and
drastic depolarization upon activation of PMN. After
approximately 1 min, the membrane potential stabilizes or
begins to reverse depending on the duration of the
respiratory burst (see Fig. 3 of [41]). The fact that under
identical conditions no change of the membrane potential
can be detected in PMN from CGD patients [41] supports
that depolarization of normal PMN is due to Nox2 activity.
According to our quantitative analysis, there is a highly
nonlinear relationship between the rate of O2

·− production
and extent of depolarization [107]: 50% of the maximal
depolarization occurs when Nox2 turns only at 2% of its
maximal activity. The membrane potential stabilizes when
the enzyme activity reaches 10–20% of its maximal activity.
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Fig. 2 Possibilities of charge
compensation for electron trans-
fer via Nox2. a summarizes the
theoretical possibilities, whereas
b shows the role of H+ move-
ments. Bacterium engulfed in
the phagosome and release of
protein content of different
granules are represented with
symbolic figures

Table 3 Factors affecting the H+ channels in PMN

Activation Inhibition

Plasma membrane depolarization [8, 29, 32, 64] Zn2+[8, 31, 60]
Intracellular acidification [22, 65] Cd2+[50, 60, 66]
Extracellular alkalinization [22, 49, 65]
Arachidonic acid [21, 29, 48, 63, 65]

Semin Immunopathol (2008) 30:237–253 241



Our experimental data correspond very well to the results of
model calculations [95].

One study reported two-phase changes also in the intra-
phagosomal pH: Upon stimulation with PMA, an initial
alkalinization was followed by acidification after approxi-
mately 2 min [122]. However, these observations could not
be reproduced in another study [57].

The above data suggest that charge compensation is
insufficient in the initial period or at a very low rate of O2

·−

production, and in this phase, the major compensating ion is
probably not H+. Stabilization of the membrane potential is
reached when a new steady state is established, where
electron transport is fully compensated by the movement of
other ions. The fact that manipulation of either the H+

permeability or the driving force for H+ ions results in
significant alteration of both the membrane potential and the
rate of O2

·− production (see Table 4) supports that in the
steady state, the major compensating ion is H+.

Charge compensation by K+

Recently K+ has been proposed as a cation responsible for
partial compensation of the negative charges moved via Nox2
[1, 110]. In the same publications K+ efflux from the cytosol
of neutrophils has been interpreted as the key element of the
killing process, and blocking of K+ movement was suggested
to prevent killing of microorganisms completely [1].

In the following paragraphs we list arguments which
support or question the hypothesis on the central role of
K + movements in microbial killing.

Data and considerations supporting the role of K+

movements in bacterial killing

Most experiments concluded that the membrane potential of
resting neutrophils is around −60 mV (for details, see [27]).
This value is fairly close to the equilibrium potential cal-
culated for K+ ions (−89 mV; [96]) indicating that in the
resting condition, K+ conductance dominates. Earlier reports
estimated the ratio of Na+ to K+ permeability in resting
human PMN to be 0.1 [126]. It is thus reasonable to suggest
that in the initial phase of O2

·− generation, K+ efflux could
represent a significant component of charge compensation.

Indeed, K+ or 86Rb+ efflux has been measured upon
activation of Nox2 [107, 110], and it is significantly en-
hanced by Zn2+ and Cd2+, known inhibitors of the H+

channels [1]. In our quantitative analysis, we found that a
majority of K+ movement takes place at low enzyme activity
but gradually declines as depolarization progresses and H+

channel activation increases [107]. This finding is in good
agreement with earlier observations showing that H+

conductance is dominant in the fully activated state [8].
In the case of maximal Nox2 activity, approximately 6% of

the total charge movement was suggested to be compensated

Table 4 Consequences of alteration of H+ movement through PMN plasma membrane

Primary alteration Consequences

Inhibition of H+ channels by Cd2+ or Zn2+ Increase in depolarization upon stimulation with PMA or fMLP [8, 49, 106]
Inhibition in O2

·− generation stimulated with PMA or fMLP [31, 50, 66]
Increase in H+ permeability by the mobile carrier CCCP Prevention of PMA-induced depolarization ([49], Hably unpublished observation)

Release of Zn2+ inhibition upon O2
·− generation [31, 50]

Alteration of extracellular pH At pH 6.6 increased depolarization upon PMA stimulation [49]
At pH 8.3 decreased depolarization upon PMA stimulation [49]
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representative experiment out of
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by K+ ions [121]. However, our data indicated that at the
lowest measurable activity of Nox2 (2% of the maximal
activity), 50% of the transported negative charge could be
compensated by K+ ions [106]. Thus, at low enzyme activity,
K+ movement may be critical. The major question is whether
this K+ flux has any relevance to the killing process.

In our experiments, we observed two phenomena that may
indicate a role of K+ movement in the elimination of bacteria.
(1) In the presence of 10 μM Zn2+, no increase of bacterial
survival was observed in spite of a 30% reduction in O2

·−

generation [106]. Under these conditions, H+ efflux is im-
paired resulting in decreased activity of Nox2 but increased
depolarization and K+ efflux [1, 106]. (2) The relationship
between bacterial survival and Nox2 activity was steeper at
low enzyme activity, when most of the K+ flux took place,
than at a high rate of O2

·− generation when charge compen-
sation occurred mostly by H+ ions [107].

Both observations provide only indirect support for a role of
K+ ions in the elimination of microorganisms, and both refer to
conditions in which Nox2 activity is limited. They may, how-
ever, model conditions where limited substrate supply—e.g.,
in hypoxic regions—allows only a low rate of O2

·− generation.

Data and considerations questioning the central role of K+

movements in bacterial killing

In an earlier publication, it has been claimed that bacterial
killing was dependent on the opening or closing of one
single type of K+ channel [1]. If K+ movements are so
critical in the antimicrobial activity, then one would expect
that alterations of the K+ concentration of the environment
have drastic effects on killing efficiency. However, in our
hands, there was no difference in the killing activity of
either human peripheral or murine bone marrow neutrophils
whether the killing experiment was carried out in physio-
logical solutions containing 5 mM K+ or in nominally K+-

free media or in 145 mM KCl (Hably and Meczner,
unpublished observations). These results are in agreement
with earlier experiments, where alterations of K+ concen-
tration did not affect O2

·− generation [50, 97, 130].
Another possibility for manipulation of K+ movements is

by application of valinomycin, an ionophore highly selective
for K+ and Rb+. Valinomycin is the prototype for mobile
carriers, and earlier investigations suggested that valinomy-
cin doubles the K+ permeability of human PMN [126]. The
addition of valinomycin to resting neutrophils results in
definitive hyperpolarization indicating an increase in K+ per-
meability (Fig. 3). However, valinomycin has only a mode-
rate effect on the rate or extent of depolarization induced by
PMA or fMLP, i.e., when Nox2 is allowed to function at full
activity (Fig. 3). Thus, K+ flux carried by valinomycin is able
to provide some—but far from full—charge compensation for
electron transport via Nox2 (valinomycin is only able to
provide significant charge compensation when Nox2 activity
is mostly inhibited by diphenyliodonium [DPI] as in Fig. 4 of
[41]). The important question is whether an increase of K+

permeability has any effect on the killing activity of PMN. In
our experiments, we could not detect any difference in
elimination of S. aureus by human PMN in the absence or
presence of the ionophore. Valinomycin did not affect the killing
efficiency in K+-free or K+-rich medium either. Thus, even if
valinomycin allows some charge compensation to occur via
K+, this does not seem to have significant impact on killing
activity when Nox2 is turning at full capacity. Our findings are
at variance with some previous data [110].

Our quantitative analysis also argues against an “all-or-
none” role of K+ movement in bacterial elimination. When
Nox2 turned at 25% of its maximal rate, 70% of the total K+

movement had already occurred, yet 90% of the bacteria
survived [107]. An increase in the rate of O2

·− generation
resulted in gradual decrease in bacterial survival although
only very little further K+ transport occurred.
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A similar condition is known in human pathology in the
form of “variant CGD” patients. In these cases, the mutation
allows the expression of all the subunits, but the enzymatic
activity is impaired so that the PMN of these patients are able
to produce O2

·− only at 10% to 20% of the normal rate [10,
127]. These patients present clinical symptoms, although
their Nox2 activity could be sufficient to allow K+ move-
ments comparable to healthy cells.

K+ channels in PMN

It is not clear through which kind of K+ channels the detected
K+ flux occurs. Voltage-dependent, inwardly rectifying K+

channels have been described in PMN and eosinophils, but
these channels close upon depolarization [80, 130]. Thus,
they probably do participate in the generation of the resting
membrane potential but do not function under condition of
intensive O2

·− production. Indeed, blocking inwardly rectifying
channels does not inhibit superoxide production [130]. Ca2+-
activated K+ channels have also been demonstrated [77, 134],
but their contribution is questionable, as in activated cells, H+

current was the only detectable outward current [94].
The decisive function of large-conductance voltage- and

Ca2+-activated K+(BK or maxi-K+) channels has been pro-
posed recently [1]. However, no trace of the existence or
function of BK channels could be demonstrated by several
groups (see Table 5).

If K+ movement into the phagosome is important in the
establishment of the optimal ionic environment for the func-
tion of granule enzymes, then it would be logical to increase
K+ conductance selectively in the phagosomal membrane.
This goal could be achieved by the activation of some of the
two pore domain K+ channels (K2P). Several members (e.g.,
TALK-1, TALK-2, TASK-1, TASK-2) of this family of K+

channels are pH sensitive, showing increased conductance
when the pH on the extracellular side becomes alkaline [33,
62]. In addition, TALK-1 and TALK-2 were shown to be
activated by ROS [33]. Conditions prevailing in the
phagosome (initial alkalinization, generation of O2

·− and its
metabolites) could be favorable for the opening of TALK-1
or TALK-2. With this idea in mind, we searched for the

messenger ribonucleic acid (mRNA) of various K2P chan-
nels. We could detect a message for TALK-2 both in
peripheral blood PMN and in cultured PLB cells. The
amount of TALK-2 mRNA was quantitated in real-time
polymerase chain reaction experiments and estimated to be
five orders of magnitude lower than that of GADPH. In view
of this low level of mRNA, investigations at the protein level
by electrophysiology or Western blotting were hitherto not
feasible (Enyedi and Lakatos, unpublished observation).

Charge compensation by Cl−

The major mobile anion of both the extracellular and
intracellular space is Cl−. In a recent study, it has been
proposed that 90% of charge compensation for Nox2
activity occurs via Cl− flux from the extracellular or
intraphagosomal space into the cytosol [121]. Further, it
has been claimed that both the respiratory burst and
microbial killing are abolished in the absence of Cl− ions
[121]. There are theoretical as well as experimental
problems with Cl− as the major charge-compensating ion.
Theoretically, it is hard to envisage the movement of
massive amounts of the osmotically active Cl− ions and the
consequent volume changes (for details, see [96]). Exper-
imentally, Cl− efflux has been detected during the respira-
tory burst, i.e., movement of Cl− in the opposite direction
than required for charge compensation [18, 89, 97, 125].
Recently, it has been reported that ClC-3-deficient mice
have a defect in O2

·− generation; nevertheless, these mice
were fully competent in killing of various microbes [93].

In view of the controversial data, we tested the ability of
human peripheral PMN to produce O2

·− in a Cl−-free en-
vironment (Fig. 4). Our results indicate that the ability of
O2
·− generation depends on the species of the anion replacing

Cl−: It is significantly decreased in the phosphate-based
medium but not altered in a 4-(2-hydroxyethyl)-1-piperazi-
neethanesulfonic acid (HEPES)-based medium that is widely
applied in patch clamp experiments. As high phosphate
concentration is known to chelate di- and trivalent cations,
resulting in strong acidification, we tested the pH of the
solutions. We found a correlation between acidification and
inability of O2

·− generation. Accordingly, in the presence of
adequate buffering capacity, a high rate of O2

·− production
could be restored also in the phosphate-based medium.

Thus, Nox2 activity per se does not seem to depend on the
possibility of Cl− influx. In accordance with this finding, we
did not observe any difference in the killing activity whether
the extracellular space contained Cl− ions or not (Fig. 4b).

Alterations of Ca2+ household in CGD cells

The function of the electrogenic NADPH oxidase also affects
the movement of another ion, calcium. Ca2+ does not have a

Table 5 Experimental data arguing against a role of BK channels in
bacterial killing (summarized in [28])

No BK current is detectable in patch clamp experiments [34, 37]
No BK channel is detectable by immunostaining [37]
IbTx does not inhibit detectable currents [34, 37]
IbTx does not inhibit degradation of bacterial phospholipids [37]
IbTx does not inhibit bacterial killing [28, 34, 37]
Presence of BK channels incompatible with measured depolarization
[96]
Identical electrophysiological properties of BK+/+ and BK−/− cells [34]
No change in bacterial clearence in BK−/− mice [34]
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crucial role in regulating the membrane potential but does
play an important role in many cellular processes and sig-
naling events. When the phagocytic NADPH oxidase is
activated, the depolarization prevents calcium ions from
entering the cell, and it diminishes cytosolic calcium levels.
Early studies could not detect any differences in fMLP-
induced calcium signals between normal and CGD neutro-
phils [84]. However, in this report, the investigators used the
calcium-sensitive dye, Quin-2, which has low affinity for
calcium, and it could have disturbed the calcium signals in
the cells. More recent studies of our laboratory using the
ratiometric dye Fura-2 with high affinity for calcium have
clearly shown that calcium metabolism is affected in neutro-
phils and neutrophil-like cells in the absence of a functional
NADPH oxidase [41, 108]. In fMLP-triggered CGD neutro-
phils, the influx through store-operated calcium channels
was increased and started earlier than in normal cells [41,
131]. In model cells lacking the NADPH oxidase, the fMLP-
induced calcium signal was higher than in the normal cells
[108]. The inhibition of the oxidase by DPI in neutrophils
increased the cytosolic calcium transient stimulated by fMLP
[108]. Extracellular production of superoxide by the xan-
thine/XO system did not have any effect on the calcium
influx [41] showing that superoxide anions are not respon-
sible for the difference. Hyperpolarizing the membrane
potential in neutrophils after the addition of fMLP does not
change superoxide production but increases cytosolic calci-
um levels immediately (Fig. 5a) due to the oxidase-induced
membrane potential changes that increase the driving force
for Ca2+ influx (Fig. 5b,c). Altered calcium signaling in
CGD neutrophils might cause disturbed cytokine release,
apoptosis, and killing [108].

Effect of priming on electrophysiological properties
of PMN

The effect of priming upon various PMN functions has been
investigated in detail, and it is summarized in another paper of
this issue (El Benna et al. 2008). However, there are two less
well-known aspects that are related to the contribution of
electrophysiological factors to the killing process.

Efficient priming during conventional preparation of PMN

In earlier studies, we observed that the release of secretory
vesicles, the most easily mobilizable population of PMN
vesicles, could only be detected if the cells were prepared
under sterile conditions, in pyrogen-free solutions [91]; other-
wise, they were eliminated already during the preparation
process. We also found significant difference in fMLP-
stimulated O2

·− generation: Conventionally prepared PMN
produced fourfold more O2

·− than PMN prepared under

sterile conditions did [61]. These data suggested that PMN
might become primed during the conventional preparation
process. Systematic investigation supported this suggestion
(Fig. 6). PMN prepared under nonsterile conditions produced
3.5 times more O2

·− upon stimulation with opsonized S. aureus
than cells prepared under sterile conditions did (Fig. 6a).
Nonsterile PMNs were also more efficient in killing of
bacteria (Fig. 6b). We could partially mimic the effect of
preparation under nonsterile conditions by treating sterile
PMN with tumor necrosis factor-α (TNFα) or granulocyte
macrophage colony-stimulating factor (Rada, unpublished
observations). Thus, PMNs isolated by conventional tech-
niques, i.e., not in solutions prepared with pyrogen-free water,
are definitely primed, and their properties differ from those of
resting cells.

Electrophysiological changes induced by priming

There was no difference in the resting membrane potential
of PMN prepared under sterile or nonsterile conditions.

Fig. 5 The phagocytic NADPH oxidase inhibits calcium entry in human
neutrophils. Human neutrophils were stimulated by fMLP (1 μM, white
arrow), and 2 min later, the potassium ionophore, valinomycin (1 μM,
black arrow), was added. Changes in cytosolic calcium concentration
(a), superoxide production (a, insert), and membrane potential changes
(b) were measured. Valinomycin-induced hyperpolarization did not
influence fMLP-stimulated superoxide production but increased
[Ca2+]ic. c Model showing the effect of the oxidase-induced depolar-
ization on calcium entry. Result of one representative experiment out of
four similar ones is shown
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However, the rate of depolarization upon stimulation with
PMA was increased in nonsterile cells, whereas the extent
of depolarization showed no difference (Fig. 6c). These
findings indicate that priming increased the activity of
Nox2 but did not induce significant alteration in the activity
of the charge compensating mechanisms.

Ionic composition of the intracellular space and thereby
ionic movements are basically determined by the Na+, K+-
ATPase. Inhibition of the Na+/K+ pump by ouabain results in
gradual depolarization due to unopposed Na+ influx. Follow-
ing ouabain treatment of PMN, we observed significantly
faster depolarization in nonsterile than in sterile cells (Fig. 6d),
indicating an enhanced activity of the Na+, K+-ATPase in the
primed cells. Activation of the Na+, K+-ATPase has been
shown earlier to occur during differentiation of HL-60 pro-
myelocytic cells [81] and upon chemotactic stimulation [9]. In
renal collecting duct cells, it has been demonstrated that LPS
and TNFα are able to induce the recruitment of Na+, K+-
ATPase molecules to the plasma membrane [135].

Enhancement of the activity of the Na+, K+-ATPase as part
of the priming process could increase the intracellular con-
centration of K+ ions and their movement to the phagosomal

space in compensation of the electron flux via Nox2. In this
way, upregulation of the Na+/K+ pump may contribute to the
observed improvement of the killing activity of primed
PMN.

Medical significance of the mechanism of charge
compensation for Nox2 activity

O2
·− generation is vital in the efficient elimination of micro-

organisms. However, the production of O2
·− at inappropriate

sites or in an inadequate quantity can be deleterious to the
host organism [112]. With the help of Nox2-deficient mice, it
has been demonstrated that O2

·− and its derivatives produced
by phagocytes contribute to the pathogenesis of ischemia/
reperfusion injury [103, 124], stroke [59, 136], neurodegen-
erative diseases [139], and alcohol-induced liver disease [77].

Thus, the inhibition of Nox2 could be advantageous in
prevention or amelioration of several pathological condi-
tions. At present, no efficient inhibitors are available that
would be specific for any Nox or cell type [82] (the widely
used inhibitor DPI interacts with almost any heme protein).
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The inhibition of charge compensation has been shown to
limit electron transfer via Nox2 [31, 66]. As ion channels
have many isoforms and tissue-specific expression has been
widely documented, careful investigation of the ion channels
participating in charge compensation for electron flux
through Nox2 may reveal new potential targets for pharma-
cological intervention.

On the other hand, if specific ion movement into the
phagosome can—under certain conditions—indeed improve
the efficiency of killing, then initiation of such ion movements
may substitute or partially compensate for lacking O2

·−

generation. This could provide a basis for new approaches
in the therapy of CGD.

Alterations in CGD in addition to impaired
phagosomal killing

The failure of CGD neutrophils to kill certain bacteria and
fungi has been extensively studied, but numerous recent
emerging reports suggest that the malfunction of the phago-
cytic NADPH oxidase in these patients has other consequen-
ces, as well.

It has been shown that CGD patients develop inflammatory
granulomas in hollow organs without clinical signs of in-
fections [19]; these granulomas are sterile, free of bacteria.
Mice deficient in either gp91phox or p47phox show also exag-
gerated inflammatory reactions to fungus with enhanced ac-
cumulation of mononuclear cells and neutrophils [55, 95,
105]. These data suggest that disregulated inflammatory
processes contribute to the symptoms of CGD. Neutrophils
leave the blood stream and migrate to the site of infection by
following the chemical gradient of inflammatory cytokines
and bacterial products. On the site of bacterial invasion, neu-
trophils undergo apoptosis soon after the initiation of phagocy-
tosis and are phagocytosed bymacrophages. Delayed apoptosis
and disregulated cytokine production could explain the
experienced abnormalities in CGD.

Apoptosis and cytokine production in CGD

Many studies suggested that ROS induce apoptosis in
neutrophils [4, 16, 35, 36, 46, 67, 86, 119, 140] and showed
delayed onset of apoptosis in CGD neutrophils [26, 35, 39,
102, 116].

Several reports have shown that CGD neutrophils and
CGD macrophages have altered production of inflammatory
cytokines and mediators to a range of stimuli and also showed
increased expression of inflammatorymolecules in the lung of
X-linked CGD (X-CGD) mice (Table 6). Hydrogen peroxide
produced by the phagocytic NADPH oxidase has been pre-
sented to inhibit fMLP-triggered interleukin-8 (IL-8) pro-
duction in human neutrophils in vitro, and this inhibition was

absent in PMNs from CGD patients [83]. The altered cal-
cium homeostasis of CGD neutrophils discussed above might
also contribute to delayed apoptosis and altered cytokine
production since calcium has been shown to be important in
both processes in neutrophils.

Neutrophil extracellular traps

Recently, a very important novel function of ROS has been
suggested in the formation of Neutrophil extracellular traps
(NETs) [38]. NETs are extracellular fibers made by activated
but not by naïve neutrophils. NETs contain smooth stretches
and globular structures and are not surrounded by membrane
[13]. DNA is the structural backbone of NETs, but it also
contains proteins (histones and proteins from primary, secon-
dary, and tertiary granules) [13]. The formation of NETs is
an active process and can be initiated by different stimuli
(PMA, IL-8, lipopolysaccharide [LPS], bacteria). NETs have
been shown to colocalize with and kill bacteria extracellu-
larly through their granular proteases [13]. NETs also capture
and kill fungi [132]. As the formation of the NETs, a novel
cell death program (“netosis”) has been suggested [38].
During NET formation, stimulated neutrophils change their
shape, homogenization of the hetero- and euchromatin
occurs, later the membrane of the nucleus and the granules
disintegrate, and their content becomes mixed [38]. Subse-
quently, the plasma membrane breaks, and the extracellular
traps are released. The authors claim the mechanism for NET
formation being different from both, necrosis and apoptosis,
involving ROS formed by the phagocyte NADPH oxidase
[38]. CGD neutrophils failed to form NETs when stimulated
with stimuli that were effective in normal PMNs (S. aureus,
PMA) but elicited NET formation when hydrogen peroxide
was provided enzymatically by the glucose/GO system [38].
Type I and II interferons have been suggested to prime
neutrophils for subsequent NET formation after stimulation
by complement factor 5a [88]. With the discovery of NETs,
the long-described antimicrobial effect of the histones and
their derivatives also gain physiological importance [14, 52].
Beyond the in vitro studies, NETs have already been shown
to be important in vivo in human preeclampsia [43],
appendicitis [13], and streptococcal infections [92] resulting
in necrotizing fascitis [17] and pneumococcal pneumonia
[11]. NET formation revealed a new mechanism by which
neutrophils kill microbes but also by which they might
contribute to destruction of host tissues or to both at the same
time, e.g., in the pathogenesis of sepsis [133].

Our view on the function of neutrophilic granulocytes in
the human body has been changing tremendously recently.
This cell type, previously thought to be very simple, fulfills a
central role in coordinating the inflammatory process between
the innate and the adaptive immunity [99] and goes through a
second major burst of transcriptional and protein synthetic
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Table 6 Altered expression and release of inflammatory mediators in chronic granulomatous disease

Cells, tissue Stimulus Mediator ↑/↓ Measured Reference

Human neutrophils Spontaneous IL-8 ↑ Cytokine release in the supernatant [47]
LPS IL-8 ↑ Cytokine release in the supernatant [47]
SAA IL-8 ↑ Cytokine release in the supernatant [47]
Spontaneous TNF-α ↑ Cytokine release in the supernatant [47]
LPS TNF-α ↑ Cytokine release in the supernatant [47]
SAA TNF-α ↑ Cytokine release in the supernatant [47]
Spontaneous PGD2 ↓ Release in supernatant [16]
fMLP IL-8 ↑ Expression and production [83]

Human macrophages Spontaneous TNF-α ↓ Release in supernatant [16]
PGE2 ↓ Release in supernatant [16]
IL-10 ↓ Release in supernatant [16]
PGD2 ↓ Release in supernatant [16]

Nonopsonized, apoptotic PMNs TGF-β ↓ Release in supernatant [16]
PGD2 ↓ Release in supernatant [16]

Opsonized, apoptotic PMNs TNF-α ↓ Release in supernatant [16]
PGE2 ↓ Release in supernatant [16]
IL-10 ↓ Release in supernatant [16]
PGD2 ↓ Release in supernatant [16]

Mouse lung Aspergillus fumigatus hyphae IL-1β ↑ Expression levels in total lung RNA [95]
TNF-α ↑ Expression levels in total lung RNA [95]
KC ↑ Expression levels in total lung RNA [95]
TGF-β1 ↑ Expression levels in total lung RNA [95]

The table summarizes published data on altered levels of cytokine and inflammatory mediator expression and production measured either in
isolated CGD neutrophils and macrophages or in whole-X-CGD animals (mice) in comparison to their normal countermates.
Proinflammatory mediators: TNF-α tumor necrosis factor alpha, IL-1β interleukin-1β, PGE2 prostaglandin E2, IL-8 interleukin-8, neutrophil
chemoattractant. Antiinflammatory mediators: TGF-β transforming growth factor β, PGD2 prostaglandin D2, IL-10 interleukin-10. LPS
Lipopolysaccharide, SAA serum amyloid A, KC murine homologue of the human GROα, growth related protein, fMLP formyl-methionyl-leucyl-
phenylalanine, bacterial tripeptide, neutrophil chemoattractant. ↓ Reduced levels in CGD, ↑ enhanced levels in CGD

Fig. 7 Possible roles of the
Nox2-based NADPH oxidase in
PMN function
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activities when leaving the blood stream [12]. Besides the
novel roles of the best-studied neutrophil enzyme, the
NADPH oxidase in bacterial killing (activation of certain
granule enzymes and NET formation), a report investigating
global gene expression changes in phagocytosing healthy and
X-CGD neutrophils showed more than 200 genes whose
expression levels are dependent on ROS produced by the
NADPH oxidase [75]. CGD neutrophils have increased
expression of proinflammatory and lowered expression of
anti-inflammatory genes compared with normal neutrophils.
These data of NADPH oxidase-dependent transcriptional
changes of numerous genes support the observations that
neutrophils deficient in gp91phox show prolonged inflamma-
tion and delayed resolution of the inflammatory process.

Conclusion

The experimental findings detailed above can be summarized
in a very simple message: Nox2 plays multiple important roles
in elimination of microorganisms (Fig. 7). Intraphagosomal
killing is the result of concerted action of (1) various ROS
formed from the primary product of Nox2, (2) different
granule enzymes and antimicrobial peptides, and (3) ion
transport that allows sustained Nox2 activity and provides
optimal microenvironment. In addition to this classical func-
tion, ROS participate in induction of apoptosis, influence
cytokine synthesis and secretion, and modify gene expression.
Last but not least, they also play a role in extracellular killing of
various microorganisms. Intensity and relative importance of
these processes may differ in the case of different microorga-
nisms or under different conditions (such as hypoxic environ-
ment), but apparently, they all contribute to the complex clinical
picture that characterizes the immundefficiency in CGD.
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