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Abstract During the past 10 years, CD4+CD25+Foxp3+

regulatory T cells (Treg) have been extensively studied for
their function in autoimmune disease. This review summa-
rizes the evidence for a role of Treg in suppression of innate
and adaptive immune responses in experimental models of
autoimmunity including arthritis, colitis, diabetes, autoim-
mune encephalomyelitis, lupus, gastritis, oophoritis, pros-
tatitis, and thyroiditis. Antigen-specific activation of Treg,
but antigen-independent suppressive function, emerges as a
common paradigm derived from several disease models.
Treg suppress conventional T cells (Tcon) by direct cell
contact in vitro. However, downmodulation of dendritic cell
function and secretion of inhibitory cytokines such as IL-10
and TGF-β might underlie Treg function in vivo. The final
outcome of autoimmunity vs tolerance depends on the
balance between stimulatory signals (Toll-like receptor
engagement, costimulation, and antigen dose) and inhibito-
ry signals from Treg. Whereas most experimental settings
analyze the capacity of Treg to prevent onset of autoim-
mune disease, more recent efforts indicate successful
treatment of ongoing disease. Thus, Treg are on the verge
of moving from experimental animal models into clinical
applications in humans.
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The discovery of CD4+CD25+ regulatory T cells

Removal of the thymus in neonatal mice (day 3 thymec-
tomy, d3Tx) leads to the development of organ specific
autoimmune disease. This model was used by many
investigators in the 80s and 90s and yielded first insights
into the fact that the normal T cell repertoire contains
autoreactive cells. These self-reactive cells could be
inhibited by a subpopulation of CD4+ T cells (reviewed in
[1]). The breakthrough in defining the protective cell
population came in 1995. Sakaguchi et al. [2] removed
CD25 expressing cells from the splenic CD4+ population
obtained from healthy BALB/c mice and injected the
resulting CD4+CD25− T cells into athymic BALB/c mice.
These recipients developed autoimmune gastritis. Addition
of purified CD25+ cells to the CD4+CD25− cells at the time
of injection protected from disease [2]. Similarly, transfer of
spleen cells containing CD25+ cells into d3Tx mice averted
gastritis. In contrast, the prevention of homeostatic prolif-
eration alone, via injection of CD25− spleen cells or
irrelevant T-cell receptor (TCR) transgenic cells, was not
protective [3]. Finally, gastritis induction by transfer of
clonal T cells directed against the H/K-ATPase, the
dominant gastric self-antigen responsible for autoimmune
gastritis, could be prevented by CD4+CD25+ spleen cells.
Thus, a new suppressor cell population had been defined,
and the term regulatory T cells (Treg) was coined to set
them apart from CD8+ suppressor T cells. This term was
also chosen to indicate that Treg regulate the normal
immune homeostasis by preventing the activation of cells
bearing TCR specific for self-antigen.
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CD25+ cells constitute 5–10% of CD4+ T cells in lymph
nodes (LN), spleen and thymus [2, 4]. The fact that thymic
CD25+ cells prevent autoimmunity similarly to peripheral
Treg and exhibit the same phenotype as peripheral Treg,
leads to the conclusion that Treg constitute a separate lineage
of T cells that is educated in the thymus [4]. Because d3Tx
animals spontaneously develop gastritis, it was hypothesized
that three-day-old mice harbor autoreactive effector T cells
(Teff) but not yet CD25+ Treg. Indeed, the spleens of these
newborn mice contain very few CD3+ cells and among
these, CD25+ cells are hardly detectable [5]. Nevertheless, in
LN (which are seeded by T cells before the spleen), 5–7% of
CD4+ lymphocytes express CD25 already 2 days after birth
[6]. However, the density of CD25 expression is lower on
days 2 and 3 after birth when compared to older mice. Due
to cell number limitations, these neonatal CD25+ cells were
not tested for their suppressive capacity.

Phenotype of CD4+CD25+ regulatory T cells

Freshly isolated murine Treg can be distinguished from
freshly isolated “naïve or resting” CD4+CD25− Tcon by a
variety of cell surface markers. In addition to CD25, the
following molecules are expressed at a higher density on
the cell surface of Treg in comparison to Tcon: IL-2Rβ-
chain (CD122), CD44, CD54 [4], GITR [7, 8], neuropilin-1
[9], and LAG-3 [10]. CTLA-4 (CD152) is constitutively
expressed in the cytoplasma of Treg and is absent in Tcon.
After stimulation in vitro, Treg and Tcon express cell
surface CTLA-4, though expression is higher on Treg [11,
12]. Treg show a heterogeneous expression of markers
associated with recent T cell activation or memory. Most
Treg are CD45RBint to CD45RBlow indicating that they have
seen antigen before [13]. L-selectin (CD62L) is responsible
for the entry of T cells into primary lymphoid organs and is
highly expressed on resting cells and downregulated on
activated T cells. Treg can be divided into two groups: some
expressing high, others intermediate or low levels of CD62L.
This indicates that some Treg home to LN whereas others
migrate to peripheral organs [4, 13]. Such a dual expression
pattern is also observed for the αE integrin (CD103). When
αE integrin pairs with the β7-chain, it binds to E-cadherin
and constitutes a receptor responsible for retaining Treg in
tissues [14, 15]. In mice, one third of Treg express CD69, a
marker for recent activation [13]. The observation that many
Treg show a cell surface phenotype reminiscent of recent
activation is consistent with the fact that they constantly
cycle in vivo, which is probably due to the recognition of
self-antigen in the periphery [16].

Most of the markers discussed above are dependent on
T-cell activation and can be up- or downregulated on Tcon
as well. Thus, the identification of the transcriptional

repressor scurfin, encoded by the Foxp3 gene, in Treg
was an important discovery for the field [17–19]. Mice and
humans with Foxp3 mutations abrogating scurfin expres-
sion (scurfy mice, Foxp3−/− mice and human IPEX
patients) lack Treg and develop severe multiorgan autoim-
munity [18, 19]. All CD25hi cells express Foxp3 as shown
elegantly in the Foxp3gfp and Foxp3mRFP mice from the
Rudensky and Flavell laboratory, respectively. A few
Foxp3gfp cells express low levels of CD25, but they are
nevertheless equally suppressive, indicating that all Foxp3+

cells are Treg [20, 21]. In addition, the overexpression of
Foxp3 in Tcon converts them into immunosuppressive cells
very similar to natural Treg [17, 19]. These data lead to the
conclusion that Foxp3 is the best marker for Treg to date.
Unfortunately, its nuclear localization prevents the use of
this molecule for the isolation of Treg. However, recent
publications demonstrate that Foxp3 can also be induced in
Tcon upon stimulation, with TGF-β being a major inducer.
As such Foxp3+ Tcon also show suppressive activity they
qualify as induced Treg [21–23]. Furthermore, Treg can be
generated from Tcon via presentation of antigen by
immature dendritic cells (DC) [24, 25].

Development and homeostasis of Treg

Similar to Foxp3 mutations, other genetic alterations can also
lead to a lack of Treg. In all these cases, lymphocyte
hyperproliferation and multiorgan autoimmunity ensue. Mice
devoid of IL-2Rγ-chain (CD132) do not contain Treg
because of defective thymic generation [26]. IL-2Rβ-chain
(CD122) expression in the thymus is also important for
normal Treg development, while reduced survival of Treg in
the periphery is the main reason for autoimmunity in IL-2
and IL-2Rα-chain (CD25) knockout mice [26–29]. Other
factors necessary for survival or expansion of Treg are TGF-
β and CD28 [30–33]. Treg are selected in the thymus at a
specific range of affinity to self-antigen that lies in between
positive and negative selection for Tcon (reviewed in [34]).

Purified Treg do not proliferate in vitro upon TCR
stimulation unless exogenous IL-2 is added to the culture.
Thus, they are called anergic [35]. Such an anergy is not
observed in vivo. Initially, various laboratories studied Treg
from TCR transgenic mice to show that their Treg
proliferate in vivo upon recognition of their respective
antigens [36, 37]. Furthermore, after transfer of polyclonal
Treg into T-cell-deficient “empty” mice, Treg expand via
homeostatic proliferation due to recognition of MHC class
II restricted antigen [38, 39]. Finally, by transferring
CD62Lhi Treg into immunocompetent “full” mice, Salomon
et al. found that half of the Treg cycled and developed an
activated phenotype. This activation and cycling is most
likely due to the recognition of tissue specific self-antigens
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in the local LN presented on “resting” DC [16, 40]. Thus,
two groups of Treg can be identified in mice: (a) resting
Treg that are predominantly CD62Lhi, CD44int, CD69−,
CD122low, CD134int, CD71low, CD54int, CD5int, GITRint,
CD38−, and CD45RBint and (b) activated Treg that are
CD62Lhi/low, CD44hi, CD69+, CD122hi, CD134hi, CD71hi,
CD54hi, CD5hi, GITRhi, CD38hi, and CD45RBlow [16].
While both populations exhibit a similar suppressive
capacity in vitro, they most probably display a different
homing pattern (LN vs peripheral tissues), and therefore
might fulfill different functions in vivo.

Description of the main autoimmune disease models

After their discovery due to their ability to suppress
autoimmune gastritis, thyroiditis, or oophoritis, the pres-
ence and function of Treg have been studied in mice, rats,
and humans. We shall focus on the function of Treg in the
most commonly studied diseases in mice. The induction of
autoimmunity requires an imbalance of immune stimulation
and suppression. Treg depletion in healthy adult mice does
not result in autoimmunity [41]. However, if this is
accompanied with a further stimulus such as homeostatic
proliferation, e.g., in newborn mice or after T cell transfer
into T-cell-deficient mice, autoimmune disease ensues [41].
Alternatively, immunization with a tissue-specific antigen
together with adjuvant induces experimental allergic/auto-
immune encephalomyelitis (EAE), experimental autoim-
mune thyroiditis (EAT), or experimental autoimmune
myasthenia gravis (EAMG) in susceptible mouse strains.
Treg have been shown to ameliorate or prevent these
diseases [42–44]. T cells expressing a self-antigen-specific
TCR induce autoimmunity in the absence of endogenous
Treg, e.g., EAE, and diabetes. Finally, we shall summarize
the various functional aspects of Treg-mediated suppression
to show emerging paradigms. Because requirements and
circumstances vary between diseases, different results can
be obtained and a generalization of mechanism should be
undertaken with caution.

Autoimmune gastritis

Early studies on d3Tx-induced autoimmune gastritis were
successful in determining H/K-ATPase α-and β-chains as
the main autoantigens similar to the pathogenesis of
pernicious anemia in humans. Gastritis can be induced by
the transfer of T cells specific for these antigens into T/B-
cell-deficient animals or animals that contain TCR trans-
genic irrelevant T cells. In contrast, normal mice and mice
coinjected with splenic Treg are resistant to gastritis
induction by H/K-ATPase-specific T cells. Thus, mice
containing a polyclonal repertoire of Treg inhibit antigen-

specific Teff [3]. Treg depletion is necessary but not
sufficient to induce gastritis. It is only when cells from
adult mice that had previously received the depleting anti-
CD25 mAb PC61 are transferred to T cell-deficient
“empty” nude mice, that disease ensues. This indicates that
homeostatic proliferation, taking place after transfer into
nude mice, provides an activation signal for the transferred
cells. Alternatively, this activation signal can also be
provided by immunization with H/K-ATPase in incomplete
Freund’s adjuvant [42]. Autoreactive T cells are most
probably activated in the gastric LN by DC that constantly
present H/K-ATPase [40]. Subsequently, T cells migrate to
the gastric mucosa. After injection of high numbers of
polyclonal Treg, they can be detected in the gastric LN and
the mucosa. However, they do not prevent expansion of H/
K-ATPase-specific T cells in the gastric LN or their
migration into the mucosa, thus allowing mild inflamma-
tion. In contrast, absence of Treg increases inflammation
and destruction of parietal and chief cells with concomitant
production of autoantibodies [45]. Polyclonal Treg inhibit
gastritis induced by polyclonal or antigen-specific Teff.
Moreover, Treg educated in the absence of the H/K-ATPase
α-chain suppress gastritis induced by H/K-ATPase α-chain-
specific Teff [46]. This can be explained by the presence of
Treg directed against other gastric antigens.

Treg suppress the differentiation of autoreactive T cells
into Th1 effector cells, as shown by a decrease in antigen-
specific IFN-γ production [45]. For prevention of gastritis,
Treg do not need to produce IL-4, IL-10, or TGF-β. Treg
isolated from these cytokine knockout mice inhibit gastritis
and the injection of mAb blocking these cytokines into mice
receiving wildtype Treg does not interfere with protection
[47–50]. With regard to CLTA-4, one study showed that
blocking of Treg induced protection in gastritis while
another observed no abrogation of tolerance upon CTLA-4
blockade. The role, if any, of CTLA-4 in the suppressive
mechanism in vitro is also unclear [12, 48]. Mice treated
with anti-GITR mAb develop gastritis [8]. It is unclear, and
rather unlikely, that this treatment directly modulates Treg
activity. Results from in vitro suppression assays show that
(a) GITR−/− Treg suppress well and (b) the anti-GITR mAb
costimulates Teff, which then resist suppression [50].

Other autoimmune diseases induced by d3Tx
(prostatitis, oophoritis, and thyroiditis)

Most organs show inflammation and destruction after d3Tx
or after injection of CD4+CD25− cells into nude mice. The
incidence of the involvement of different organs varies
between strains. The following diseases have been de-
scribed: gastritis, thyroiditis, oophoritis, prostatitis, sialoa-
denitis, glomerulonephritis, epididymitis, arthritis,
dacryoadenitis, neuropathy, etc. [2, 29]. Nevertheless,
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although more than one single organ can be affected in a
particular mouse, it should be stressed that the disease is
completely organ-specific with no evidence of systemic
autoimmune disease. We shall focus on studies regarding
the antigen specificity of Treg. Already in 1999, Seddon
and Mason [51] demonstrated that CD4+CD45RC− sup-
pressive T cells from athyroid rats were unable to prevent
thyroiditis, while they still prevented diabetes. In contrast,
thymocytes prevented both diseases. Subsequent analysis of
d3Tx animals revealed that Treg adoptively transferred
from male mice were better at suppressing prostatitis than
Treg from female mice, or from males without prostates
[52]. Surprisingly, male Treg can suppress d3Tx-induced
oophoritis as potently as female Treg [53]. The explanation
for this discrepancy lies in the different postnatal onset of
ovarian and prostate antigen expression. The ovarian-
antigens mater and ZP3 are present from birth onwards.
Therefore, male splenic Treg injected a few days after
thymectomy recognize ovarian antigens in the host, expand
ovarian antigen-specific Treg and, thus, suppress oophoritis
which takes 6 weeks to develop. If female mice were
ovariectomized at birth, thymectomized at day 3, and then
received ovarian grafts at 3 weeks, 63% developed
oophoritis. This was completely prevented by the injection
of female but not male Treg on day 5. Given that male Treg
encounter ovarian antigen in the periphery of ovariecto-
mized mice only after ovarian graft transfer (3 weeks later),
it is likely that expansion of ovarian antigen-specific Treg is
insufficient for prevention of oophoritis [52, 53]. In
contrast, the main prostate antigens EAPA1 and EAPA2
are expressed only after puberty, and this explains the lack
of protection from prostatitis by adoptively transferred
female Treg or Treg from prostatectomized males [52]. If
EAPA1 and EAPA2 are already missing in the thymus, such
as in Aire−/− mice, prostatitis develops spontaneously [52].
This demonstrates the need for EAPA1/2-specific Treg
derived from the thymus for prevention of prostatitis. These
results indicate that (a) expression of self-antigen in the
thymus, and (b) further presence of this antigen in the
periphery, are needed to retain sizable numbers of organ-
specific Treg. However, it is not clear if the thymic and the
peripheral antigen(s) that select Treg are identical.

Studies on the prevention of oophoritis also showed that
the draining LN is the major site of Teff inhibition by Treg,
as well as of accumulation of ovarian antigen-specific Treg.
Treg reisolated from ovarian LN of protected d3Tx mice
were much more potent in suppressing ovarian disease
upon transfer into a second recipient than Treg from other
LN or spleen. In contrast, inflammation of the lacrimal
glands (dacryoadenitis) was less well inhibited by the Treg
from ovarian LN than from other LN [53]. Thus, ovarian
LN were enriched in Treg preventing oophoritis while Treg
of other specificities were diminished.

Inflammatory bowel diseases

Inflammatory bowel diseases encompass Crohn’s disease
and ulcerative colitis and are chronic inflammatory diseases
of the gastrointestinal tract. Patients and mice with colitis
mount an aberrant response against the bacterial flora of the
gut. While the development of inflammatory bowel
diseases (IBD) in mice has not been attributed to one
single common pathogen, it has been shown that Helico-
bacter hepaticus can induce colitis in models where Treg
are absent or malfunctioning [54]. Many different murine
models of colitis have been described, e.g., transfer of
CD45RBhi cells to SCID or RAG-2−/− mice, tgɛ26 mice
transplanted with bone marrow, as well as various cytokine
knockout mice (IL-10−/−, IL-2−/−, and TGF-β−/−) and
CTLA-4−/− mice [54, 55]. A recent article describes a
model for Crohn’s disease in which expanded B cells block
Treg function [56]. Because most of the paradigms of
colitis prevention by Treg have been unraveled in the
“CD45RBhi cell transfer system”, we shall concentrate on
these studies. Briefly, the injection of CD45RBhi naïve T
cells into SCID or RAG-2−/− mice induces colitis. This is
prevented by simultaneous transfer of CD25+ cells (or
CD45RBlow cells that are enriched in CD25+ cells) [54].
Importantly, infusion of Treg can also cure ongoing colitis
[57, 58]. This cure is associated with a migration of injected
Treg into the mesenteric LN and the colon, where they
expand and suppress proliferation of Teff. In fact, 10 weeks
after injection of Treg, when the colon architecture has
normalized, the number of Ki67+ proliferating cells has
declined from 30 to 5% in both Teff and Treg [57, 59]. It
has been suggested that CD103 paired with β7 integrin
allows Treg to home to the gut or other inflamed sites [14,
15]. However, the use of cells from CD103−/− or integrin
β7−/− mice showed that Treg do not need to express these
molecules to prevent colitis [60, 61].

Studies evaluating the mechanism by which Treg
suppress the formation of colitis indicate that many factors
contribute to the inhibition of Teff activation. First, the fact
that IL-10−/− and normal adult mice treated with anti-IL-
10 mAb develop colitis in the presence of a normal flora
indicates the importance of IL-10 for the suppression of
inflammation [54]. However, if disease is induced by
wildtype CD45RBhi cells, the suppressing Treg do not
have to produce IL-10 themselves [62]. The second crucial
cytokine for the prevention of colitis is TGF-β. TGF-β−/−

mice develop colitis and anti-TGF-β mAb abrogates Treg-
mediated suppression of colitis [54]. It is crucial that the
colitogenic Teff respond to TGF-β, which could be
produced by any host cell and are not necessarily derived
from the Treg itself [63, 64] (for additional discussion see
[54]). TGF-β is further needed for the survival and function
of Treg [30, 31, 65]. Finally, as TGF-β is abundant in the
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gut associated lymphoid tissue (GALT), it may locally
convert Tcon into Treg and thereby shift the balance
towards immune tolerance [23, 66, 67]. Regarding the
family of costimulatory molecules, injection of anti-CTLA-
4 mAb abrogates protection of colitis after the cotransfer of
CD45RBhi cells together with CD25+ cells [11, 68].
Regulatory T cells devoid of CD28 are still able to protect
from colitis, while the absence of CD28 and ICOS
abrogates their function [68, 69].

The antigen specificity of Treg in inflammatory bowel
disease has not yet been established. Treg isolated from
germ-free mice inhibit colitis [70, 71], and Treg from H.
hepaticus uninfected donors are as efficient in preventing
colitis as those from infected donors [54]. Teff are constantly
reacting to the antigenic stimulation in the gut and when
Treg are depleted, Teff start to produce inflammatory
cytokines [72]. These data indicate that in the colitis model,
Teff are not educated to stay anergic (no “infectious
tolerance”) nor do they convert into regulatory cells.

Experimental allergic/autoimmune encephalomyelitis

In contrast to many other autoimmune diseases, EAE is not
observed after d3Tx [73]. Instead, it can be induced via
immunization with neural self-antigens [myelin oligodendro-
cyte glycoprotein (MOG), myelin basic protein (MPB), and
proteolipid protein (PLP)] in complete Freund’s adjuvant in
susceptible mice and rats. Pertussis toxin is often injected in
addition to open the blood brain barrier (active EAE
induction). Alternatively, mice develop EAE upon the
injection of autoreactive T cells expanded with these central
nervous system (CNS) antigens in vitro (passive EAE
transfer). We refer to these two models as “induced EAE”,
which should be separated from “spontaneous EAE” models
in TCR transgenic mice [73]. As both strength and modality
of the triggered autoimmune response differ, the course of
disease (monophasic/biphasic/relapsing–remitting) is also very
different between the models. This in turn can influence both
Treg function and Treg-independent tolerance mechanisms.

All mice bearing transgenic T cells with specificity for
MBP spontaneously develop EAE when crossed with
RAG-1−/− mice [73, 74]. These MBP-specific TCR-trans-
genic RAG-1−/− mice lack Treg in contrast to MPB-specific
TCR-transgenic RAG-1+/+ mice that contain low numbers
of Treg and do not develop EAE [74]. This protection
depends on the presence of the transgenic MBP-specific
TCR in conjunction with endogenous TCR α-chains on
Treg in the TCR-transgenic RAG-1+/+ mice [74]. Such a
need for endogenous TCR α-chains for the generation of
protective Treg is also seen in the BDC–NOD diabetes
model [75]. In contrast, transgenic Teff are present in the
same animals and mediate autoimmune destruction. These
data imply that the intrathymic Treg commitment of TCR-

transgenic cells fails without recombination of endogenous
TCR chains. In fact, selection of thymocytes into the Treg
lineage occurs at a higher affinity than selection of Tcon
[34]. Another interesting observation emanating from the
study of MBP-specific TCR-transgenic mice is that
CD4+CD25− T cells of the same TCR-specificity also
protected from EAE. It is possible that (a) Foxp3+ Treg
might be able to up- and downregulate CD25 or (b) other
suppressive CD4 populations prevent EAE [73, 76].

When EAE is induced by active immunization or by passive
transfer of autoantigen-reactive T cells, pretreatment of mice
with polyclonal Treg ameliorates severity in MBP- [77], MOG-
[36, 42, 78], and PLP-induced [79, 80] EAE. Conversely,
depletion of Treg by anti-CD25 mAb (PC61) previous to EAE
induction increases mortality and morbidity of PLP- or MOG-
induced EAE [78, 79]. Moreover, EAE-induction with
otherwise insufficient doses of PLP-peptide is possible when
mice are depleted from Treg before EAE induction [81].
Furthermore, the mild and monophasic MOG–EAE turns into
a more severe form of EAE when Treg are depleted before
EAE-induction and a second relapse can be induced in Treg
depleted B6 mice [78]. Antibody based depletion of Treg
alone is not sufficient to induce EAE without any further
immunization with self-antigen [82]. As a caution in judging
Treg depletion experiments, it should also be mentioned here
that (a) Treg depletion by anti-CD25 mAb may not be
sufficient to deplete all Foxp3+ Treg cells [81], and (b) CD25-
expressing autoreactive Teff can also be diminished by anti-
CD25 mAb treatment [76]. Collectively, frequencies of Treg
are probably critical because lower numbers of antigen-specific
Treg are found in strains which are more susceptible to PLP–
EAE than in strains with resistance towards PLP–EAE [83].

Although the natural recovery from monophasic MOG–
EAE is associated with an accumulation of CD4+CD25+ T
cells in the CNS [78], little is known about the in vivo
mechanism of EAE suppression by Treg. Current data
support a model of antigen-specific Treg activation in the
draining LN during the early phase of EAE [84], followed
by accumulation of Treg in the CNS in later stages when
CNS-inflammation declines [78, 81]. Treg isolated from
CNS but not from LN are consistently reported as a major
source of IL-10 in EAE [78, 80, 82]. IL-10-dependent
suppression might explain bystander suppression in models
where Teff and Treg express different Ag-specificity [80].
During recovery from PLP-induced EAE, Treg show
enhanced TGF-β precursor peptide expression (LAP) and
anti-TGF-β or anti-CD25 administration in the recovery
phase leads to EAE relapse [85]. This implies that Treg and
TGF-β are required for recovery from EAE. However, the
possible cellular sources of TGF-β should be further
investigated. In addition, the local targets for suppression,
e.g., Teff (CD4 or CD8), B cells, DC or macrophages, need
to be defined. Recent efforts to prove an effect of Treg on
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expansion, migration, or differentiation of pathogenic T
cells in PLP–EAE failed [81].

The role of antigen specificity for the suppressive function
of Treg has also been addressed in various EAE models. On
the one hand, as described for gastritis, polyclonal Treg have
been shown to protect from EAE caused by MBP-specific
TCR-transgenic Teff [74, 81]. On the other hand, PLP1-
specific transgenic Treg could suppress EAE induced by
PLP1 or CNS homogenate, but not EAE induced by MBP or
MOG peptide unless they had been preactivated before
injection [80]. Together, these data reinforce the in vitro
finding that Treg must be activated by their corresponding
antigen, but they can then suppress Teff of other specificities.

Because it has become clear that Treg can prevent EAE,
many groups are trying to activate Treg or convert
CD4+CD25− Tcon into Treg with the help of drugs [86,
87]. The efficacy of these treatments is not yet clear. It has
also not been firmly established if Foxp3− true Tcon can
indeed be converted into Treg, e.g., MBP-specific TCR-
transgenic Tcon in Rag-1−/− mice could not be induced to
become suppressive [77]. Furthermore, although Treg have
been reported to accumulate during EAE recovery in the
brain [78], little data is available on the immunosuppressive
potency of Treg to break ongoing EAE. The most promising
experiment in this direction was the therapeutic expansion of
Treg by superagonistic anti-CD28 mAb after onset of EAE,
which was able to ameliorate the course of the disease [88].
Thus, even activated myelin-specific effector T cells in the
CNS might be suppressed by potent Treg.

Diabetes in nonobese diabetic and TCR transgenic mice

A protective role of Treg for the prevention of diabetes was
already seen when Sakaguchi and colleagues detected
insulitis in some nude recipients of CD4+CD25− T cells
[2]. Subsequently, natural CD4+CD25+ Treg have been
studied both in spontaneous (i.e., NOD mouse, BB rat) and
inducible (i.e., Streptozocin induced diabetic rat) animal
models of Insulin Dependent Diabetes Mellitus (IDDM).
The most frequently used model to study Treg biology in
IDDM is the nonobese diabetic (NOD) mouse and we shall
limit our discussion to this model. NOD mice spontane-
ously develop T cell-dependent autoimmune diseases such
as thyroiditis, sialadenitis, peripheral polyneuropathy in
addition to IDDM, due to multiple immune (regulatory)
defects (reviewed in [89, 90]. NOD mice develop a mild
peri-insulitis around 4 weeks after birth which then changes
to an aggressive massive insulitis with increased production
of Th1 cytokines around 12 weeks of age [90]. Overt
diabetes is more frequent among female (60–80%) than
male (20–30%) NOD mice [89].

NOD.CD28−/− and NOD.B7−/− mice show accelerated
induction of diabetes compared to NOD mice and further

evaluation revealed a lack of Treg in these substrains.
Disruption of the B7/CD28 pathway crucially affects both
thymic development and peripheral homeostasis of Treg
[32, 91]. Infusion of Treg from young wildtype NOD mice
prevents disease in NOD.CD28−/− mice [90, 91]. NOD
mice also exhibit multiple immune-regulatory defects and
disequilibrium between Tcon and Treg in NOD has initially
been suggested to precede excessive activation of islet
antigen-specific Th1 cells [92]. However, other reports did
not observe any numerical reduction of Treg in young NOD
mice [90, 93], and Pop et al. [94] determined a rather late
age-dependent decline of Foxp3+ Treg around the onset of
insulitis at 8–16 weeks.

Other means to accelerate the onset of diabetes include
the transfer of diabetogenic Teff from prediabetic NOD
mice to NOD.SCID, NOD.RAG-1−/−, neonatal, or irradiat-
ed NOD mice. In all these instances, homeostatic prolifer-
ation of the transferred T cells is observed and may
contribute to accelerated T cell activation and subsequent
earlier rise of glucose levels. As Treg interfere with
homeostatic expansion [39], it is possible that the preven-
tion of diabetes in this model is a side effect of preventing
homeostatic expansion. Likewise, acceleration of diabetes
onset caused by neonatal thymectomy, cyclophosphamide,
or sublethal irradiation could be due to such homeostatic
effects or the depletion of Treg [90].

A lymphopenia-independent model is the BDC2.5
mouse. T cells of these mice express the TCR of a
diabetogenic CD4+, Th1-like T cell clone recognizing an
unknown islet antigen presented by the NOD MHC II
molecule I-Ag7 [75]. In contrast to wildtype NOD mice,
BDC2.5.NOD mice exhibit very synchronous disease, but
mostly no overt diabetes. This protection is reverted when
BDC2.5.NOD are crossed with RAG-1−/− mice (BDC2.5.
NOD.RAG-1−/−), which rapidly present full-blown diabetes
[75]. As mentioned above for EAE, the deficiency to
recombine endogenous TCR leads to the elimination of
Treg development in TCR-transgenic RAG-1−/− mice.
Injection of wildtype Treg protects BDC2.5.NOD.RAG-
1−/− mice from diabetes. An elegant model that specifically
ablates all Treg without creating completely artificial TCR-
monospecific mice, are BDC2.5.NOD.Foxp3−/− mice [95].
Together with the availability of NOD.BDC2.5.Thy-1.1.
Yeti mice [96], which allow detection of IFN-γ producing
auto-aggressive Tcon in vivo, these murine diabetes models
should allow new insights into the Treg biology in IDDM.

A major open question about Treg-mediated suppression
concerns the location at which tolerance induction occurs in
IDDM in vivo. NOD Treg transferred into NOD.CD28−/−

mice preferentially accumulate in the pancreatic LN and islet
regions of the pancreas [90]. Several reports have suggested
that the majority of Treg are actively suppressing Teff
function in the pancreas tissue, rather than in the pancreatic
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LN [90, 95, 97]. Moreover, initial priming of Teff, as
determined by measuring cytokine production, proliferation,
chemokine, and costimulatory molecule expression of Teff
in the pancreatic LN was not changed [90, 95]. The outcome
of such experiments probably depends on the antigen
specificity of the transferred cells and on the timing of cell
transfers. BDC2.5 Teff only proliferate in the pancreatic LN
where they recognize islet self-antigen. This proliferation is
only marginally inhibited by wildtype NOD Treg. However,
BDC2.5 Treg injected 2 days before BDC2.5 or 4.1 TCR-
transgenic Teff completely inhibited the proliferation of both
of these islet-specific Teff. Furthermore, IFN-γ production,
as measured in vivo using BDC2.5 Yeti cells, was also
suppressed. To detect IFN-γ-producing cells, directly ex
vivo without artificial restimulation of Teff in vitro is a great
advantage because in vitro restimulation could overcome
inhibition. In summary, islet-specific Treg home to the
pancreatic LN and efficiently prevent priming of autoreac-
tive Tcon cells when Treg are present in the draining LN
before arrival of Tcon [96]. Most importantly, two-photon
laser-scanning microscopy of pancreatic LN showed stable
DC–Treg cluster and no stable Treg–Tcon cluster, suggesting
a DC-mediated Treg suppression rather than a direct effect of
Treg on Tcon in vivo [96]. Such an inhibition of DC by Treg
is very potent in the absence of DC-help via CD40L and
completely suppressed diabetes in NOD.CD154−/− mice
[98]. Targeting islet antigen to immature DC and, thus,
increasing antigen-specific Treg has been shown to be a
promising avenue for novel Treg-based strategies of diabetes
prevention in the prediabetic organism [99].

In conclusion, many laboratories confirm that BDC2.5
Treg with their enriched anti-islet repertoire, as well as in vitro
expanded islet antigen-enriched NOD Treg are more potent in
suppressing diabetes than wildtype NOD Treg [95, 96, 100–
102]. Such in vitro expanded islet-specific Treg may even be
used to cure diabetes [102]. Furthermore, Treg isolated from
the pancreatic LN are very potent in inhibiting diabetes while
Treg from nonpancreatic LN are not [90, 92] and CD62Lhi

CCR7+ NOD splenic Treg suppress diabetes much better
than CD62L− NOD splenic Treg [103]. It remains to be seen
whether Treg use different mechanisms to suppress Teff
activation in the pancreatic LN vs inflammation in the
pancreas. Although it is not yet clear if suppression of
diabetes by Treg proceeds via cytokines [90], systemic
expression of IL-10 or expression of TGF-β in the pancreas
have been shown to prevent or even cure diabetes most
likely via expansion of Treg [65, 104, 105].

Regulatory T cells in systemic autoimmune disease
(lupus and arthritis)

Antinuclear Ab and glomerulonephritis were detected in
some of the nude mice that received CD4+CD25− cells,

indicating that systemic autoimmune disease might also be
controlled by regulatory cells [2]. Indeed, d3Tx of lupus
prone New Zealand Mixed 2328 (NZM2328) mice leads to
an acceleration of lupus glomerulonephritis, as well as to
extrarenal autoimmune disease. It is interesting to note that
most of these extrarenal diseases (prostatitis, thyroiditis,
and dacryoadenitis) can be suppressed by the injection of
purified CD25+ cells from young NZM2328 mice, while
glomerulonephritis and sialoadenitis are not affected [106].
This is not due to a polyclonal suppression of B cells as
hypergammaglobulinemia is not affected even though anti-
dsDNA Ab titers are reduced. These data point to a
selective defect of Treg for specific antigens rather than a
global Treg defect. This should be considered when
studying human autoimmune disease(s) where a polyclonal
Treg defect seems to be the focus of most clinical research
on Treg. Increased numbers of CD25+ cells have been
found in CD95-deficient lupus prone mice and CD25 cells
in CD95/CD95L double-deficient BALB/c lpr/lpr gld/gld
mice all express Foxp3 [107–109]. Treg are able to
suppress B cell activation directly, as well as indirectly
via inhibition of T cell help [107–109]. Very recent data
indicate that preactivated Treg also kill B cells in vitro, and
the implications of this for autoimmune diseases and B cell
responses need to be analyzed [110]. Moreover, the
possibility that autoimmunity could also occur due to
aberrant signaling in Teff, rendering them resistant to
suppression by Treg as described for MRL/Mp lupus prone
mice [111], should be considered.

One animal model for the study of arthritis is the
immunization of mice with bovine or chicken collagen and
complete Freund’s adjuvant (collagen-induced arthritis).
The severity and incidence of arthritis is increased when
mice are depleted of Treg and reduced when mice are
injected with high numbers of Treg [14, 112]. Such an
ameliorating effect can still be discerned when Treg are
injected after onset of early disease symptoms. Because the
overall T cell and antibody response to collagen II is not
altered in these mice, the decrease in symptoms is probably
due to local suppression of inflammation in the joint.
Indeed, Treg immigrated into the inflamed synovial tissue
and the synovial fluid [113].

Principles of immunosuppression mediated by Treg

Amelioration vs prevention and cure of autoimmune
disease

Most experimental settings analyzed so far tested Treg for
their capacity to prevent autoimmune disease. In models
of “spontaneous” development of autoimmunity such as
in the d3Tx model or in TCR transgenic mice, Treg
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completely prevent autoimmune disease, even though in
some settings a mild nonaggressive inflammation can be
found. In the case of immunization with self-antigen and
adjuvant, Treg can often only ameliorate disease. The
adjuvant leads to a strong activation of antigen-presenting
cells and, thus, to a powerful stimulation of T cells, which
can no longer efficiently be counteracted by Treg.
Exciting recent data indicate that injection of Treg even
cures ongoing autoimmune disease. This has been shown
in models of colitis and diabetes [57, 101]. In particular,
high scale in vitro expansion of Treg specific for tissue
self-antigens and their injection into patients holds great
promise.

Migration of Treg and localization of suppression

The site of Treg function in vivo could be the draining LN,
the respective target organ or both. Current research has just
begun to address this question and data are still controver-
sial, which could also be due to the different models being
analyzed. Treg migrate to the draining LN, as well as to the
inflamed organ [45, 114]. In addition, tissue antigen-
specific Treg accumulate preferentially in the draining LN
compared to nondraining LN [53]. The efficacy of this
migration depends on Treg subpopulations, with CD62L+

cells migrating more to the draining LN and CD103+ cells
migrating more to the site of inflammation [15, 115]. While
Treg express chemokine receptors (e.g., CCR4 and CCR8),
the relative importance of these for their migration to LN,
draining LN, and inflamed tissue needs further evaluation.
Clearly, CCL22 derived from macrophages, DC, or micro-
glia attracts CCR4+ Treg. This has been shown in tumor
and transplantation settings [79, 116].

Upon simultaneous injection of polyclonal Treg and
antigen-specific Teff, the expansion of Teff in the draining
LN and their migration to the target organ is not inhibited,
while aggressive tissue destruction in the organ is stopped
in gastritis, as well as in NOD mice [45, 90, 95, 97]. In
contrast, Samy et al. [53] reported that Treg inhibit
expansion, activation marker expression, and cytokine
release by Teff in the ovarian LN of d3Tx mice. In this
model, Treg are injected at day 5 of age, and the antigen-
specific Treg had time to expand in the draining LN.
Similarly, islet antigen-specific Treg injected before Teff
completely inhibit Teff activation [96]. Concerning treat-
ment of ongoing autoimmune disease, it would be
preferable if Treg could inhibit Teff in the inflamed tissue
as well as in the draining LN.

Target cells and mechanism of suppression

While early work has concentrated on suppression of
CD4+ cells, recent data show that in vitro activation of

CD8 cells, B cells, natural killer (NK) cells, NKT cells,
DC, and macrophages can be inhibited by Treg (see
Table 1) [107, 117–121]. Because all these cell types
interact during the immune response in vivo, it is difficult
to determine which cells are affected by Treg in the
various diseases. Nevertheless, using models with defined
tissue-destructive cell populations, it has also become
evident that CD8, B, NK cells, and other innate immune
cells are also downmodulated by Treg in vivo [109, 114,
119, 122].

Inhibition of T cells in vitro requires direct cell contact
between Treg and Teff. Upon activation, Treg secrete IL-
10 and TGF-β. While most studies do not find a role for
IL-10 in in vitro suppression assays, there is still debate if
membrane-bound TGF-β on Treg could be important for
Teff suppression [35]. Crosslinking GITR costimulates
Teff and, therefore, abrogates inhibition in cocultures [50].
The importance of inhibitory cytokines in vivo depends
very much on the system studied (Table 2) where three
scenarios, as exemplified for IL-10, are possible. First, IL-
10 is secreted by Treg [78, 80] and this IL-10 secretion is
mandatory for suppression, e.g., in EAE [82]. Second, IL-
10 is crucial for the inhibition of disease, but locally
produced IL-10 can help IL-10−/− Treg to dampen
inflammation, e.g., colitis [62]. Third, in gastritis suppres-
sion is independent of IL-10 [47, 48]. TGF-β is a very
pleiotrophic inhibitory cytokine that is involved in the
suppression of many cell types in vitro and in vivo (CD8
cells [122], B cells [107], NK cells [119], or other innate
immune cells [114]). TGF-β is needed for protection from
many autoimmune diseases, although again, at least in
colitis, local production of TGF-β can help TGF-β−/− Treg
to curb inflammation [63, 64]. The finding that colitis
prevention is dependent on IL-10 and TGF-β, while
gastritis is not [47, 48], could be due to the fact that (a)
colitis is induced by the bacterial flora and due to TLR-
signals which constitute a stronger immune activation
compared to self-antigen, and/or (b) these cytokines are
needed for the suppression of the innate immune system
activated in colitis [123].

Activated Treg express granzyme B and kill B cell blasts
in a perforin- and CD95L-independent mechanism via
Granzyme release [110, 118]. Further studies should clarify
if this occurs in vivo and if other cells could be killed by
the same mechanism.

Although in vitro studies demonstrate direct inhibition of
T cells, B cells, and NK cells by Treg, it is not clear if this
also happens in vivo. Recent real time imaging in LN does
not show a long interaction time between Teff and Treg. In
contrast, a clear interaction between Treg and antigen-
bearing DC can be noted [96]. As various in vitro and in
vivo data observe a restrained maturation of DC in the
presence of Treg [98, 124, 125], the possibility that Teff
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activation in the presence of Treg is due to inadequate
stimulation from antigen presenting cells should be further
analyzed.

Antigen specificity of regulatory T cells

Initial studies of the Treg repertoire indicated that they are
polyclonal like Tcon and no difference in the overall TCR
repertoire could be defined. However, the examination of
TCR-transgenic mice revealed that Tcon and Treg are
selected at different TCR interaction strength [34]. Further-
more, Hsieh et al. [126] demonstrated that the TCR
repertoire of Tcon and Treg is equally diverse but only
partly overlapping. Thus, when a TCR-transgene in
combination with RAG-deficiency or lack of TCR α-chains
restricts T cells to only one single TCR specific for MBP or
islet antigen, Treg cannot develop and EAE or diabetes
ensues. Treg only develop in the presence of endogenous
TCR α-chains and then prevent disease in transgenic mice
[34, 74, 75, 127].

Prevention or cure of autoimmune disease has mostly
been studied using polyclonal populations of Treg. It is
interesting to note that polyclonal Treg protect from disease
induced by monoclonal tissue specific Teff [45, 74].
Nevertheless, transgenic tissue-specific Treg (e.g., BDC2.5
TCR-transgenic, islet mimotope p31-specific or MBP-

specific Treg) are more potent in suppressing diabetes or
EAE in that fewer cells are needed for a similar protective
effect compared to polyclonal Treg [74, 101, 102].
Especially if a fast onset diabetes model is used, like the
transfer of BDC2.5 Teff cells into NOD.RAG-1−/− mice,
only islet-specific Treg injected before Teff can potently
abrogate Teff priming in the draining LN [96, 97]. Islet
antigen-specific Treg are very potent in suppressing
diabetes, while the destruction of salivary and thyroid
glands in the recipient NOD mice is not affected [100].
Thus, different sets of Treg protect different organs, as
already discussed in the oophoritis and prostatitis section
[52, 53]. In vitro suppression experiments have shown that
the suppression itself is antigen-nonspecific. However, it is
important that Treg recognize antigen to become activated.
Therefore, it is generally believed that bystander suppres-
sion occurs and that all Tcon in close vicinity to a
suppressive Treg are inhibited. This could explain why
Treg from mice lacking H/K-ATPase nevertheless prevent
gastritis induced by H/K-ATPase-specific Teff, probably
due to activation of Treg to other gastric antigens [46]. In
absence of the target organ, e.g., athyroid rats or ovariec-
tomized females, the respective Treg are missing from the
repertoire and cannot protect new hosts against thyroiditis
or oophoritis, while other autoimmune diseases are still
prevented [51, 53].

Table 2 Function of Treg in various autoimmune diseases

Disease Cytokine/molecule needed for
disease protection/amelioration

Localization of suppression Antigen specificity of Treg

Gastritis Not IL-10 [47, 48]; not TGF-β
[48, 49]; not CTLA-4 [48];
not GITR [50]; CTLA-4 [12]

Gastric LN; gastric mucosa Polyclonal [3, 45, 46]; anti-H/K-ATPase (TXA23)

Oophoritis Ovarian LN [53] Polyclonal [52, 53]; MATER ZP3 [53]
Prostatitis Polyclonal [52]; EAPA1, EAPA2 [52]
Colitis IL-10 [54, 58, 62]; TGF-β

[58, 63, 64, 123]; CTLA-4
[11, 58]

Mesenteric LN [57]; lamina
propria [57]

EAE IL-10 [78, 82]; TGF-β [85] Brain (late) [78]; draining
LN (early) [42]

Polyclonal [74]; anti-MBP TCR with
2nd TCR α-chain [74]

Diabetes in NOD mice TGF-β [65, 94]; not TGF-β [90];
not IL-10 [90, 94]

Pancreatic LN [96];
pancreas [90, 95, 97]

Polyclonal <anti-islet specific (BDC2.5)
[100–102]

Table 1 Cells targeted by Treg Target cells Mechanism Disease References

CD4+ T helper cell IL-10 ?TGF-β ? Autoimmune diseases, cancer,
infection etc.

See text

CD8+ cytotoxic T cell TGF-β Cancer [117, 122]
B cell TGF-β, killing Lupus erythematodes [110]
NK cell TGF-β Cancer [119]
NKT cell [120]
DC ? Diabetes [96, 98]
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Modulation of suppression

The in vitro inhibition assays revealed that the strength of
the TCR and costimulatory signal received by the Teff
determines if Treg can still suppress T cell activation. High
doses of anti-CD3 or anti-CD28 mAb and further stimula-
tion of GITR, ICOS, or OX40 on Teff reduces or even
abrogates suppression [50, 97, 128]. Increased DC activa-
tion, e.g., via Toll-like receptors (TLR), or addition of IL-12
also overcomes suppression [129, 130]. On the other hand,
there may be a direct effect of TLR on Treg. Treg express a
variety of TLR on the mRNA level and for most TLR
protein expression still needs to be confirmed [131]. TLR2
and TLR8 signals reduce and TLR5 signals enhance the
suppressive function of Treg [131–134]. How these find-
ings relate to Treg in mice and how they influence
autoimmunity needs to be investigated.

It would be of great interest to selectively enhance the
suppressive capacity of Treg, without stimulating Teff and
DC. This will be crucial for the treatment of autoimmune
diseases. One interesting approach is to expand and activate
Treg in vivo with a superagonistic anti-CD28 Ab. Appli-
cation of this Ab in rats leads to inhibition of EAE if given
at the time of immunization, while injection of the mAb at
onset or during disease leads to a milder EAE course [88].
With regard to applying this finding to humans, caution is
necessary as the dose of antibody may be very critical and
many aspects of the immune system could be activated.
Further work has been published indicating that hormones
(estrogen, vasoactive intestinal peptide), cortisol derivates,
or substances that lead to DC tolerance also induce, expand,
or activate immunosuppressive T cells. However, these
findings need to be confirmed with stringent methods
regarding Treg phenotype and function (e.g., flow cytom-
etry for Foxp3 and quantitative suppression assays at
various Treg dilutions using CFSE labeled Teff) before
drawing firm conclusions.

Conclusion

During the past 10 years, CD4+CD25+ regulatory T cells
have been extensively studied with regard to their inhibitory
role in autoimmune disease, transplantation tolerance, im-
mune reactions towards infection, and anticancer immune
responses (see the other chapters in this issue). It is evident
that Treg can reduce basically all immune responses. The
final outcome depends on the balance between the strength
of stimulatory and inhibitory signals acting on Tcon. How
exactly this balance is established, the means by which it can
be broken, and how it can be reestablished, needs further
evaluation. In addition, the relationship between thymic
derived natural CD4+CD25+Foxp3+ Treg and other sub-

populations induced in the periphery, e.g., peripherally
generated CD4+CD25+Foxp3+ cells, as well as T regulatory
1 (Tr1) [135] and T helper 3 (Th3) [136] cells needs
clarification. Nevertheless, Treg are now being analyzed in
human autoimmune disease, and efforts to find drugs that
could boost their numbers or function are under way.
However, for this field to be successful and for an efficient
translation of basic research into clinical studies, it would be
very helpful to find decisive cell surface markers and to
understand the mechanism of Treg function. Also care
should be taken to work with well-defined CD4+CD25+

Foxp3+ cells instead of CD4+CD25+ cells to ensure that
future investigations build on the same cell population and
thus avoid misleading data that may discredit the field.
Finally, the next few years will show if the in vitro expansion
of antigen-specific Treg can be achieved under GMP-
conditions and if the injection of these cells can cure or
ameliorate human autoimmune disease.
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