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Antitumor activity of interleukin 12 in preclinical models

AbstractmInterleukin 12 (IL-12) is a heterodimeric cyto-
kine with a number of biological effects that are consistent
with its potential role as an antitumor agent. The antimeta-
static and antitumor activities of IL-12 have been demon-
strated in a number of murine tumor models. Both the
inhibition of established experimental pulmonary or hepatic
metastases and a reduction in spontaneous metastases have
been achieved by treatment with murine IL-12. Systemic
treatment of mice bearing subcutaneous tumors with IL-12
results in tumor growth inhibition, prolongation of survival,
and, in some models, tumor regression. The antitumor
effect of IL-12 in these models is dose-dependent and can
be initiated against well-established tumors. Mice cured of
their tumor by IL-12 treatment are specifically immune to
rechallenge with the same tumor. A series of experiments
have demonstrated that both T-cells and interferon-gamma
(IFN-γ) induction are necessary for the optimal antitumor
effects of IL-12. However, the antitumor efficacy of IL-12
has not been observed after exogenous administration of
murine IFN-γ, suggesting that additional factors may be
important for the antitumor effects of IL-12. In several
tumor models, IL-12 is more active or has a larger thera-

peutic window than either IL-2 or IFN-α, two cytokines
with demonstrated antitumor activity against human malig-
nancies. Combining IL-12 with other cytokines or che-
motherapeutic drugs can improve antitumor effects.
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Interleukin 12 (IL-12) is a heterodimeric cytokine [27, 39]
originally cloned from B-lymphoblastoid cell lines [21, 47].
The major normal cell type producing IL-12 is the macro-
phage/monocyte [10], but other normal cells such as
B-cells, granulocytes, keratinocytes, mast cells, and den-
dritic cells (reviewed in [22, 43]) can produce IL-12;
production by T-cells has not been reported. Receptors for
IL-12 are present on both natural killer (NK) and T-cells
[11, 12], and are composed of two related but unique
chains, designatedβ1 and β2 [36]. Although each chain
of the IL-12 receptor can bind IL-12 with low affinity, both
subunits are needed for high-affinity binding [36].

IL-12 mediates a number of biological activities (re-
viewed in [22, 43]), and can enhance the proliferation and
cytolytic function of T-cells and NK cells [16, 17, 33].
Furthermore, IL-12 induces T-cells and NK cells to pro-
duce a number of cytokines, including interferon-gamma
(IFN-γ), tumor necrosis factor (TNF), IL-2, IL-3, IL-8,
IL-10, and colony-stimulating factors [19, 22, 43]. IL-12
also stimulates the generation of T-helper type 1 (Th1)
effector cells during an immune response [26, 28]; some
subclasses of antibodies to protein antigens are similarly
enhanced by concurrent treatment with IL-12 [20]. IL-12
can also inhibit growth-factor-induced angiogenesis [45].

Based on these properties, there has been strong interest
in evaluating the antimetastatic and antitumor activities of
IL-12. In all of these studies, recombinant murine IL-12 has
been utilized because human IL-12 is not active against
murine cells [37]. IL-12 has been shown to work therapeu-
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tically in a number of experimentally induced and sponta-
neous models of pulmonary, hepatic, and lymph node
metastases [3, 18, 31, 32, 40]. Following intravenous
injection of tumor cells, including B16F10 melanoma [3],
M5076 reticulum-cell sarcoma [3], and MC-38 adenocarci-
noma [32] cells, systemic administration of IL-12 markedly
inhibited metastases and prolonged survival. IL-12 has also
been demonstrated to have activity in models of sponta-
neous metastases. For example, following surgical resection
of the primary subcutaneous OV-HM ovarian carcinoma,
lymph node and lung metastases were markedly reduced in
IL-12-treated mice as compared with controls [31]. Simi-
larly, IL-12 treatment reduced spontaneous pulmonary
Lewis lung carcinoma [40] and hepatic M5076 metastases
[18]. Recently, in an orthotopic model of Renca renal-cell
carcinoma, IL-12 improved the survival of mice that had
had their primary tumor removed but died from metastases
if left untreated [46].

IL-12 has been shown to be effective when used as a
therapeutic agent against a large number of transplanted
tumors. Included among the tumors in which the in vivo
effects of IL-12 have been evaluated are B16F10 melanoma
[3], Renca renal-cell carcinoma [2–5], MC-38/colon 38
adenocarcinoma [32], Lewis lung carcinoma [40, 45], colon
26 carcinoma [1], MBT-2 bladder carcinoma [30], MB49
transitional-cell carcinoma [30], OV-HM ovarian carcino-
ma [31], TSA breast carcinoma (G. Forni, personal com-
munication), M5076 reticulum-cell sarcoma [3, 18], KA31
sarcoma [15], MCA-105 sarcoma [32], MCA-207 sarcoma
[32], CSA1 M fibrosarcoma [44, 51], Meth A sarcoma [34],
X5563 lymphoma [35], and RAW117 lymphoma [44]. In
these models, IL-12 given by either local peritumoral or
systemic injection induces tumor growth inhibition, prolon-
gation of survival, and, in some models, complete tumor
regression in well-established tumors. Mice cured of their
tumors reject subsequent challenge with the same but not
other syngeneic tumor cells [2–4, 31, 32, 51].

Fibroblasts or tumor cells transfected with IL-12 genes
have also been evaluated in murine models of tumor
establishment and in therapy for existing tumors. Fibro-
blasts genetically engineered to secrete IL-12 and injected
concomitantly with tumor cells suppressed the growth of
BL-6 melanoma; the efficacy was related to the amount of
IL-12 expressed by the transfected fibroblasts [41]. Peritu-
moral injection of IL-12-transfected autologous or allo-
geneic fibroblasts induced regression of established
MCA-207 sarcoma [50]; systemic effects against contra-
lateral primary tumors and pulmonary metastases were also
obtained by subcutaneous injection of IL-12-secreting fi-
broblasts [50]. Mice in which tumor regression was ob-
served were immune to rechallenge with parental tumor
cells [50]. IL-12-secreting MCA-207 sarcoma, MCA-102
sarcoma, and colon 26 carcinoma tumor cells, in contrast to
non-IL-12-secreting parental cells, were rejected by immu-
nocompetent mice [29, 42]; mice in which these tumors
regressed were immune to rechallenge with parental tumor
cells. A therapeutic effect has also been obtained with
IL-12-transfected MCA-207 sarcoma tumor cells at up to
3 days following the injection of parental cells [42]. Greater

antitumor immunity has been found with MCA-207 sarco-
ma or TS/A breast-carcinoma tumor cells transfected with
both B7.1 and IL-12 genes [49].

Since human IL-12 is inactive against murine cells [37],
work in preclinical tumor models with human IL-12 re-
quires concurrent transfer of human effector cells. Transfer
of human cytotoxic T-cells and treatment with human IL-12
significantly prolonged the survival of severe combined
immunodeficiency (SCID) mice bearing human acute mye-
logenous leukemia as compared with treatment with either
therapy alone [7]. Treatment of SCID mice bearing human
melanoma tumors with human NK cells plus human IL-12
and IL-2 was more effective than treatment with NK cells
and IL-2 [24]. Preincubation in vitro of a cloned cytotoxic
T-cell line with human IL-12 resulted in enhanced anti-
tumor efficacy after transfer into glioblastoma-bearing
SCID mice [8]. These transfer models utilizing human
effector cells and IL-12 are consistent with the effects
reported for murine IL-12 in tumor-bearing mice.

Since several cytokines, in particular IFN-α and IL-2
[23], have been shown to have antitumor effects against
human malignancies, the efficacy of IL-12 has been com-
pared with that of these cytokines. In the Renca renal-cell
carcinoma model, although both IL-2 and IL-12 are active,
IL-2 induces tumor regression only at its maximum toler-
ated dose, with no long-term survivors resulting from a
2-fold lower dose; however, IL-12 is active over a 100-fold
dose range [5]. In contrast to the tumor regression induced
by IL-12, treatment of Renca tumor-bearing mice with
IFN-α [5] or IFN-γ [4] results in inhibition of tumor growth
but not in tumor regression. IL-12 has shown antitumor
activity superior to that of IL-2 in mice bearing B16F10
melanoma and Lewis lung carcinomas, whereas similar
effects have been found in mice bearing M5076 and
colon 38 tumors [5, 40] (Brunda et al., unpublished ob-
servation). In metastasis models the efficacy of IL-12 has
also been shown to be superior to that of IL-2 [31, 32]. One
note of caution for these types of experiment is that it
cannot be excluded that better efficacy could be achieved
by some modification of IL-2 dosing that was not explored
in these studies.

The mechanism(s) underlying the antitumor effects of
IL-12 is just beginning to be explored. IL-12 does not have
a direct antiproliferative effect on tumor cells as judged by
the inability of IL-12, even at very high concentrations, to
inhibit tumor cell proliferation in vitro [4, 25, 35] and by
the finding that the in vivo activity of IL-12 is much lower
in nude mice than in euthymic mice bearing the same
tumors [3, 4]. It is nonetheless possible that IL-12 may
exert direct effects on tumor cells, and it has recently been
reported that IL-12 can inhibit human tumor cell attachment
to matrices and growth-factor-induced invasion [25].
Although relatively few cells have been shown to have
receptors for IL-12 [11, 12], other potential direct effects of
IL-12 on tumor cells need to be evaluated.

Based on its biological effects, it was initially hypothe-
sized and subsequently shown that the effects of IL-12 are
mediated, at least in part, through stimulation of the
immune system. Several lines of evidence have emerged

S17



demonstrating the importance of T-cells in mediating the
antitumor effects of IL-12. Large numbers of T-cells have
been found within regressing tumors from IL-12-treated
mice [32, 51]; the specific subpopulations vary with the
tumor evaluated, with a predominance of CD8+ T cells
being present in MCA-207 sarcomas [32] and both CD8+

and CD4+ T-cells being present in CSA1 M fibrosarcomas
[51].

As mentioned above, the antitumor effects of IL-12 are
markedly reduced in Renca or B16F10 tumor-bearing
T-cell-deficient athymic nude mice as compared with
those in euthymic tumor-bearing animals [3, 4]. Depletion
of T-cell subsets with monoclonal antibodies resulted in
reduced efficacy of IL-12 treatment. In Renca carcinoma
[3] or Meth A sarcoma [34] tumor-bearing mice, anti-CD8
antibodies markedly suppressed the efficacy of IL-12,
whereas anti-CD4 antibodies had no effect. In mice bearing
either MCA-207 sarcomas [32] or CSA1 M fibrosarcomas
[51], depletion of either CD4+ or CD8+ T-cells had little
effect on IL-12 efficacy; however, depletion of both subsets
completely abrogated the antitumor effects. In C-26 colon
carcinoma tumor-bearing mice, treatment with anti-CD4
antibodies increased the antitumor efficacy of IL-12 ther-
apy; the increased efficacy was correlated with an increase
in CD8+ T-cell infiltration of tumors [29]. Overall, although
specific details vary with the tumor model utilized, it is
clear that T-cells are critical for optimal antitumor effects of
IL-12.

In contrast to T-cells, there are few data demonstrating
the involvement of other immune effector cells. Depletion
of NK cells by injection of anti-asialo GM1 antibody
resulted in no loss of IL-12 efficacy in Renca or MCA-
207 tumor-bearing mice [3, 32]. Similarly, IL-12 treatment
was just as effective in NK-cell-deficient beige mice as in
normal mice bearing the B16F10 melanoma [3]. However,
IL-12 activity has been demonstrated in SCID mice bearing
X5563 lymphomas [35], suggesting a possible role for NK
cells. Antibody depletion studies also suggest that NK cells
contribute to the early phase of antitumor reactivity induced
by IL-12 in gene therapy models [29, 42]. Higher numbers
of macrophages infiltrate IL-12-induced regressing tumors,
and there is evidence for direct or indirect activation of
macrophages by IL-12 [32] (Hendrzak et al., unpublished
results), but no direct role for macrophages in mediating the
antitumor effects of IL-12 has been established. Evaluation
of other cell types awaits further experimentation.

Since IL-12 is a potent inducer of IFN-γ [19] and IFN-γ
has many biological effects [48] that could influence tumor
growth, a substantial amount of work has focused on the
role that IFN-γ induction by IL-12 plays in antitumor
efficacy. It is clear that treatment of tumor-bearing mice
with IL-12 results in enhanced serum levels of IFN-γ [4, 32]
and increased levels of IFN-γ mRNA within tumors [14].
The critical role of IFN-γ has been demonstrated using
neutralizing anti-IFN-γ antibodies that can inhibit the effi-
cacy of IL-12 in several tumor models [4, 6, 32, 51] and the
loss of the antitumor activity of IL-12 in IFN-γ gene
knockout (gko) mice bearing B16F10 melanomas [6]. The
lack of IFN-γ in gko mice results in many defects [9],

including a complete inhibition of IL-12-induced nitric
oxide synthase and a marked reduction in the induction of
lymphokine-activated killer (LAK) cell activity [6].
Although IFN-γ is necessary for the antitumor effects of
IL-12, it is not clear whether induction of IFN-γ is sufficient
to account for the antitumor efficacy of IL-12 or whether
other factors are necessary. Several lines of evidence
suggest the latter possibility. Substantially higher serum
levels of IFN-γ are induced by IL-12 in tumor-bearing nude
mice than in euthymic mice, but IL-12 has little antitumor
activity in nude mice [4]. Treatment of Renca tumor-
bearing mice with IL-12 is much more efficacious than
treatment with exogenous IFN-γ [4]. However, higher
levels of IFN-γ mRNA have been measured in tumors in
mice treated with IL-12 [14], and this locally produced
IFN-γ could mediate the antitumor effects of IL-12 through
inhibition of angiogenesis [45], induction of nitric oxide
[14], or other, as yet uncharacterized events. Further work is
necessary to define the exact role of IFN-γ in mediating the
antitumor efficacy of IL-12.

IL-12 is a potent antitumor drug when given as a single
agent. However, although tumor regression is observed
following IL-12 therapy in some models, in many other
murine tumor models, IL-12 produces tumor inhibition
rather than cure. To develop more effective therapies, we
have evaluated the utility of combining IL-12 with other
cytokines and chemotherapeutic drugs. In our initial com-
bination studies, we evaluated IL-2 and IFN-α, two cyto-
kines with demonstrated antitumor effects in animals and
humans [23]. Combining IL-12 with either IL-2 or IFN-α,
at optimal doses of these proteins as single agents, resulted
in substantially increased toxicity and death [5]. At sub-
optimal doses, increased activity of the cytokine combina-
tions as compared with the same dose/regimen of each
individual cytokine was observed in some tumor models,
but the antitumor effect was not superior to that achieved
with the optimal dose of IL-12 alone [5]. Recently, a new
regimen of IL-12 plus IL-2 administration has been devel-
oped that produces a substantial increase in antitumor
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Fig. 1mIncreased inhibition of M5076 tumor growth by IL-12 plus
IFN-α. Mice were injected with tumor cells subcutaneously on day 0
and treatment was initiated on day 21. Intraperitoneal cytokine treat-
ment was as follows: IL-12 at 1µg 5 times/week, IFN-α once per week
(1×106 U), or the cytokine combination. Tumors were measured on
day 57 and their volume was calculated as described previously [3].



efficacy [46]. In an orthotopic model of renal-cell carcino-
ma, 90–100% of mice showed complete, lasting responses
when treated with IL-12 given five times per week com-
bined with IL-2 given weekly after surgical removal of the
primary tumor, as compared with 10–30% of animals that
underwent surgery combined with administration of one of
these cytokines [46]. This combination did not produce any
increase in gross toxicity. Preliminary data also show that
this cytokine combination without surgical resection of the
primary tumor is superior to treatment with either IL-12 or
IL-2; the response observed includes the inhibition of
primary tumor growth, a reduction in the number of
metastases, and prolongation of survival (Dvorozniak and
Aglione, unpublished observations). Similarly, in mice
bearing subcutaneous M5076 tumors, the combination of
daily IL-12 and weekly IL-2 resulted in a substantial
improvement in survival [6]. Using a similar regimen, an
improved antitumor response has been observed in M5076
tumor-bearing mice treated with IL-12 and weekly IFN-α
(Fig. 1). In this model, IFN-α given weekly is not effective,
but when IFN-α is given in combination with IL-12 the
response is substantially improved as compared with treat-

ment with IL-12 alone. The mechanism underlying this
improved response obtained with cytokine combinations
has not been characterized but is currently under investiga-
tion.

Using a similar approach, the combined therapeutic
effect of IL-12 and several chemotherapeutic drugs has
been evaluated in the B16F10 and M5076 models. Dosing

with IL-12 five times per week combined with weekly
dosing with doxorubicin resulted in greater antitumor
efficacy against subcutaneous B16F10 tumors (Fig. 2).
Early in the course of therapy (day 22), there was compa-
rable inhibition by both IL-12 and IL-12 plus doxorubicin,
whereas doxorubicin alone was ineffective. However, as
therapy continued (day 43), tumor growth was inhibited to a
greater extent in mice treated with the combination than in
mice treated with IL-12 alone. In contrast to the positive
results obtained with IL-12 plus doxorubicin, combining
IL-12 with etoposide did not result in enhanced antitumor
efficacy (Fig. 3, day 43). Combining IL-12 with several
other drugs, including taxol and 5-fluorouracil, also did not
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Fig. 2 A, BmIncreased inhibition of B16F10 tumor growth by IL-12
plus doxorubicin (DOX). Mice were injected with tumor cells sub-
cutaneously on day 0 and treatment was initiated on day 14. Intraper-
itoneal treatment was as follows: IL-12 at 1µg 5 times/week, DOX
once per week (5 mg/kg), or the combination. Tumors were measured
on A day 22 andB day 43, and their volume was calculated as
described previously [3]. All mice in the diluent and DOX-alone
groups had died by day 43

Fig. 3 A, BmTreatment of B16F10 tumor-bearing mice with IL-12 plus
etoposide (ETO) does not increase efficacy. Mice were injected with
tumor cells subcutaneously on day 0 and treatment was initiated on day
14. Intraperitoneal treatment was as follows: IL-12 at 1µg 5 times/
week, ETO once per week (10 mg/kg), or the combination. Tumors
were measured onA day 22 andB day 43, and their volume was
calculated as described previously [3]. All mice in the diluent and
ETO-alone groups had died by day 43



improve efficacy as compared with treatment with IL-12
alone (Luistro and Rumennik, unpublished observations).
These findings contrast with the positive results obtained by
combining IL-12 with radiotherapy or chemotherapy in
some tumor models [13].

Doxorubicin can induce apoptosis of tumor cells [38],
and the potential effect of IL-12 on this process has been
evaluated in an in vitro assay. Incubation of B16F10 tumor
cells with doxorubicin induced dose-dependent apoptosis;
however, culture of tumor cells with doxorubicin and IL-12
did not result in increased apoptosis. Since IL-12 is a potent
inducer of IFN-γ [19], B16F10 cells were cultured with the
combination of doxorubicin and IFN-γ; enhanced apoptosis
was observed under these conditions (R. Wright, unpub-
lished observations). It is possible that in vivo injection of
IL-12 may indirectly augment apoptosis induced by doxo-
rubicin through induction of IFN-γ. At present it is not
known whether other cytokines induced by IL-12 may
induce similar effects. Additional experiments are neces-
sary to establish whether there is a direct correlation
between the in vitro and in vivo findings.

In summary, IL-12 is a cytokine that can induce multiple
biological effects and is a potent therapeutic agent in
murine models of tumor growth and metastasis. Both
T-cells and IFN-γ are important mediators of the antitumor
effects of IL-12, but the details of their involvement remain
unknown. The activity of IL-12 can be enhanced by weekly
pulses of other cytokines, including IL-2 and IFN-α, or
doxorubicin. Future studies will determine the role of IL-12
in the treatment of human malignancies.
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