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Abstract. Increasing generations of the telomerase knockout mouse, Terc–/–, show
severe telomere dysfunction characterized by critically short telomeres and end-to-
end chromosomal fusions. These mice also suffer from various age-related diseases
affecting highly proliferative tissues. Among these pathologies are a reduced prolif-
erative capacity of B and T cells, as well as a reduction of germinal center reactivity
upon immunization. Both immune system defects are landmarks of immunosenes-
cence. The study of the telomerase-deficient mouse model supports the notion that
telomere shortening with age contributes to immunological dysfunction in the 
elderly.

What are telomeres?

Telomeres are large nucleoprotein complexes at chromosome ends that are composed
of G-rich tandem repeats of the sequence TTAGGG in vertebrates and associated
proteins [7, 16]. In addition, telomeres are characterized by having a 3′ G-rich over-
hang (G-strand overhang) [47, 69], which is likely to originate as a direct conse-
quence of the so-called “end replication problem” [53]. The G-strand overhang can
fold back and invade the duplex telomeric repeats, displacing one strand and hybrid-
izing to its complementary sequence [25]. This higher-order telomere structure has
been named the “T-loop” (Fig. 1). The T-loop model provides a mechanism for the
sequestering of the G-strand overhang, which could otherwise activate DNA damage
checkpoints and DNA repair enzymes [14, 24]. The formation of T-loops has been
associated to the binding of telomeric proteins TRF1 and TRF2 [25] (see below).
More recently, a novel telomeric protein, Pot 1, has been shown to interact with the
single-stranded G-strand overhang both in S. pombe and in humans [4].

The first TTAGGG-binding protein identified was TRF1, a negative regulator of te-
lomere length [15]. TRF1 function is regulated by TIN2 [41], and by two proteins
highly homologous to each other, TANK1 (also known as tankyrase) and TANK 2 [39,
60]. Another TTAGGG-repeat binding protein is TRF2 [6, 11]. Like TRF1 and TIN2,
TRF2 is also a negative regulator of telomere length [62]. In addition, TRF2 has
unique functions at the telomere such as stabilizing the G-strand overhang, and pre-



venting telomeric fusions [65]. Furthermore, over-expression of a TRF2 dominant neg-
ative mutant causes premature senescence [65] and apoptosis [38]. TRF1 and TRF2 are
found at telomeric T-loops and their effects on telomere length and end-protection
could be mediated by this property [25]. TRF2 has been shown to recruit hRAP1 and
the MRE11 complex to human telomeres [43, 72]. Ku proteins also interact with
TTAGGG repeats [5, 34] and with telomere binding proteins [35]. Ku70 and Ku85 to-
gether with DNA-PKcs form an enzyme called DNA-dependent protein kinase (DNA-
PK), which is involved in DNA double-strand break (DSB) repair by non-homologous
end-joining (NHEJ) and in V(D)J recombination [61]. The study of Ku86- and DNA-
PKcs-deficient mice has demonstrated that these proteins also have a role at the mam-
malian telomere [3, 22, 35, 57]. In addition, the study of human premature aging syn-
dromes has contributed to the identification of other proteins that affect telomeric func-
tion in mammals, such as Ataxia telangectaxia, Bloom and Werner [26].

Telomerase: the cellular enzyme that makes telomeres

Telomerase synthesizes telomeres de novo, hence preventing telomere shortening
due to the end-replication problem in those cells where it is expressed at sufficiently
high levels [2]. Telomerase consists of two essential components, a reverse transcrip-
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Fig. 1. a Different proteins found at the mammalian telomere. b Mammalian telomeres can form a higher
order structure known as the T-loop, which has been seen associated with telomeric proteins TRF1 and
TRF2



tase known as telomerase reverse transcriptase (Tert) and an RNA molecule or tel-
omerase RNA component (Terc), which contains the template for the synthesis of
new telomeric repeats [14, 52]. Telomerase activity regulation is relevant both for
cancer and aging. On one hand, telomerase activity is up-regulated in the vast major-
ity of human tumors compared to normal somatic tissues [58], and its inhibition in
human tumor cell lines leads to telomere shortening and loss of cell viability [73],
suggesting that telomerase inhibition could be an effective way to abolish tumor
growth by provoking telomere shortening to a critical length. In this regard, mice de-
ficient for telomerase activity and that show critically short telomeres are resistant to
carcinogenesis in a p53 wild-type genetic background [1, 20, 23, 55].

On the other hand, loss of telomeric sequences with increasing age has been pro-
posed to be a biological determinant in the process of aging. As an example, telo-
mere length in human fibroblasts and peripheral blood mononuclear cells declines
proportionally to donor age at a rate of 50–200 bp/year [19, 28, 66]. This telomere
loss is thought to occur due to incomplete DNA replication (end-replication prob-
lem) [2, 53]. Importantly, the introduction of a constitutively expressed telomerase
catalytic subunit into cells with a limited life-span is sufficient to stabilize their telo-
meres and to extend their life-span, apparently without inducing changes associated
with neoplasic transformation [10, 37, 48]. However, the recent construction of mice
that overexpress constitutive levels of telomerase activity in the skin, has suggested
that high levels of telomerase in adult tissues can favor tumorigenesis [21].

Interestingly, telomerase-independent telomere elongation or alternative lengthen-
ing of telomeres (ALT) has been described in immortal human cell lines that do not
have detectable telomerase activity [12, 13], as well as in cell lines derived from
telomerase-deficient mice [27]. ALT seems to involve homologous recombination
between different telomeres [17].

Finally, the exact mechanisms that regulate the access of telomerase or ALT
activities to the telomere are still unknown. However, it has been proposed that 
T-loops, as well as different telomere binding proteins regulate this process (see
above) (Fig. 1).

Telomerase and the immune system

Mammals are protected from antigenic and pathogenic stresses by an effective im-
mune system response. The antibody-mediated immune response is achieved by a
process that occurs primarily in the germinal centers (GC) where naive B lympho-
cytes undergo somatic hypermutation and clonal expansion followed by the selection
of cells expressing receptors with the highest affinity for the antigen [40, 64]. The
generation of long-lived immune memory assures a more effective response and a
faster neutralization of the pathogen after a secondary challenge. Telomerase is acti-
vated when B cells enter the GC, and is subsequently down-regulated when B cells
differentiate to memory B cells [32, 36, 44, 51, 67]. In accordance with this, telo-
meres are longer in GC B cells than in naive B cells or in memory B cells [67]. Dur-
ing aging, however, there is a marked decline in the reactivity of the immune system,
which has been attributed in part to impairment of lymphocyte function coincident
with a decrease in the GC reaction [71]. The decline in immune system reactivity
could be partly due to the exhaustion of proliferative potential of naive B cells as a
consequence of telomere shortening with increasing age [18, 33]. In particular, telo-
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mere length has been shown to decrease in peripheral blood mononuclear cells at a
rate of 50–200 bp/year of age [19, 66]. It has been proposed, in the past, that this te-
lomere loss is a consequence of the down-regulation of telomerase activity with age
[32]. However, more recent analysis showed that age does not significantly alter the
capacity of telomerase induction in human lymphocytes [63]. Either way, telomere
shortening with age is thought to be responsible for the limited replicative capacity
of antigenic-specific T lymphocytes. In support of this hypothesis, human T clones
that have been transduced with hTert, and that therefore express high telomerase ac-
tivity, retain their proliferative potential for more population doublings than the con-
trols transduced with an empty vector [56]. These observations suggest that ectopic
expression of the catalytic subunit of telomerase, Tert, is capable of extending the
replicative life-span of primary human T lymphocytes. These findings have impor-
tant implications for gene therapy of diseases associated with immunosenescence.

The telomerase-deficient mouse model

Mice genetically deficient for telomerase activity provide a unique opportunity to
understand the role of telomere maintenance in organism viability. Several telom-
erase-deficient mice have been generated in which expression of either Terc [9, 49],
or Tert [45, 50], has been eliminated. Most of the studies described, however, have
been carried out on the model first described [9], which was obtained by the elimina-
tion of the gene encoding for Terc [8]. Terc–/– mice are viable for only four to six
generations, depending on the specific genetic background; however, as telomeres
shorten and chromosome fusions accumulate with increasing generations, Terc–/–

mice become infertile and no further generations can be derived [9, 30, 42, 54]. In
both genetic backgrounds the phenotypes associated to telomere dysfunction include
(1) partial embryonic mortality due to a defect in the closure of the neural tube and
to increased neuronal apoptosis [29]; (2) small size and severe intestinal atrophy [30,
54]; (3) spleen atrophy and reduced proliferation of B and T lymphocytes upon mito-
genic stimulation [30, 42]; (4) impaired GC function upon mice immunization [31];
and (5) a reduced incidence of malignancies except when in a p53-deficient genetic
background [1, 20, 23, 55]. Overall, these results support an essential role of telom-
erase in highly proliferative tissues [42]. Here, we focus on the impact of telomere
dysfunction on immunosenescence in the Terc–/– mouse model.

Immune system phenotypes in the telomerase-deficient mouse model

Reduced spleen size

Analysis of late generation Terc–/– mice with the C57BL/6 genetic background re-
vealed diminished spleen size in those animals that showed poor health [30]. Com-
plete flow cytometric analysis of the splenocytes derived from the affected spleens
showed lower numbers of cells positive for the B cell marker B220/CD45R, indicat-
ing a decrease in the total B cell number in the affected spleens [30].

Decreased follicle numbers in the spleen

The lymphoid area of the spleen, or white pulp, consists of three distinct parts: the
marginal zone, the periarteriolar lymphoid sheath (PALS) and the follicles. The folli-
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cles are made up of naive B cells and follicular dendritic cells. Spleen follicles are
easily visualized by morphological criteria and by immunohistochemistry with naive
B cell marker B220. Interestingly, the spleens from late generation Terc–/– mice show
a 50% reduction in follicle numbers compared to age-matched wild-type spleens
[31]. This reduction in the number of follicles in late generation Terc–/– spleens coin-
cides with a decreased proliferative response of B and T cells upon mitogen stimula-
tion (see below). Since naive B cells are generated in the bone marrow, the lower fol-
licle number in the late generation Terc–/– spleens could also reflect the reduced bone
marrow function in the late generation Terc–/– mice [42].

Reduced B and T cell proliferation upon mitogen stimulation

Splenocytes derived from late generation Terc–/– mice with either of the two genetic
backgrounds studied show a decreased proliferative response to B (LPS, CD40
ligand), T (anti-CD3 concanavalin A) and B + T cell (ionomycin-PMA)-specific mi-
togens, indicating a lower proliferative capacity of both T and B cells when telo-
meres are critically short [30, 42]. Further studies indicated that the decreased prolif-
erative capacity of B and T cells was not accompanied by increased apoptosis or by
an abnormal cell cycle profile as determined by flow cytometry [31], suggesting that
it was exclusively due to an exhaustion of the proliferative capacity of these cells.

Abnormal blood cell counts

Extensive hematological analysis of late generation Terc–/– mice in the C57BL/6
background showed abnormalities in total lymphocyte and neutrophil numbers com-
pared to wild-type controls [30]. In particular, the late generation Terc–/– mice
showed reduced numbers of lymphocytes, concurring with the previously described
reduction in spleen B lymphocytes (see above). In those Terc–/– mice that showed re-
duced lymphocyte counts, there was also a dramatic increase in neutrophils [30].
These increased neutrophil numbers may be compensating for the poor immune re-
sponse of late generation Terc–/– lymphocytes. Similar increased neutrophil numbers
have been described in 27-month-old animals [59]. No significant differences were
detected in total leukocyte numbers or in hematocrit between the late generation
Terc–/– mice and the corresponding wild-type controls [30]. Interestingly, those mice
with aberrant blood cell counts showed symptoms of poor health or died, suggesting
a hematological defect as a possible factor contributing to some deaths [31].

Impaired GC formation

After antigenic stimulation, naive B cells undergo extensive proliferation in the folli-
cles forming the GC and generating memory B cells [40]. GC can be identified by
immunostaining with peanut agglutinin. As mentioned above, telomerase activity is
present in both naive and memory B cells, but is further up-regulated in the GC [32,
36, 51, 67]. Concurring with this, several studies have shown that both components
of human telomerase, Terc and Tert, are present in the GC B cells in both humans
and mice [31, 44, 70].
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In agreement with the idea that telomere maintenance by telomerase plays a role
during GC formation, late generation Terc–/– spleens show a dramatic reduction in
GC number compared to their wild-type counterparts after immunization with an an-
tigen [31] (Fig. 2). This dramatic decrease in the number of GC in the late generation
Terc–/– mice is accompanied by diminished antigen-specific IgM and IgG antibodies
in the sera [31]. In contrast, first generation Terc–/– mice, which lack telomerase ac-
tivity but still have sufficiently long telomeres, show normal GC numbers upon im-
munization [31], indicating that the reduction in GC formation in late generation
Terc–/– mice is caused by telomere exhaustion and not by telomerase deficiency per
se. The GC formation defect in late generation Terc–/– mice coincides with dimin-
ished proliferation of the splenocytes derived from these mice upon mitogen stimula-
tion [31].

Telomerase is responsible for telomere elongation during 
the GC immune reaction

Previous studies showed that telomeric terminal restriction fragments (TRF) are lon-
ger in GC B cells than in naive or memory B cells [67], indicating that telomeres are
elongated during this process. Indeed, it has been suggested that telomerase elon-
gates telomeres during GC formation, allowing the clonal expansion that occurs in
the GC to form the memory B cell pool. The telomerase-deficient mouse model con-
stitutes an excellent experimental system to directly test this hypothesis. In wild-type
mice, it was observed that telomeres were elongated approximately 5 kb in the
splenocytes derived from immunized mice as compared to those from the non-
immunized controls [31]. Furthermore, it was possible to conclude that this telomere
elongation was mediated by telomerase, since splenocytes from immunized first gen-
eration (G1) Terc–/– mice, which lack telomerase activity, showed an average telo-
mere shortening of 7 kb compared to those from non-immunized G1 Terc–/– controls
(Fig. 3). These results demonstrated that the telomere elongation detected in wild-
type spleens following in vivo immunization is mediated by telomerase activity.
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Fig. 2. The average number +SD of GC visual-
ized per spleen section from wild-type, G5 and
G6 Terc–/– mice is shown. The total number of
spleen sections used for the analysis is indicat-
ed at the top of the graph (GC germinal centers)



Alternative lengthening of telomeres in late generation Terc–/– splenocytes

When telomere length was measured in splenocytes derived from non-immunized
late generation Terc–/– mice, they were considerably shorter than those of their wild-
type counterparts, concurring with the fact that telomeres shorten with increasing
generations in Terc–/– mice [9, 30]. Strikingly, splenocytes from immunized late gen-
eration Terc–/– mice, showed telomeres which were on average 12 kb longer than
those of splenocytes from non-immunized late generation Terc–/– controls. These re-
sults suggest that during the splenocyte proliferation triggered by immunization there
is a selection of clones which show long telomeres. Since these mice are telomer-
erase deficient, these long telomeres may derive: (1) from a surviving subpopulation
of late generation Terc–/– cells that have preserved long telomeres after five genera-
tions in mice without telomerase (which appears unlikely), or, alternatively, (2) from
activation of still-to-be-defined telomerase-independent telomere rescue mechanisms
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Fig. 3a, b. Quantitative fluorescence in situ hybridization on splenocyte metaphases. a, b Metaphases
from wild-type splenocytes. a A metaphase corresponding to splenocytes from an non-immunized mouse;
b a metaphase of splenocytes from a wild-type immunized mouse. Notice the higher telomeric fluores-
cence in splenocytes derived from immunized mice. c, d Metaphases from fifth generation Terc–/– spleno-
cytes. c A metaphase corresponding to splenocytes from a non-immunized mouse; b a metaphase of sple-
nocytes from an immunized mouse. Notice that splenocytes with extremely long telomeres are selected in
late generation immunized Terc–/– mice compared to the non-immunized controls, suggesting the activa-
tion of alternative lengthening of telomeres in these cells



in late generation Terc–/– splenocytes. Either way, telomeres appear to be critical in
sustaining cell proliferation during the GC reaction. The existence of telomere-
rescue mechanisms in late generation Terc–/– mice is supported by previous reports
showing that late generation Terc–/– cells in culture can maintain telomeres without
telomerase [27]. It is important to note, however, that in contrast to cultured cells,
these putative telomere elongation activities in late generation splenocytes are not
sufficient to rescue the immune system phenotypes in these mice.

Conclusions

The analysis of the telomerase-deficient mouse model points to immunological de-
fects as possible causes of the poor health and death of these mice. Immunosenes-
cence is regarded as one of the landmarks of human aging. It has been widely report-
ed that the immune system function declines with increasing age; in particular, as hu-
mans age, there is a decrease in T cell numbers, as well as impaired responsiveness
to mitogens [68]. Furthermore, late generation Terc–/– mice show a dramatic reduc-
tion in the number of GC formed following in vivo antigen immunization. This re-
duced GC reactivity of late generation Terc–/– mice may contribute to immunosenes-
cence in these mice. The study of the telomerase knockout mouse also supports the
idea that telomere maintenance by telomerase is responsible for the extensive prolif-
eration undergone by B lymphocytes in the GC during the immune response.
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