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Abstract Purpose: Microtubules are important cyto-
skeletal components involved in many cellular events.
Antimicrotubule agents including polymerizing agents
(paclitaxel and docetaxel) and depolymerizing drugs
(vincristine, vinorelbine, and estramustine phosphate)
are widely used either alone or in combination with
other anticancer drugs. These antimicrotubule agents
are promoters of apoptosis in cancer cells. In this review,
we discuss the role of bcl-2 family genes in the regulation
of apoptosis, and summarize e�ects of microtubule
targeting agents on apoptotic signal transduction path-
ways. Conclusion: Disruption of microtubule structure
by antimicrotubule drugs results in induction of tumor
suppressor gene p53 and inhibitor of cyclin-dependent
kinases, p21WAF1/CIP1 (p21), and activation/inacti-
vation of several protein kinases including Ras/Raf,
PKC/PKA I/II, MAP kinases, and p34cdc2. These
protein kinases are associated directly or indirectly with
phosphorylation of bcl-2. Phosphorylation of bcl-2 and
the elevations of p53 and p21 lead to apoptosis. New
pathways of antitumor agents could be directed at this
p53, p21 and bcl-2/bax function, and may enhance the
e�ect of existing agents.
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Introduction

Maintenance of the integrity of an organism and its
tissues depends upon a delicate balance between prolif-
eration, di�erentiation, and programmed cell death or
apoptosis. Uncontrolled growth at a stage of incomplete
maturation or as a consequence of a disorder in di�er-
entiation and/or as dysfunctional apoptosis results in
signi®cant changes of this balance. Ideally, cancer cell
growth could be controlled by reactivating pathways
leading to cell cycle arrest, cellular di�erentiation, or
apoptosis.

Microtubules, the self-assembly of a,b tubulin hetero-
dimers, are important cytoskeletal components involved
in the regulation of cell proliferation, di�erentiation, and
apoptosis. These molecules are formed by 13 parallel
proto®laments (microtubule wall) to which a variety of
microtubule-associated proteins (MAPs) and motor
proteins bind. Both a and b subunits exist in several is-
otypic forms and undergo a variety of post-translational
modi®cations [39, 40, 86]. Polymerization and depoly-
merization of tubulin basically regulates microtubular
dynamics. Numerous ligands bind to tubulin, a�ecting its
assembly properties. Microtubule targeting agents are
important ligands which have been shown to have utility
as chemotherapeutic drugs for the treatment of various
types of tumors [11, 18, 24, 29, 47, 56, 62, 66, 67, 68].
Taxanes interact with polymerized tubulin and prevent
depolymerization, while vinca alkaloids interact with
monomeric tubulin and prevent polymerization. Studies
have demonstrated that these microtubule targeting
agents promote apoptosis in cancer cells [21, 26, 82]. This
review focuses on the apoptotic signal transduction
pathways induced by antimicrotubule agents.

Regulation of apoptosis by bcl-2 gene family

Regulation of apoptosis involves a large number of
genes that can be classi®ed into three broad categories as
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illustrated in Table 1. These include genes that primarily
suppress apoptosis, genes that act as promoters of ap-
optosis, and genes upstream of apoptosis [9, 10, 12, 17,
19]. Apoptosis in mammalian cells is controlled by an
equilibrium between suppressor and promoter gene
products [59].

The bcl-2 gene family plays a critical role in the reg-
ulation of apoptosis and contributes to the pathogenesis
of many diseases. Aberrant expression of bcl-2 is be-
lieved to contribute to malignant cell expansion via an
antiapoptotic e�ect which enhances cell survival rather
than by accelerating cell proliferation. Constitutive ex-
pression of bcl-2 in some lymphomas and leukemias
allows escape of these cells from physiological apoptosis
in the germinal centers and appears to be a major de-
terminant of their pathogenesis [61]. Inhibition of bcl-2
with antisense oligonucleotides induces apoptosis in
acute myelogenous leukemic blasts and increases their
sensitivity to chemotherapeutic agents [41]. The HTLV-1
tax protein induces apoptosis which is believed to be
blocked by bcl-2 [88].

Bcl-2 family members, both apoptosis suppressors
and promoters, interact with each other at the level of
protein-protein interactions. Bcl-2 protein binds to other
proteins with which it has amino acid sequence homol-
ogy, including bax, bcl-XL, bcl-XS, mcl-1, bik, and bad
[9, 10, 18, 60, 80]. The functional signi®cance of many of
these bcl-2 family protein-protein interactions at present
remains unclear. A previous report has suggested that
the heterodimerization of bcl-2 with bax appears to be
critical in preventing bax-mediated apoptosis [60]. For
example, since bax appears to antagonize bcl-2 function
thus abrogating the ability of bcl-2 to prolong cell sur-
vival, a high level of bcl-2 relative to bax promotes
survival. In contrast, an excess of bax relative to bcl-2
results in cell death [60]. Similar observations have been
reported for bcl-2 and bak [12]. However, more recent
studies indicate that bcl-2 and bax can independently
regulate apoptosis [31, 43]. This conclusion is based on
the observations that (1) the bcl-2 transgene blocks ap-
optosis with comparable e�ciency in the absence of bax,
(2) bax can clearly promote apoptosis in the absence of
bcl-2, and (3) bax de®ciency and bcl-2 expression (en-
dogenous or transgene) result in an additive e�ect on
apoptosis [43]. Moreover, a recent report also suggests
that the complex interaction between bcl-2 and bax may
not be an in vivo phenomenon [36]. These ®ndings thus

argue that bcl-2 and bax can each function indepen-
dently of their physical interaction with each other.

The role of bcl-2 phosphorylation in the regulation of
apoptosis remains controversial. Previous reports have
suggested that bcl-2 function is regulated through its
phosphorylation [26]. Studies using inhibitors of phos-
phatases, such as okadaic acid, have shown that bcl-2
can be phosphorylated at serine residues 70 and 87, and
that bcl-2 phosphorylation is associated with loss of its
antiapoptotic function [5, 26]. A compelling correlation
between bcl-2 phosphorylation and induction of apop-
tosis in lymphoid cells has been reported [26], suggesting
that phosphorylation/dephosphorylation of bcl-2 could
be a molecular determinant of cell survival or death.
However, this model is challenged by recent observa-
tions that phosphorylation of bcl-2 is a marker of M
phase events, and not a determinant of apoptosis [52].
Bcl-2 phosphorylation was closely associated in time
with M phase arrest, accumulation of cyclin B1, and
activation of cdc2/cyclin B1 kinase, but not with apop-
tosis, when continuous exposure to paclitaxel was eval-
uated in HeLa cells. Apoptosis was ®rst detected at 12 h
and steadily increased thereafter until the termination of
the experiments at 48±60 h [52]. Since bcl-2 phosphor-
ylation was detected as early as 6 h after HeLa cells
were exposed to paclitaxel, the question remains whether
bcl-2 phosphorylation is an early signal leading to
programmed cell death.

Induction of bcl-2 phosphorylation and bax expression
by microtubule damaging agents

Apoptosis in cancer cells can be selectively triggered by
various stimuli, which include ionizing radiation, os-
motic shock, cytokines, Fas antigen, and anticancer
drugs [33, 38, 56, 70]. TNF-a, whose receptor is related
to Fas, can induce apoptosis in myelogenous leukemia
and other cancer cells [70]. Antimicrotubule agents, both
polymerizing agents and depolymerizing drugs, have
apoptosis-inducing activity [21]. These drugs induce
apoptosis by disorganization of microtubule structure.
The e�ect of this antimicrotubule action is believed to
result in the inactivation of bcl-2 function through
phosphorylation [26].

Several studies have demonstrated that bcl-2
phosphorylation can be speci®cally induced by drugs
that a�ect microtubule depolymerization or prevent
microtubule assembly. This e�ect is not seen by DNA-
damaging agents [26, 28, 73]. Induction of bcl-2 phos-
phorylation at serine-70 and serine-87 is required for
microtubule-damaging drug-induced apoptosis [5]. Our
recent studies have demonstrated that a signi®cant in-
crease of bcl-2 phosphorylation occurs at 3 h, and
achieves peak levels at 16 h after exposure of MFC-7
cells to vinorelbine or estramustine [82]. This change
occurs much earlier than observable cell death. Bcl-2
phosphorylation thus is an early signal. The induction of
bcl-2 phosphorylation is known to be followed by loss of

Table 1 Genes that regulate apoptosis

Category Genes References

Suppressors Bcl-2, Bcl-XL, Bcl-w, B¯-1,
Brag-1, Mcl-1, A1, Ced-9,
BHRF-6, LMW5, CREB,
Caspase-9b

9, 12, 15, 19, 23,
30, 32, 45, 48,
51, 57, 72

Promoters Bcl-xS, Bax, Bak, Bad, Bid,
Bik, HRK, Apaf-1, BOD,
ZK1, Caspase-1, Caspase-3

10, 12, 37, 60,
80, 88

Upstream
genes

Fas/Fas ligand, p53, p63,
Myc, WAF1/CIP1

4, 76, 85
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its ability to form heterodimers with bax. We have re-
cently reported a signi®cant decrease of the formation of
bcl-2/bax heterodimers after induction of bcl-2 phos-
phorylation, even though the level of bax protein is in-
creased in MCF-7 cells exposed to vinorelbine [82]. A
decrease in bax immunoprecipitated with bcl-2 antibody
has also been reported in paclitaxel-, vincristine-, or vin-
blastine-treated cells [73]. Similarly, treatment of pros-
tate cancer cells with these agents causes induction of
the bcl-2 phosphorylation followed by a decrease of
heterodimer complex formation with bax during apop-
tosis [27].

Apoptotic signal transduction pathways mediated
by antimicrotubule agents

The e�ects of antimicrotubule agents on cellular func-
tion are complex and involve several apoptotic signal
transduction pathways as illustrated in Fig. 1.

c-Raf-1/Ras/Bcl-2 pathway

Raf kinases and the ras GTP-binding protein are
important regulators of cellular proliferation, transfor-
mation, di�erentiation, cell cycle progression, and ap-
optosis [42, 44, 56, 64, 69, 71, 85, 87]. Raf-1, the cellular
homolog of the v-raf oncoprotein, is a ubiquitously ex-
pressed serine/threonine kinase which serves as a central
interface in the transmission of mitogenic signals from
the cell membrane to the nucleus [64, 69, 71, 85, 87]. In
addition, ras protein is an important e�ector of growth
factor receptors and activates di�erent signal transduc-
tion cascades [3, 20, 66, 75]. A protein p23 R-ras is
associated with bcl-2 activity [23, 26]. Overexpression of
p23 R-ras cannot transform cells but can induce apop-
tosis [25]. Recent studies indicate that apoptosis induced
by microtubule targeting agents may require the c-Raf-
1/Ras/Bcl-2 pathway [7, 26, 28, 82]. Treatment of tumor
cells with paclitaxel results in apoptosis and in c-raf-1
activation which occur simultaneously with bcl-2 phos-
phorylation [7]. Raf-1 activation requires the interaction
of paclitaxel with tubulin, and raf-1 is markedly dimin-
ished in paclitaxel-resistant cell sublines. An association
has been observed, using paclitaxel analogues and other
microtubule targeting agents, between tubulin poly-
merization, raf-1 activation, bcl-2 phosphorylation, and
apoptosis [7]. Thus a model can be proposed that envi-
sions a pathway of raf-1 activation and bcl-2 phos-
phorylation following disruption of the microtubular
architecture, serving a role similar to p53 induction
following DNA damage [8].

p53/p21WAF1/CIP 1 pathway

As upstream genes of apoptosis, both p53 and p21
participate in the apoptotic process triggered by micro-

tubule targeting agents [4, 6]. Cell cycle progression is
regulated by cyclin-dependent kinases (Cdks) counter-
balanced by cdk inhibitors. p21WAF1/CIP 1 (p21) is a
potent inhibitor of cdk2 and cdk4. Treatment of cells
with microtubule-targeting agents results in induction of
p21 and p53 expression [4, 6]. Paclitaxel induces con-
centration- and time-dependent accumulation of p21 in
both p53 wild-type and p53-null cells, although the de-
gree of induction is greater in cells expressing wild-type
p53. Coincident with the elevation of p53 and p21,
paclitaxel altered the electrophoretic mobility of c-raf-1
and stimulates mitogen-activated protein (MAP) kinase.
Previous depletion of c-raf-1 brought about by treat-
ment of 3T3 cells with the benzoquinone ansamycin GA
results in inhibition of both the p21 and p53, as well as
the activation of MAP kinase. These ®ndings suggest
that induction of p21 and p53 by paclitaxel requires
c-raf-1 activity, but apoptosis is not strictly dependent
on wild-type p53 [6]. Elevation of p21 expression also
parallels the inhibition of p34cdc2 activity [4]. High

Fig. 1 The e�ect of antimicrotubule agents on signal transduction
pathways of apoptosis. Exposure of cells to antimicrotubule drugs,
such as taxanes, vinca alkaloids, colchicine, 2-methoxyestradiol,
results in rapid alterations of protein kinase activities (c-raf-1/ras,
MAP kinases, p34cdc2, PKA I and II, PKC) and induction of bax.
These protein kinases are directly or indirectly responsible for bcl-2
phosphorylation, p53 and p21 stabilization or expression. Overex-
pression of bax causes G2-M-phase arrest, tubulin polymerization,
and bcl-2 phosphorylation. The increased tumor suppressor protein
p53, cdc kinase inhibitor p21, and apoptosis promoter bax, as well
as loss of bcl-2 function together with other apoptosis promoters
form the death signals leading to apoptosis
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levels of p21 protein have been found to be associated
with inactive p34cdc2/cyclin B protein complex after
treatment with paclitaxel [4].

Protein kinase A (PKA) pathways

The actions of cAMP in the regulation of various cel-
lular functions, including cell proliferation, di�erentia-
tion, and gene induction through the activation of PKA
are well known [18, 46]. Apoptosis induced by the cAMP
analog 8-Cl-cAMP and the RI-a antisense oligonucleo-
tide parallels the degree of downregulation of PKA type
I and the level of upregulation of PKA type II in several
cancer cell lines [13, 14, 49, 73]. Synergistic inhibition of
growth and induction of apoptosis by 8-Cl-cAMP and
paclitaxel, cisplatin, or retinoic acid in several human
cancer cells has been demonstrated [72, 77]. In addition,
intracytoplasmic microinjection of puri®ed PKA cata-
lytic subunit promotes cell death [79]. PKA type II has
been found to be associated with mammalian centro-
meres [78], and upon microtubule disruption by paclit-
axel, vincristine, or vinblastine, activated PKA causes
bcl-2 phosphorylation, leading to apoptosis. In contrast,
the drug nocodazole acts analogously to vincristine to
block microtubule polymerization but does not activate
PKA, does not induce increase of bcl-2 phosphorylation,
and consequently does not lead to apoptosis [74]. Hence,
disruption of microtubule polymerization does not nec-
essarily lead to apoptosis unless downstream elements
are activated. These studies indicate that activation of
PKA due to microtubule damage is an important event
in bcl-2 phosphorylation and induction of apoptosis.

MAP kinase/p34cdc2-cyclin A
and B kinase/bcl-2 pathways

Microtubules are important cytoskeletal components
involved in many cellular processes [16, 22]. Recent ev-
idence suggests that the functions of microtubule-asso-
ciated proteins (MAPs) and ®laments in microtubular
assembly are regulated through their phosphorylation
by MAP kinases and/or p34cdc2 [65]. MAP kinase
subfamilies contain three members which include
extracellular signal-regulated protein kinases (ERKs),
c-Jun N-terminal kinase/stress-activated protein kinase
(JNK/SAPK), and p38 [83, 84]. MAPs are good sub-
strates for ERKs, and phosphorylation weakens their
stabilizing e�ects on microtubules [35]. A di�erential
e�ect of microtubule-targeting agents on MAP kinase
activity during induction of apoptosis has been reported.
Previous studies have demonstrated that paclitaxel in-
duces apoptosis through its inhibition of MAP kinase
and p34cdc2 kinase activation at G2/M phase in PC-9
and PC-14 cell lines [58]. This decrease in MAP kinase
and p34cdc2 kinase activities parallels the increased
complex formation between microtubule associated
proteins with a and b tubulin with an increase in the

amount of MAP-2 phosphorylation [58]. Paradoxically,
activation of MAP kinase induced by apoptosis has also
been reported [51]. A possible explanation may be a
di�erential e�ect on MAP kinases depending upon
whether or not the antimicrotubule agent promotes
polymerization or depolymerization. In addition, these
e�ects may be cell line speci®c.

We have observed in MCF-7 cells that MAP kinase
can be activated rapidly by vinorelbine, but is inhibited
by paclitaxel, and estramustine [83]. Approximately a
threefold increase of MAP kinase activity was observed
within 30 min when exponentially grown MCF-7 cells
were treated with 0.2 lM vinorelbine. The maximal
activation occurred at 1 h with a fourfold increase, and
the enzyme activity was maintained at high levels up to
24 h. In contrast, treatment of MCF-7 cells with
estramustine resulted in a signi®cant decrease of MAP
kinase activity within 30 min, and the maximal inhibi-
tion occurred at 1 h followed by partial recovery. Con-
sistent with the previous report [58], inhibition of MAP
kinase in MCF-7 cells by paclitaxel was also observed.
This di�erential e�ect of the antimicrotubule agent on
MAP kinase activity may be due to di�erent binding
sites of these drugs to microtubules which then triggers
distinct damage of microtubule structures and signal
transduction pathways leading to apoptosis.

Whether or not activation of the MAP kinases is
involved in bcl-2 phosphorylation is currently unclear.
In our recent study, no bcl-2 phosphorylation was ob-
served when immunopuri®ed bcl-2 reacted directly with
pure MAP kinase [82]. However, MAP kinases may
indirectly be responsible for bcl-2 phosphorylation [2].
2-Methoxyestradiol, a natural estrogen metabolite, ex-
hibits a similar inhibition of microtubule dynamics to
paclitaxel. Exposure of the erythromyeloid leukemia cell
line K562 to 2-methoxyestradiol results in stabilization
of microtubules which is accompanied by phosphory-
lation and inactivation of bcl-2. Raf-1 is also phos-
phorylated in response to 2-methoxyestradiol, but this
e�ect occurs later than bcl-2 phosphorylation, suggest-
ing that raf-1 is not the kinase involved in the phos-
phorylating bcl-2. On the other hand, a rapid, but
transient activation of JNK/SAPK occurs following 2-
methoxyestradiol treatment. This ®nding indicates that
overexpression of JNK/SAPK may indirectly lead to
bcl-2 phosphorylation [3]. Recent studies have also
demonstrated that microtubule targeting agents activate
JNK/SAPK through both Ras and apoptosis signal-
regulating kinase (ASK1) pathways in a variety of
human cells. This activation requires interactions with
microtubules [83].

Conclusion

Based on the observations mentioned above, apoptosis
induced by antimicrotubule agents is a very complex
process associated with many protein kinase signal
pathways. Many questions remain to be clari®ed, such
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as the roles of bcl-2 phosphorylation, and protein-pro-
tein interactions between apoptosis promoters and sup-
pressors in the regulation of apoptosis. The relationships
among various protein kinases in apoptosis pathways
a�ected by antimicrotubule agents also need to be better
de®ned. For example, c-raf-1 is a central component of
signal transduction pathways simulated by various fac-
tors, protein kinase C [4], and other protein kinases.
C-raf-1 is also linked to MAP kinase activity [53, 89].
PKC is involved in apoptosis induced by phorbol 12-
myristate 13-acetate (TPA) [62]. Stimulation of tubulin
polymerization by MAP-2 is controlled by PKC-medi-
ated phosphorylation at speci®c sites in the microtubule-
binding region [1]. Activation of c-raf-1 by TPA is
believed to be via stimulation of protein kinase C-de-
pendent phosphorylation. It is conceivable that di�erent
microtubule binding sites, and di�erent disruptions
(polymerization or depolymerization) of antimicrotu-
bule agents may trigger di�erent protein kinase signal
pathways. Thus, di�erent protein kinase signal pathways
and possible crosstalk among those kinases involved in
the apoptosis mediated by microtubule-targeting agents
need to be better de®ned. Understanding these signal
transduction pathways may reveal a unique avenue that
may be useful in either preventing or controlling cancer.
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