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Abstract Purpose: We describe a practical, reliable, ef-
®cient dose-®nding design for cytotoxic drugs applied in
a multi-institutional setting. Methods: The continual
reassessment method (CRM) was modi®ed for use in
phase I trials conducted through the New Approaches to
Brain Tumor Therapy (NABTT) Consortium. Our im-
plementation of the CRM uses (1) a simple dose-toxicity
model to guide data interpolation, (2) groups of three
patients to minimize calculations and stabilize estimates,
(3) investigators' clinical knowledge or opinion in the
form of data to make the process easier to understand,
and (4) a ¯exible computer program and interface to
facilitate calculations. Results: The modi®ed CRM was
used in two dose-®nding trials of 9-aminocamptothecin
in patients with newly diagnosed and recurrent glio-
blastoma who were taking anticonvulsant medication.
The CRM located the maximum tolerated dose (MTD)
e�ciently in both trials. Compared to conventional de-
signs, the CRM required slightly more than half the
number of patients expected, did not greatly overshoot
the MTD (i.e. no patients were treated at dangerously
high doses), and did not underestimate the MTD. Con-
clusions: Our experience demonstrates the feasibility of
implementing this design in multi-institutional trials and
the possibility of performing dose-®nding studies that
require fewer patients than conventional methods.
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Introduction

Finding optimal doses of new cytotoxic drugs, or ex-
tending the use of existing agents into new patient
populations, requires a practical, reliable, e�cient dose-
®nding design. The best therapeutic index for most cy-
totoxic drugs is obtained using a relatively high dose that
yields manageable side e�ects, the so-called ``maximum
tolerated dose'' (MTD). Some patients would be able to
tolerate higher doses, albeit with increasing incidence and
severity of side e�ects or toxicities. Dose-®nding study
designs do not select a ``maximum'', but an ``optimum'',
i.e. a dose that satis®es constraints imposed by the prac-
titioner. We refer to the optimum dose as the ``target''.

Estimating the target dose e�ciently can be a chal-
lenge, even in a homogeneous cohort of cancer patients
with good function in major organ systems. Ethical
considerations require building clinical evidence begin-
ning with low doses and progressing to high doses, which
is usually not the optimal experimental design. Doses are
modi®ed according to the frequency of toxicity, which is
imprecisely measured in severity and time. Clinicians
prefer operationally simple designs with de®nitive deci-
sion rules and small sample sizes for determining the
optimal dose. It is usually not necessary to select doses
with a high degree of precision, but a reliable answer is
important. Additional dose ®nding in later development
of the drug is expensive and time consuming.

Dose-®nding (phase I) clinical trials attempt to meet
these challenges using designs that have evolved from
bioassay experiments and are familiar to oncologists. An
excellent new dose-®nding design, the continual reas-
sessment method (CRM), has been suggested in recent
years [1]. It continues to be studied and improved in the
statistical literature, even though it has not been widely
applied by oncologists. After a simulation study, Korn
et al. [2] recommended a standard dose-®nding method
over the CRM. However, Goodman et al. [3] success-
fully modi®ed the CRM to address all the shortcomings
noted by Korn et al. Despite its potential advantages,
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the CRM has been slow to di�use into practice because
of some practical di�culties (discussed below).

In this paper we present a workable implementation
of the CRM, and relate our clinical experience with it.
The principal improvements that we suggest are em-
ploying (small) groups of patients at each dose, repre-
senting investigator knowledge in the form of data
throughout the dose-®nding process, frequently revising
the quantitative aspects of dose ®nding as new infor-
mation becomes available, and employing a friendly
interface for computations. We begin by reviewing some
widely used dose-®nding designs and the CRM. We then
discuss a speci®c implementation of the CRM that has
proved to be feasible in the New Approaches to Brain
Tumor Therapy (NABTT) consortium, an NIH funded
group of collaborating institutions performing early
developmental trials in central nervous system malig-
nancies. Finally, we present speci®c examples where the
CRM has been used and improved the e�ciency and
quality of clinical inferences.

Background

Dose-®nding designs commonly used

The most widely used dose-®nding designs have been
variations of the ``up-and-down method'' [4, 5]. That
design begins with a starting dose and speci®cation of an
ordered set of higher doses to be tested, one of which
will be selected as the MTD. The dose employed in the
next patient or group of patients is the next higher or
lower dose, depending on outcomes at the current dose
and simple decision rules. An example of a set of deci-
sion rules might be: (1) three patients are treated at each
dose, (2) if no more than one serious toxicity is seen, the
dose increases, (3) if two or more toxicities are seen the
dose decreases. The design terminates when the fre-
quency of toxicity (or other response) meets or exceeds a
speci®ed level.

Many variations of this type of basic design have
been used in dose escalation studies (reviewed, with one
example, in reference 6). The stochastic approximation
method [7] is a little used, but interesting, method. Ex-
perimental design issues for dose response studies are
discussed by several authors including Wong and Lac-
henbruch [8], Ruberg [9, 10], and Ratain et al. [11]. Most
dose-®nding designs applied to human trials are derived
from the up-and-down method and have features in
common. These are:

1. The starting dose is based on preclinical data, the
action of similar drugs, patient factors, and investi-
gator judgment.

2. The investigator prespeci®es a small set of candidate
doses to be employed during the trial, one of which
will be selected as the target, a dose-escalation plan,
and semiquantitative clinical decision rules for study
termination.

3. The clinical investigator formally assesses outcomes
and makes decisions about dose increases or de-
creases.

4. Tiny cohorts of patients are treated at each dose (e.g.
one to three), on which to base decisions.

5. Results from distant doses do not quantitatively or
statistically a�ect the assessment of results from the
current dose.

6. The target tends to be underestimated because of
patient variability, the sequential nature of the basic
design, and the discreteness of the dose set.

As originally designed, the up-and-down method
employed a dose-response model after all data were
obtained to facilitate estimating the target. However, the
designs used most frequently have abandoned this ®nal
modeling step, and de®ne the target in terms of the last
dose employed. Thus, these designs select a target dose
operationally.

CRM design

The CRM is fundamentally di�erent from widely used
implementations of the up-and-down design and its
variants. There are two essential di�erences that lead to
improvements in points 2, 5, and 6 discussed above.
First, the CRM attempts to estimate the target from a
continuum of doses, whereas operational designs merely
select a dose from a discrete set. If the true target is not
among the choices set out in advance by operational
designs, they can only approximate it.

The second essential di�erence is that the CRM uses
a mathematical model for dose-response to summarize
the accumulating data and to guide selection of the next
dose. Data become available when the ®rst patient or
cohort is treated at the starting dose but also may be
available beforehand from other studies. The dose-re-
sponse model is ®tted to the data and used to estimate
the target dose. The updated estimate can be higher or
lower than a previously used dose and is not constrained
to be one of a set of doses speci®ed at the start of the
experiment. The new dose is then utilized in the next
patient or cohort. The steps of treating new patients,
data gathering, model ®tting to all the data, and dose
updating repeat until the process converges, i.e. until the
dose no longer changes.

In addition to these points, the CRM relies on a di-
rect quantitative connection between a response, such as
toxicity, and a dose. However, the CRM permits using
drug concentration, peak concentration, area under the
curve (AUC), or any other meaningful pharmacokinetic
parameter in place of dose (or in addition to dose) as the
determinant of response [12]. In fact, for simple com-
partmental models of drug distribution, AUC and dose
are proportional (see, for example, reference 13).

The fact that the CRM uses a dose-response model
(but not the speci®c model chosen) creates the strengths
and weaknesses of the method. Therefore, it is worth
brie¯y discussing the modeling process, which requires
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art as much as science. When we postulate a model, we
specify only its mathematical structure, leaving one or
more constants or parameters to be determined by ac-
tual data. To be most useful, the model must be realistic,
parsimonious, and ¯exible. Realism means that the
model can behave qualitatively only in the correct way.
Parsimony means that the model does not contain un-
necessary complications. Flexibility means that the
model can represent important nuances in real data.

Suppose the relationship between drug dose and the
probability of response is a sigmoid curve. This may be
reasonable for toxicities related to cytotoxic drugs, al-
though it is not universally true. A model that behaves in
the correct way could increase the e�ciency of obser-
vation by representing this knowledge. If we have only a
few observations, the model may contribute substan-
tially to the available information. If we have a large
number of observations, the model may be the best tool
for summarizing data. Using the model is motivated by
three unveri®able assumptions: (1) the true dose-re-
sponse relationship has a certain form (biological), (2)
we can specify a mathematical model that would mimic
observation if large amounts of data were collected
(empirical), and (3) a model, even an imperfect one, can
capture and represent biological knowledge (epistemo-
logical).

To illustrate a speci®c model, assume that the true
dose-toxicity function is a logistic curve such that the
chance of a grade 3 or 4 toxicity is

Pr�toxicity� � 1

1� eÿb�dÿd50� ; �1�

where d is the dose employed, b is a steepness parameter,
and d50 is the dose associated with half maximal re-
sponse (i.e. when d � d50, the probability of toxicity is 12).
The pedigree for this particular model, which can also be
written in other ways, is based mainly on bioassay, laws
of mass action, and mathematical convenience. The lo-
gistic function looks like Fig. 1 where the horizontal
location and steepness of the curve can change according
to b and d50. This model satis®es the requirements out-
lined above.

If we estimate the parameters, denoted by b̂ and d̂50,
by ®tting this curve to data, we can calculate the dose
associated with any probability of toxicity by solving
Eq. 1 for d. For example, the dose that yields a 30%
chance of toxicity is

d30 � d̂50 � log
0:3

1ÿ 0:3

� ��
b̂ : �2�

When incorporated into dose-®nding, a model-based
approach yields important advantages over other
methods:

1. The model captures biological knowledge that is rel-
evant to the problem, making very e�cient use of the
data.

2. The method yields unbiased estimates of the target
dose.

3. A ®xed set of doses does not have to be speci®ed in
advance of the trial.

4. Patient data from outside the dose escalation can be
utilized formally.

5. Changing clinical impressions can be incorporated in
the dose escalation.

6. The recommended dose can be updated after the last
group of patients has been treated.

7. The model can be used to adjust the dose escalation
for clinical or pharmacological parameters in addi-
tion to, or other than, dose (e.g. AUC).

Most of these advantages will be illustrated below.

Methods

Based on the previous discussion, it is evident how the CRM sus-
tains a search for the target as data become available. It is less
obvious how the process gets started. Initiating the CRM requires
information to use in the dose-response model. Because little or no
data are available at the outset, this information must come from
the clinician. The initial information can come in any one of several
forms: (1) observations of patients, (2) explicit quantitative speci-
®cation of a model, (3) assumed probability distributions for the
model parameters, (4) investigator judgment formalized as ``data'',
or (5) a mixture of the above.

Investigators accustomed to informal methods of choosing a
starting dose may worry that the information required to initiate
the CRM is created from nothing. However, information is not
created but merely summarized in a di�erent usable form. For
example, consider the typical phase I design where investigators
specify the starting dose and a set of doses to be tried in the trial.
The same information used to construct this scheme can be used to
initiate the CRM. Furthermore, in the usual dose escalation, one of
the prespeci®ed doses will be chosen as the MTD. We cannot ex-
pect the clinician to name the MTD reliably before the experiment
is conducted. The CRM is free of this problem.

Some information about both high and low doses is needed to
facilitate the model ®t. As data from low doses become available,
the model can rely on them. However, the need for investigator
input into the model for high doses may continue throughout the
CRM steps. This appears to be quite feasible, although it can be
di�cult in the presence of large patient variability. The same
circumstance presents problems for traditional dose-®nding
methods.

Fig. 1 Logistic dose-toxicity function. The dose scale is arbitrary
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Our suggestions for how to initiate and continue the CRM are
discussed in the following points.

1. If no ancillary information is to be used formally at the start of
the dose escalation, determine the starting dose in the usual
ways and proceed to step 6.

2. Use preclinical and other information about low doses. Infor-
mation about responses (toxicities) may be available from a
previous study. For example, if patients receive the drug but it
produces no toxicity, a dose-®nding trial may be initiated and
the preexisting data will be helpful in determining the starting
dose. The drug or its analogs may have been tested in a di�erent
population, which could yield quanti®able information.

3. Formalize and quantify clinical intuition about drug behavior at
high and low doses. It is most helpful for the clinician to provide
two pieces of information for the model in the form of data: a
point estimate of response probability at a speci®c dose and a
degree of certainty in that estimate. For example, a point esti-
mate can be obtained by asking what dose would most likely
yield a 10% chance of response �d10�. The degree of certainty
about d10 can be quanti®ed in the form of a numerator and
denominator, e.g. 1 response out of 10 (not very certain) or 10
responses out of 100 (very sure). The same information is
needed for a high dose, e.g. d90. Convenient points other than
90% and 10% at each end of the dose-response range could be
used. To simplify model ®tting, investigators should choose
points where the point estimate is neither zero nor one, i.e. the
numerator is neither zero nor equal to the denominator. This
method uses data to embody both clinical evidence (or judg-
ment) and strength of evidence. The bene®ts of this approach
are that

(a) the need for, and nature of, assumptions is overt,
(b) assumptions take the form of data which investigators

understand and the model can use, and
(c) data are used to initiate the model ®tting in lieu of as-

sumptions about the model parameters.

4. Fit the dose-response model to the data. The required data are
triplets of numbers representing dose, number of patients
treated, and number of responses. A convenient and widely
employed method of model ®tting (or equivalently, parameter
estimation) uses the likelihood function, which expresses the
probability of observing the data, given the model, as a
function of the unknown parameters. The likelihood is based
on the binomial probability distribution, re¯ecting the fact
that ri out of ni responses are observed at dosei. The values of
d50 and b that maximize the likelihood are the ``best'' repre-
sentations of the data. See Appendix I for computational de-
tails. At least one data point is required for each model
parameter to be estimated. The computations for model ®tting
could be accomplished in a variety of ways. We have written a
computer program (Appendix II) to perform the calculations
in a rapid, ¯exible fashion. This high level language has ca-
pabilities, syntax, and a user interface well suited to such
tasks.

5. Invert the ®tted model to estimate the target dose. This is ac-
complished using Eq. 2.

6. Gather data from patients using the current target dose. We
recommend that at least three patients be treated routinely at
each dose. This number should be increased or decreased if
investigators believe that the clinical circumstances demand
it.

7. Revise estimates of the dose extreme d90. This step is a subjective
but critical reassessment of investigator judgment. As evidence
accumulates at lower doses, investigators should reconsider
what dose is likely to yield a 90% chance of response. Once
actual data are accumulated at low doses, the investigator's
guess about d10 is no longer needed.

8. Repeat steps 3±6 until the target dose changes by less than 10%
or meets some other appropriate tolerance criterion.

9. Use the target dose for future developmental trials.

Results

To illustrate the ¯exibility and power of the CRM, we
discuss applications developing cytotoxic drugs for pa-
tients with malignant gliomas. The drug being investi-
gated was 9-aminocamptothecin (9-AC), a promising
new antineoplastic agent [14]. 9-AC is an analog of the
topoisomerase I inhibitor, camptothecin, which is an
alkaloid extracted from the Chinese plant Camptotheca
acuminata. Early studies of this drug demonstrated that
it inhibits RNA and DNA synthesis in various human
and animal cell lines in vitro and in vivo.

Dose escalation trials were initiated in four groups of
patients: those with newly diagnosed cancer and those
with recurrent disease, with and without anticonvul-
sants. All patients provided informed consent for par-
ticipation and were treated as part of research studies
approved by local Institutional Review Boards. Anti-
convulsants are strong inducers of the hepatic P450
system that enhances metabolism of many drugs. The
two dose escalations in patients without anticonvulsants
have not concluded. All escalations employed a logistic
dose-response function.

Patients with newly diagnosed malignant gliomas

Patients eligible for this trial were adults with newly
diagnosed glioblastoma multiforme (GBM) who were
taking anticonvulsants. Originally, patients were entered
on a safety/e�cacy (phase II) trial of 9-AC at a ®xed
dose of 850 lg=m2 per day for 3 days as a continuous
infusion. When it became clear that individuals on this
trial, and those in a companion study of patients with
recurrent anaplastic astrocytoma or GBM, were not
experiencing clinically signi®cant toxicity at the MTD,
the safety/e�cacy trial was terminated and a dose es-
calation was started. The clinical setting and details of
this trial are reported elsewhere [15].

Initiation

The initial data showed 0 out of 22 patients (newly di-
agnosed patients plus those with recurrent disease) ex-
perienced dose-limiting toxicity (DLT) at 850 lg=m2.
This was convincing evidence that additional dose
®nding was needed, and we began by using the logistic
model to guide our selection of the ®rst CRM dose.
Because the postulated dose-response model is never
exactly zero, we used the one-sided upper 95% exact
binomial con®dence limit on 0/22 responses and as-
sumed that the dose-response curve passed through the
point (850, 0.13). This assumption was conservative in
the sense that the response probability (0.13) was taken
to be higher than the point estimate from the data (0.0).

To stabilize the right-hand portion of the model, we
assumed that d50 � 1600. This was crudely in accord
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with the existing data and clinical intuition but could not
be veri®ed. These assumptions allowed us to calculate b̂:

0:13 � 1

1� eÿb̂�850ÿ1600�

b̂ � ÿ log
1

0:13ÿ 1
ÿ �

850ÿ 1600
� 0:0025

The value found for b̂ was not very sensitive to the as-
sumed value for d̂50 (Table 1). Using these parameters,
the starting dose satis®ed

0:3 � 1

1� eÿ0:0025�d̂30ÿ1600�

or d30 � 1261. Thus, the ®rst dose used in the CRM was
1260 lg=m2.

Subsequent steps

Four patients were treated at a dose of 1260 lg=m2. The
results and subsequent steps are shown in Table 2 where
n denotes the number of patients treated and r denotes
the number of responses (toxicities). Several re®nements
were made during the iterations. These illustrate the
capability of the method to accommodate new infor-
mation. Patients were divided into those newly diag-

nosed and those with recurrent disease, anticipating
di�erent MTDs in the two groups. We also incorporated
data from patients who received 1000 lg=m2 as part of
within-patient dose escalations from the phase II trial.
These individuals had no toxicity at 850 lg=m2 and were
escalated as part of the original study protocol.

After observing the results at 1260 lg=m2, investiga-
tor opinion about the dose-response behavior at high
doses changed. In step 3, additional information about
one patient treated at 1740 l g=m2 became available.
After step 3, the estimated target dose changed by less
than 10% and the dose ®nding was terminated with a
recommendation to use 1776 lg=m2 in subsequent
studies. A graphical display of observed data and model
®ts is given in Fig. 2. It is interesting to compare the ®nal
estimate of d50 ��1883� with our guess from step 0
��1600� to see how reasonable investigator intuition
was. The initial guess was conservative but fairly accu-
rate and performed well in guiding subsequent steps.

An assessment of CRM e�ciency compared to tra-
ditional dose-®nding methods can be obtained for this
example. Suppose that 1776 lg=m2 is the correct dose
and that a series of doses with 15% increments had been
employed instead, using a more traditional design. The
doses used would have been 1150, 1323, 1521, 1749, and
2011 lg=m2. Six steps would have been necessary; ®ve
would cover the range and an additional one after dose
decreasing from 2011 to 1749lg=m2. The minimum
number of patients required using this scheme would be
6� 3 � 18 (plus any ineligibles and dropouts) compared
with 11 actually used. Furthermore, this method would
have slightly underestimated the correct dose and would
have treated patients at 2011 lg=m2, well above the
MTD.

Even if 25% increments had been employed in a
traditional design, more patients would have been re-
quired and the ®nal dose chosen would have likely been

Table 1 Values of b and MTD30 calculated for di�erent d50 values

d̂50 b̂ d30

1350 0.0038 1127
1400 0.0035 1158
1500 0.0029 1208
1600 0.0025 1261
1700 0.0022 1315
1800 0.0020 1376
1900 0.0018 1429

Table 2 Steps in the 9AC CRM for newly diagnosed patients

Step
number

New
dose

Data for CRM Target
dose

Model parameters

Dose n r b̂ d̂50

0 850 22 0
1600 1260 0.0025 1600

1 850 12 0
1000 7 0

) 1260 4 0
2000 10 9 1865 0.0209 1895

2 850 12 0
1000 7 0
1260 4 0

) 1865 3 2
2250 10 9 1740 0.0063 1848

3 850 12 0
1000 7 0
1260 4 0

) 1740 3 1
1865 4 2
2250 10 9 1776 0.0065 1883
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slightly biased. The usual Fibonacci dose escalation
scheme would most likely not be used in this circum-
stance, because investigators could not have con®dence
that the starting dose was well below the MTD. There-
fore, the smaller increments suggested here would
probably have been used.

Patients with recurrent disease

The same initiation was used for dose escalations in
patients with recurrent disease. At 1260 lg=m2, one pa-
tient out of three experienced a DLT. Therefore, the
same dose was repeated in the next cohort of three pa-
tients. No additional toxicities were observed and the
CRM proceeded to 1611 lg=m2 (Table 3). One patient
was observed to have DLT at this dose and the esti-
mation process appeared to converge. The recom-
mended dose for subsequent investigations in patients
with recurrent disease will be 1611 lg=m2.

Discussion

Investigators need to solve several practical problems
when implementing the CRM. An experienced statisti-
cian can help overcome these di�culties. First, the dose-
response model must be initiated on the basis of relatively
little data. This can be accomplished by ad hoc ®tting of
the model to the available data, as in the ®rst example
above, or by putting investigator knowledge in the form
of data that can be used directly. Because the model has
two parameters, at least two ``data points'' or bits of
information are needed to initialize the model. Our ex-
perience is that the required information can be obtained
from preliminary data or investigator knowledge.

Second, the dose-response model must be ®tted to
small amounts of data, especially in the early steps of the
CRM. The model-®tting process will be ill-conditioned
or impossible unless information at both ends of the
curve is used. Making an informed guess about a dose
that yields a high probability of response appears to be

Fig. 2 Steps in the CRM for 9AC in newly diagnosed patients showing point estimates from data (r) and ®tted dose-response models
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the best solution for the right-hand portion of the dose-
response model. Investigators should feel free to revise
this guess based on the observations from lower doses.
An alternative ®tting method is to restrict the parameter
estimates and use a ®tting technique that can accom-
modate unbalanced data (e.g. Bayesian methods).
However, an approach that translates information into
data seems more appealing to clinicians.

Third, the method must cope with a dose-response
model that is most likely incorrect. Most imperfections
in the model will be inconsequential. If it is approxi-
mately correct or locally valid, it will still guide and fa-
cilitate the dose escalations e�ciently. Thus, it is more
important to choose a simple, ¯exible model than to
worry about its exact mathematical form. It would be
very unlikely for enough data to became available dur-
ing a dose-®nding study to convince investigators that
the model is inadequate.

Fourth, concerns have been raised that the CRM can
escalate doses too quickly, increasing the chance for se-
rious side e�ects [2]. Such problems can be minimized
using groups of patients at each dose and empirically
limiting the size of dose increases [3]. It appears perfectly
adequate to use the assumed value for d90 as a convenient
device for limiting dose jumps, as we have done. An
explicit limitation of the magnitude of dose jumps could
also be used. In addition to e�ciency and accuracy, the
CRM can be adapted to utilize pharmacokinetic infor-
mation that may facilitate dose ®nding [12]. We have not
yet explored this possibility in a clinical setting.

The CRM is operationally more complex than its
predecessors. The principal complexities are:

1. It requires a mathematical model to summarize, in-
terpolate, and extrapolate the data.

2. Investigators must translate biological/clinical infor-
mation into data that can be used by the model.

3. It requires special methods of statistical estimation to
optimally represent the data. This usually requires
computer programs.

4. A statistical collaborator is needed to specify the de-
sign and perform calculations after each dose. In
other words, the new dose is not evident by inspec-
tion.

These operational di�culties are minimized by the
modi®cations we suggest, making the CRM an e�cient,
¯exible, and practical method for dose ®nding in on-
cology. We believe it should be the preferred method for
such studies.

Appendix I

The log-likelihood function for binomial outcomes and logistic
dose response is

L�b; d50� �
Xk

i� 1
log

ni

ri

� �
ÿ ni log 1� eÿb�diÿd50�

� ��
ÿ �ni ÿ ri� log 1� eb�diÿd50�

� �� �A1�

This indicates that k doses have been tried, d1, d2; . . . ; dk , with ri
responses out of ni patients at each dose. The likelihood is the
probability of the observed data under the hypothesized model.
Values of b and d50 are chosen that maximize L. These so-called
maximum likelihood estimates, b̂ and d̂50, must usually be deter-
mined numerically rather than algebraically. This method is general
and is used during the dose escalations (Appendix II).

For example, suppose the data consist of the following triplets
for di, ni, ri : �10; 3; 0�; �25; 3; 0�; �50; 3; 1�, and �200; 10; 9�. The
maximum likelihood estimates are b̂ � 0:027 and d̂50 � 113. The
®tted curve and the data points are shown in Fig. 3. The best
estimate of the dose that yields a 0.3 probability of response is 81.6.

When initiating the CRM with clinician-generated data for d10
and d90 (and no other data), b̂ and d̂50 can be obtained directly.
Because there are two data points and two parameters, the model
will ®t ``perfectly''. In other words,

log 9� � � b̂�d90 ÿ d̂50� �A2�
and

ÿ log 9� � � b̂�d10 ÿ d̂50�: �A3�
Solving Eq. A2 for b and substituting into Eq. A3, we obtain

Table 3 Steps in the 9AC CRM
for patients with recurrent
disease

Step
Number

New
dose

Data for CRM Target
dose

Model parameters

Dose n r b̂ d̂50

0 850 22 0
1600 1260 0.0025 1600

1 850 15 0
1000 6 0

) 1260 3 1 1260

2 850 15 0
1000 6 0
1260 3 1

) 1260 3 0
2250 10 9 1611 0.0048 1757

3 850 15 0
1000 6 0
1260 6 1

) 1611 3 1
2250 10 9 1611 0.0048 1757
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d̂50 � d90 � d10
2

: �A4�
Thus, the initial best estimate of d50 is halfway between d10 and d90.
Substituting this into either Eq. A2 or Eq. A3,

b̂ � 2 log�9�
d90 ÿ d10

: �A5�

The values of d̂50 and b̂ can be used to obtain an initial estimate
of the target. For example, if the target is the dose that yields a 0.3
probability of response, Eq. 2 can be used with Eqs. A4 and A5 to
provide the ®rst estimate. This ®rst estimate of the target depends
only on the values chosen for d10 and d90 and not on the strength of
evidence (i.e. the ``sample sizes''). We have implicitly encouraged
choosing a ®rst dose near the target. This is not required, although
it will increase the e�ciency of the dose escalation. Furthermore,
the investigator is free to revise the parameters to produce a sub-
jectively good starting dose.

Appendix II ± CRM program

The following program executes under Mathematica versions 2.2.1
or 3.0 for Windows [16] and performs the CRM calculations. An
actual program ®le is available from the authors on request. The
algorithm is relatively simple and can be programmed in a variety
of languages, such as Fortran or C/C��. However, Mathematica
has a built-in multivariable function minimization algorithm (as do
some other high-level languages), which makes the program and
development time very short compared to low-level languages.

The model is parameterized in terms of log�d50� and log�b�. The
®tting process is sensitive to initial guesses for these parameter
values, especially when few data are available. Data are given as a
three-column matrix fdose, patients, responsesg of arbitrary length.

Dose response model and likelihood function

p�dose � :� 1=�1�Exp�ÿ Exp �beta� � �doseÿExp�d50����
ip�p � :� Exp�d50� ÿLog��1ÿp�=p�=Exp�beta�
term�x � :� Log�Binomial�data��x;2��;data��x;3���� �data��x;3��
�Log�p�data��x;1���� �data��x;2�� ÿ data��x;3���
�Log�1ÿ p�data��x;1����
loglike�d50 ;beta � :�Sum�term�i�; i;1;Dimensions�data���1��g�

Constants and starting values

startd50 � 7:5; startbeta � ÿ5; target � 0:3333;
highdose � 2250; num � 9; den � 10; lowplot � 500;
highplot � 3000.

Data and results

data � ff850;15;0g; f1000;6;0g; f1260; 6; 1g; f1611;3;2g;
fhighdose;den;numgg; Clear �d50;beta�; q � FindMinimum
�ÿloglike�d50;beta�; fd50;startd50g; fbeta;startbetag�;
d50 � d50=:q��2;1��; beta � beta=:q��2;2��; MatrixForm�data�;
ip�target�; p1 � Plot�p�dose�; fdose;lowplot;highplotg�.
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