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Abstract
Purpose The time-varying clearance (CL) of the PD-L1 inhibitor atezolizumab was assessed on a population of 1519 cancer 
patients (primarily with non-small-cell lung cancer or metastatic urothelial carcinoma) from three clinical studies.
Methods The first step was to identify the baseline covariates affecting atezolizumab CL without including time-varying 
components (stationary covariate model). Two time-varying models were then investigated: (1) a model allowing baseline 
covariates to vary over time (time-varying covariate model), (2) a model with empirical time-varying Emax CL function.
Results The final stationary covariate model included main effects of body weight, albumin levels, tumor size, anti-drug 
antibodies (ADA) and gender on atezolizumab CL. Both time-varying models resulted in a clear improvement of the data fit 
and visual predictive checks over the stationary model. The time-varying covariate model provided the best fit of the data. 
In this model, the main driver for change in CL over time was variations in albumin level with an increase in serum albumin 
(improvement in a patient’s status) mirroring a decrease in CL. Time-varying ADAs had a small impact (9% increase in CL). 
None of the covariates impacted atezolizumab CL by more than ± 30% from median. The estimated maximum decrease in 
CL with time was 22% with the Emax model.
Conclusion The overall impact of covariates on atezolizumab CL did not warrant any change in atezolizumab dosing rec-
ommendations. The results support the hypothesis that variation in atezolizumab CL over time is associated with patients’ 
disease status, as shown with other checkpoint inhibitors.
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Introduction

Tecentriq® (Atezolizumab) is a humanized immunoglob-
ulin G1 monoclonal antibody that targets human PD-L1 
on tumor-infiltrating immune cells and tumor cells, and 

inhibits PD-L1 interaction with programmed death 1 (PD-
1) and B7.1 receptors, both of which can provide inhibi-
tory signals to T cells [1–3]. Atezolizumab 1200 mg intra-
venous (IV) every three weeks (q3w) is approved to treat 
locally advanced or metastatic non-small-cell lung cancer 
(NSCLC), metastatic urothelial carcinoma (mUC), exten-
sive-stage small-cell lung cancer (SCLC), and unresectable 
hepatocellular carcinoma (HCC) when atezolizumab 840 mg 
every two weeks (q2w) is approved to treat locally advanced 
or metastatic triple-negative breast cancer (TNBC) in the 
United States, Europe, and elsewhere [4, 5]. In addition, PK 
simulations, exposure–response, and safety analyses sup-
ported approval of the 840 mg q2w and 1680 mg every four 
weeks (q4w) IV dosing regimens through “exposure match-
ing” with the clinically evaluated 1200 mg q3w IV dosing 
regimen for atezolizumab single agent [4–6].

The population pharmacokinetics (popPK) of atezoli-
zumab has been previously assessed based on data from two 
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Phase 1 clinical studies PCD4989g and JO28944 in patients 
with various solid tumors. The popPK model of atezoli-
zumab developed with Phase 1 data (the “Phase 1 PopPK 
Model”) [7] was subjected to external validations using PK 
data collected in various phase 2 and phase 3 studies of 
atezolizumab 1200 mg IV q3w including IMvigor210 [7] 
in mUC as well as in other studies in approved indications 
(unpublished) or 840 mg IV q2w in study IMpassion130 in 
TNBC [6]. In an analysis during FDA review, atezolizumab 
clearance (CL) appeared to decrease over time, although this 
was not considered to be clinically relevant [4]. A similar 
trend was also observed for PD-1 inhibitors nivolumab [8, 9] 
and pembrolizumab [10], where the magnitude of decrease 
in CL (estimated using an empirical Emax model) was found 
to be associated with best overall response, resulting in a 
confounded relationship between steady-state exposure and 
response. A change in CL over time was also observed for 
the PD-L1 inhibitors avelumab [11] and durvalumab [12]. 
For the latter, time-dependent changes in longitudinal covar-
iates better described the change in CL with time than the 
empirical Emax model used for nivolumab and pembroli-
zumab [8–10]. Li et al. recently proposed a model with time-
dependent changes in covariates for pembrolizumab [13].

The objective of this analysis was to explore the impact of 
baseline and time-varying covariates on atezolizumab PK in 
a large population, including a majority of mUC and NSCLC 
patients, in three atezolizumab single-agent clinical studies: 
PCD4989g (Phase 1, various cancer types) [14], IMvigor211 
(mUC) [15], and OAK (NSCLC) [16] in comparison with 
the empirical Emax model previously proposed for atezoli-
zumab [4].

Materials and methods

Studies and patients

Data from atezolizumab monotherapy studies, including the 
Phase 1 study PCD4989g in patients with locally advanced 
or metastatic solid or hematologic malignancies included 
in both dose escalation and expansion cohorts (ClinicalTri-
als.gov ID, NCT01375842) [3, 14, 17, 18] and the Phase 3 
studies OAK in patients with locally advanced or metastatic 
NSCLC who have progressed during or following a plat-
inum-containing regimen (GO28915; Clinical- Trials.gov 
ID, NCT02008227) [16] and IMvigor211 in patients with 
locally advanced or metastatic UC who have progressed dur-
ing or following a platinum-containing regimen (GO29294; 
ClinicalTrials.gov ID, NCT02302807) [15], were used in 
the popPK analyses based on clinical data cut-off dates 
of December 2, 2014; July 7, 2016; and March 17, 2017, 
respectively. More details about the studies can be found 
in Supplementary Materials Table S1. Those 3 trials were 

selected as The Phase I study is the only study with full PK 
data while IMvigor211 and OAK are pivotal large Phase III 
studies. The study protocols were approved by institutional 
review boards and/or independent ethics committees at each 
site. All patients provided written informed consent.

Patients were defined as evaluable if they had at least one 
adequately documented atezolizumab administration and a 
corresponding PK sample collected after the dose (Supple-
mentary Materials Figure S1).

Data analysis

All models were implemented in NONMEM 7.3 (ICON 
Development Solutions, Ellicott City, MD) [19]. Population 
model parameters were estimated using the FOCE method 
with η−ε interaction. Data exploration and visualization as 
well as descriptive statistics were performed using R® in 
addition to Comprehensive R Archive Network (CRAN) 
packages [20]. Perl-Speaks-NONMEM (PsN) (Uppsala 
University, Uppsala, Sweden) [21, 22] was used to perform 
the covariate selection and to evaluate/validate the popPK 
model using predictive checks [23]. For comparison of 
model performance, we used the objective function value 
(when applicable), relative standard errors of parameter 
estimates, plots of observed vs. predicted values, and visual 
predictive checks. Data handling consisted mainly of the 
last-observation-carry-forward (LOCF) technique that was 
employed to interpolate the missing time-varying covariate 
values in the PK dataset.

Population PK model development

The starting point of the PK analysis was the popPK model 
[7] which was developed with Phase 1 data and externally 
validated with data from over ten studies. The model with-
out any covariates (the base model) estimated previously 
[7] was re-estimated with the pooled dataset (i.e., data from 
PCD4989g, OAK, and IMvigor211). Since the objective of 
this pooled analysis was to explore the impact of covari-
ates on atezolizumab CL, the previously identified covariate 
effects on central volume of distribution (V1) and peripheral 
volume of distribution (V2) (i.e., sex, body weight (BWT) 
on V1 and sex on V2) were kept a priori in the base model 
and tested on the larger pooled database. The effect of albu-
min level on V1, which was included in the previous covari-
ate model, was poorly estimated when using the pooled data-
set and not kept in the model.

In a second step, baseline covariates were evaluated 
for their effect on atezolizumab CL. Univariate analysis 
of the impact of baseline covariates on CL was performed 
to rank the covariates by improvement (decrease) in the 
objective function value (OFV). All significant baseline 
covariates (ΔOFV > − 6.64 for one degree of freedom and 
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a significance level of p < 0.01) were used to build a FULL 
model and then a backward elimination was performed. Each 
covariate in the FULL model was removed from the model 
in turn and the covariate removal that resulted in the smallest 
increase in OFV was eliminated. The process was repeated 
until the increase in OFV reached the threshold retained for 
statistical significance at p < 0.001 (ΔOFV >  + 10.83 for one 
degree of freedom and 13.8 for two degrees of freedom). The 
baseline covariates time-stationary model was then obtained.

For this second step, the following baseline demographic 
and baseline pathophysiological covariates were considered: 
demographics: sex, age, BWT; cancer-related covariates: 
Eastern Cooperative Oncology Group (ECOG) performance 
status, sum of longest diameter of target lesions (SLD), pres-
ence of liver metastasis, and number of metastatic sites; 
liver function-related covariates: aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), bilirubin (BIL), 
hemoglobin (HG), total protein (TPRO), alkaline phos-
phatase (ALP)]; inflammatory markers: albumin (ALBU), 
lymphocyte (LYM), neutrophil (NEU), platelet (PLA) 
counts, as well as the neutrophil to lymphocyte ratio (NLR) 
and platelet to lymphocyte ratio (PLR), prognostic nutri-
tional index (PNI) [24]; kidney function-related: estimated 
glomerular filtration rate (eGFR) [25]; smoking history; sta-
tus of Anti-Therapeutic Antibodies (ADA) and PD-L1 sta-
tus in tumor cells (TC) and tumor-infiltrating immune cells 
(IC) (PD-L1 scoring by immune-histochemistry is given in 
Supplementary Materials Table S3). Note that C-reactive 
protein (CRP), a well-known inflammatory marker was not 
explored in the main analysis because this information was 
not available in the Phase I study PCD4989g. However, a 
sensitivity analysis was performed on data from patients in 
the two Phase III studies with this information.

The effect of n covariates on CL, V1, and V2 was coded 
using a multiplicative model as follows for CL (Eq. 1):

where θ1 is the typical value of the parameter for patients 
having covariate values equal to the reference, and  Effect1,i 
…  Effectn,i are multiplicative factors of the effects for covari-
ate 1 to n, respectively, for the set of covariates in patient i.

The multiplicative factor for continuous covariates was 
included in the base model using the following power func-
tion (Eq. 2):

where  Effecti is the multiplicative factor of the covariate 
effect,  Covi is the covariate value,  Covref is the median of 
the covariate for all patients, and θeff is the exponent of the 
power function. Individual CL was expressed by (Eq. 3), 

(1)TVCLcov = �1 × Effect1,i ×⋯ × Effect
n,i

(2)Effect
i
=

(

Cov
i

Covref

)�eff

inter-patient variability of the CL, and all other parameters 
(Vc, Vp, and Q) was included using a lognormal model:

where CLi is the individual clearance for patient i, TVCLcov 
is the typical value of clearance for a set of covariate as 
described above, ηCLi is the individual clearance random 
effect for patient i where ηCLi ~ N(0,ω2) is normally distrib-
uted, with mean 0 and variance ω2.

After the time-stationary baseline covariates model was 
developed, two time-varying models were investigated for 
CL; (1) A model allowing all covariates identified in the 
baseline covariates model, to vary with time (time-varying 
covariate model), and this model with time-varying covari-
ates was subject to a new backward deletion at p < 0.001 to 
confirm all the covariate effects. (2) The previously proposed 
empirical time-dependent Emax model [9, 10, 12] added 
to the baseline covariates model according to equations 4 
and 5:

where CLi is the individual clearance for patient i, TVCLcov 
is the typical value of clearance for a set of covariate as 
described below, ηCLi is the individual clearance random 
effect for patient i where ηCLi ~ N(0,ω2) is normally distrib-
uted, with mean 0 and variance ω2. t is time after the first 
dose, Tmax is the maximum fractional change in clearance 
over the trial time course (t), and T50 is the time at which 
the change is half of its maximum, while γ is an exponential 
shape parameter.

The three models: baseline covariates time-stationary 
model, empirical Emax time-dependent model, and time-
varying covariates model were evaluated and compared 
based on OFV, precision, plausibility of parameter estimates, 
goodness-of-fit plots, and simulation-based visual predictive 
checks (VPC) [23, 26].

Results

Data

Only patients receiving doses of 1–20 mg/kg atezolizumab 
q3w, or the 1200 mg q3w fixed-dose in PCD4989g, 466 
(out of 481, 96.9%) were included in this evaluation as 
already reported [7]. In Phase 3 studies, all patients received 
1200 mg q3w fixed-dose. There were 598 (out of 613, 

(3)CLi = TVCLcov ⋅ exp
�CLi

(4)CLi = TVCLcov ⋅ exp
EMPIRICAL(t)

⋅ exp�CLi

(5)EMPIRICAL(t) =
Tmax ⋅ t

�

T
�

50
+ t�
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97.6%) and 455 (out of 467, 97.4%) evaluable patients in 
OAK and IMvigor211, respectively. A total of 9165 ate-
zolizumab serum concentrations from 1519 patients [out 
of 1550 treated patients (98%)] were used for the popPK 
analysis (see Supplementary Materials Table S2 for more 
details). Descriptive statistics of continuous and categorical 
covariates in patients with evaluable PK are summarized in 
Table 1. Of the 1519 patients included in the popPK dataset, 
685 had NSCLC (45.1%), 545 had mUC (35.9%) and 289 
had other solid tumors (19%). The median patient age was 
64 years and body weight ranged from 34 to 168 kg, 65% of 
patients were male, and approximately 74% of the patients 
were White. Patients had baseline ECOG PS of either 0 or 1 
(42% and 58%, respectively). There were no obvious differ-
ences between studies in terms of covariates.

Covariate analysis

The results of the univariate covariate analysis on atezoli-
zumab CL at a significance level of 0.01 as the entry cri-
terion into the FULL model are provided in Supplemen-
tary Materials Table S4. The effects retained to enter the 
FULL model were ADA status and baseline ALBU, ALP, 
BIL, SLD, BWT, ECOG, HG, LDH, NEU, PNI, smoking, 
METSITES, SEX on CL; BWT, and SEX on V1 and on V2 
(kept from the previous Phase 1 model, [7]). From the FULL 
model, a backward elimination was performed at p < 0.001, 
from which the following effects were retained in the final 
baseline model: BWT, ALBU, ADA, SLD, SEX, ALP, BIL, 
NEU on CL, BWT, SEX on V1 and SEX on V2.

Performance and parameter estimates 
for population PK models

The parameter estimates for the baseline covariate time-
stationary population PK model are shown in Table 2 and 
pcVPC is illustrated in Fig. 1. The pcVPC shows a consist-
ent under-prediction of observed median Cmin after long-
term administration (from Cycle 6 onward). This trend is 
consistent with the previously reported decrease in atezoli-
zumab CL over time (approximately 17.1%) reported in the 
US Package Insert [4]. To take into account the change of 
CL over time, two time-varying atezolizumab CL models 
were evaluated. (1) A more mechanistic time-varying CL 
model was implemented by incorporating longitudinal time-
varying covariates to explain changes in atezolizumab CL 
over time. The covariates selected in the baseline covariates 
model (SLD, ALB, BWT, ALP, NEU, BIL, and ADA) were 
used in this approach and allowed to vary with time. (2) The 
previously proposed empirical [9, 10, 12] time-dependent 
CL model: the baseline covariates model was complemented 
with a time-dependent Emax CL function.

Table 1  Descriptive statistics of main continuous and categorical 
covariates at baseline in the PK population

N  number of patients, ECOG  Eastern Cooperative Oncology Group 
performance status, ADA post-baseline anti-drug antibody (0 = nega-
tive, 1 = positive, one value for each patient), PNI prognostic nutri-
tional index, eGFR  estimated Glomerular Filtration Rate, NLR  neu-
trophil to lymphocyte ratio, PLR platelet to lymphocyte ratio, IC/TC 
PD-L1 expression, see Table S3 

Covariate Overall (N = 1519)

Continuous covariate, median [min, max]
 Age (y) 64.0 [21.0, 89.0]
 Albumin (g/L) 39.5 [16.0, 55.0]
 Alanine aminotransferase (U/L) 18.0 [0.00, 425]
 Aspartate aminotransferase (U/L) 21.0 [0.800, 183]
 Alkaline phosphatase (U/L) 92.0 [5.00, 1410]
 Bilirubin (µmol/L) 6.84 [0.00, 109]
 Body weight (kg) 74.0 [34.3, 168]
 eGFR (mL/min/1.73m2) 73.0 [4.83, 226]
 Hemoglobin (g/L) 121 [75.7, 182]
 Lactate dehydrogenase (U/L) 222 [9.00, 3410]
 Lymphocyte count  (109/L) 1.30 [0.100, 7.32]
 Neutrophil count  (109/L) 4.71 [0.860, 634]
 NLR 3.61 [0.344, 302]
 Platelet count  (109/L) 252 [0.374, 726]
 PLR 195 [20.0, 2430]
 Sum of longest diameters (mm) 63.0 [10.0, 323]
 Total protein (g/L) 71.0 [7.10, 100]

Categorical covariate, N (%)
 Female 528 (34.8%)
 Male 991 (65.2%)
 ECOG 0 641 (42.2%)
 ECOG 1 878 (57.8%)
 Never smoker 445 (29.3%)
 Current smoker 175 (11.5%)
 Previous smoker 898 (59.1%)
 Missing 1 (0.1%)
 Liver metastasis (yes) 414 (27.3%)
 Liver metastasis (no) 1105 (72.7%)
 Brain metastasis (yes) 69 (4.5%)
 Brain metastasis (no) 1450 (95.5%)
 Number of metastatic site 0 57 (3.8%)
  1 307 (20.2%)
  2 464 (30.5%)
  3 318 (20.9%)
  4+ 375 (24.6%)

 ADA– 1071 (70.5%)
 ADA+ 448 (29.5%)
 IC01TC01 552 (36.3%)
 IC23TC23 967 (63.7%)
 PNI 0 896 (59.0%)
 PNI 1 623 (41.0%)
 White (no) 391 (25.7%)
 White (yes) 1128 (74.3%)
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When covariates were allowed to vary with time to 
explain changes in atezolizumab CL over time, the fit of the 
covariates time-stationary model was markedly improved 
(difference in OFV: − 643 points for the same number of 
parameters). Backward elimination from this model indi-
cated that all covariates remained in the model. The param-
eter estimates for the time-varying covariates population PK 
model are shown in Table 2 and the diagnostic plots are 
presented in Supplementary Materials Fig. S2. The pcVPC 
shows a clear improvement of the under-prediction of Cmin 
after long-term administration suggesting that time-varying 
covariates were able to explain the change in CL over time 
in the pooled dataset (Fig. 1).

When the empirical time-dependent Emax function [9] 
was added to the baseline covariates time-stationary model, 
the fit of the baseline covariates time-stationary model was 
also markedly improved but less than that of the model 

allowing covariates to vary with time (difference in OFV: 
− 308 points for 3 additional parameters). Backward elimina-
tion from this model indicated that all covariates remained 
in the model. Model parameter estimates for this empirical 
time-dependent CL model are presented in Table 2. The fixed 
effects of structural parameters are well estimated except for 
the parameters of the time-dependent CL function (RSE of 
T50 > 200%). Note that IIV estimate for CL was decreased 
compared to other models; in addition, one more random 
effect on CL in this model (Tmax) had to be fixed for improved 
model stability. The estimate of the maximum decrease in 
CL from baseline calculated as (1−exp(Tmax)) is similar to 
that in the previous post-hoc analysis [4]: 22% vs. 17%. The 
pcVPC in Supplementary Materials Fig. S3 shows a clear 
improvement of the under-prediction of Cmin after long-term 
administration compared to the baseline model, although a 

Table 2  Comparisons of parameters estimates of the baseline covariates time-stationary, empirical time-dependent, and time-varying covariates 
models

CL clearance, IIV inter-individual variability, Q inter-compartmental clearance, RSE relative standard error, V1 volume of distribution of central 
compartment, V2  volume of distribution of peripheral compartment, ADA anti-drug antibodies, also called anti-therapeutic antibodies status, 
ω2 variance of omega, σ2 variance of sigma, NA not applicable
*Fixed to estimated value to obtain the covariance step

Description Baseline covariates 
time stationary

RSE (%) Empirical time-
dependent

RSE (%) Time-varying 
covariates

RSE (%)

Objective function value 78,959.9 78,652.2 78,317.0
OFV diff with BASELINE 0 − 307.6 − 642.9
CL (L/day) 0.235 1.70 0.274 5.30 0.240 1.3
V1 (L) 3.36 0.80 3.34 0.90 3.33 0.8
V2 (L) 3.35 4.0 2.52 17.1 3.45 2.7
Q (L/day) 0.582 9.6 0.714 10.0 0.608 6.9
ADA on CL 0.137 14.5 0.139 15.9 0.0933 20.0
Albumin on CL − 0.694 9.7 − 0.626 11.8 − 0.881 5.0
Alkaline phosphatase on CL 0.0797 21.8 0.0639 29.7 0.076 15.7
Bilirubin on CL − 0.0473 36.6 − 0.0434 38.7 − 0.0255 38.8
Body weight on CL 0.542 7.4 0.512 7.20 0.452 8.5
Neutrophil on CL 0.0959 24.5 0.0897 22 0.087 16.7
Sum of longest diameters on CL 0.0668 18.4 0.0594 21 0.035 13.4
Gender (female) on CL − 0.172 9.7 − 0.182 8.20 − 0.200 7.7
Body weight on V1 0.481 6.4 0.482 6.30 0.450 6.7
Gender (female) on V1 − 0.161 7.6 − 0.161 7.70 − 0.167 7.2
Gender (female) on V2 − 0.243 12.9 − 0.214 37.20 − 0.221 12.3
Tmax NA NA − 0.249 37.80 NA NA
T50 (day) NA NA 447 209.4 NA NA
Gamma NA NA 1.49 30.8 NA NA
ω2 CL 0.0823 5.3 0.0561 20.5 0.0730 5.8
ω2 V1 0.0289 13.9 0.0296 15.3 0.0296 13.7
ω2 V2 0.14 16.6 0.128 41.9 0.0955 19.1
ω2 Tmax NA NA 0.0766* NA NA NA
σ2 proportional residual error 0.0396 5.40 0.0374 6.30 0.0377 5.2
σ2 additive residual error 21.2 42 15.9 85.5 18.8 34.7
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slight under-prediction of median (and  5th percentile) Cmin 
remains compared to the time-varying covariates model.

Model comparison

Model parameters comparison favored the time-varying 
covariates model with respect to the statistical fit, the model 
stability, and the predictive performance. The pcVPC of the 
empirical time-dependent CL model and the time-varying 
covariates model performed similarly (Fig. 1, Supplemen-
tary Materials Fig. S3). However, the time-varying covariates 
model performed better based on statistical criteria (delta in 
OFV) with − 643 points vs. − 308 points compared to baseline 
covariates model for time-varying covariates and empirical 
models, respectively. In addition, the time-varying covariate 
model provided better stability (successful minimization and 

covariance step vs. the need to fix a random effect and poor 
precision in gamma estimate) than the empirical model. This 
model also provides a broader mechanistic understanding of 
the relationship between the disease status (tumor burden, and 
cancer inflammation) and atezolizumab PK. The time-varying 
covariates model is more flexible as patients can improve and 
then worsen while on-treatment with successive CL decrease 
and increase (or vice versa). When using the empirical for-
mula, individual patients have a continuous decrease (for most 
of them) or increase in CL all along the treatment as illustrated 
in Fig. 2.

Impact of covariate effects and clinical relevance

According to the final time-varying covariates population 
model (Table 2), the typical CL (TVCL) of atezolizumab for 
patient i is in Eq. 6:

(6)
TVCL

i
(L/day) =

(

0.240 ⋅

(

ALBU
i g/L

38

)−0.881

⋅

(

BWT
i kg

72

)0.452

⋅

(

BIL
i� mol/L

5

)−0.0255

⋅

(

ALP
i U/L

93

)0.0759

⋅

(

NEU
i 109/L

6

)0.0874

⋅

(

SLD
i mm

55

)0.0348
)

⋅ (1.0933 if ADA is positive) ⋅ (0.80 if female)

Fig. 1  Prediction-corrected VPC of atezolizumab peaks and troughs 
with time-varying covariates model (semi-log scale). Orange areas: 
95% PI of 5th and 95th percentiles across the 1000 simulated repli-
cates; blue area: 95% PI of 50th percentile (median) across the 1000 

simulated replicates; orange crosses observed 5th and 95th percen-
tiles; blue cross: observed 50th percentile (median); gray open cir-
cles: prediction-corrected observed concentrations; n: number of 
observations in each bin
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The typical V1 (TVV1) and V2 (TVV2) for patient i are 
in Eqs. 7 and 8:

TVCLi typical value of clearance, TVV1i typical value of 
central volume, TVV2i typical value of peripheral volume for 
a patient i. Time-varying covariates: ALBU  albumin (g/L), 
BWT body weight (kg), BIL bilirubin (µmol/mL), ALP alka-
line phosphatase (U/L), NEU neutrophil count  (109/L), SLD 
sum of longest diameters (mm), ADA post-baseline status of 
anti-therapeutic antibodies.

(7)

TVV1
i
(L) =

(

3.33 ⋅

(

BWTi kg

72

)0.450
)

⋅ (0.833 if female)

(8)TVV2
i
(L) = 3.45 ⋅ (0.779 if female)

An exploration of the impact of covariates on atezoli-
zumab PK using a tornado plot in Fig. 3 shows the isolated 
influence of each statistically significant covariate on CL. 
None of the covariates that were statistically significant 
(p < 0.001) predictors of atezolizumab CL were found to 
be clinically relevant as judged by the magnitude of covar-
iate effects not exceeding 30% from the typical patient and 
the flat exposure–response relationship for atezolizumab 
[6, 7]. As in Phase 1 stationary model [7], the largest effect 
is seen with albumin with a 27% higher CL than the typi-
cal patient when evaluated at the 5th percentile (29 g/L). 
Females have a lower CL compared to males (− 20%). 
Patients with higher body weight have higher CL than 
patients with lower body weight (+ 20% vs. − 16% at 95th 
and 5th percentiles of body weight, respectively). Positive 

Fig. 2  Individual profiles of percent change from baseline in CL in the three studies: top panel: Time-varying covariates model, bottom panel: 
empirical time-dependent model



218 Cancer Chemotherapy and Pharmacology (2021) 88:211–221

1 3

ADA has a small impact on CL (+ 9.3%). Other covari-
ates (BSLD, ALP, NEU, and BIL) have minor impacts 
(< 10%). Of note, covariate effect estimates in the three 
models are consistent (Table 2). A sensitivity analysis 
based on Phase 3 data only to explore the impact of CRP 
on atezolizumab CL, showed that the effect of CRP was 
significant in addition to the other covariates in the model 
but small (< ± 10%).

The limit of the tornado plot is that it does not assess the 
time variations. To investigate the impact of the covariates 
on time-varying CL, individual profiles of CL and covari-
ates change over time were explored and some representative 
profiles are presented in Fig. 4. These plots focus on the most 
relevant covariates that were identified, i.e., ALBU and SLD 
as markers of disease severity as well as ADA status. The 
fractional changes from baseline for CL, ALBU, and SLD 
were derived and the locally-weighted smooth lines of these 

changes were plotted for each patient. Time-varying ADA 
was shown as a vertical pink area when a patient was posi-
tive. To visualize the magnitude of the change, a gray area 
displays a range of ± 30% fractional change of CL from base-
line. For each panel, the patient identifier (patient ID, 1–3), 
the study, and the best overall response status are presented in 
the top band. Those plots indicate that changes in CL parallel 
changes in ALBU over time and to a lesser extent, changes in 
SLD over time. In addition, the plots suggest that the appear-
ance of ADA has a minor impact on CL compared with the 
change in the patient’s disease status. Overall, the change in 
ALBU level over time seems to best predict the change in CL 
over time independent of ADA status. The strong reciprocal 
relationship between maximum change in CL and change in 
ALBU and to a lesser extent the corresponding change in 
SLD is illustrated in Supplementary Materials Fig. S4. Simi-
lar features were previously reported for durvalumab [12].

Fig. 3  Tornado plot of the 
impact of covariates on CL 
according to the time-varying 
covariates CL model. Black 
bold vertical line: predicted CL 
for a typical patient with median 
covariates (male, ADA negative, 
weighing 72 kg, albumin level 
38 g/L, bilirubin level 5 µmol/L; 
alkaline phosphatase 93 U/L, 
neutrophil count 5.109/L, 
SLD 55 mm); Gray area: 30% 
change from the typical patient; 
Horizontal bars: percent change 
of CL from typical for each 
covariate; left label: evaluated 
covariate with 5th and 95th 
percentiles of the continuous 
covariate distributions
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Discussion

Time-varying CL driven by time-varying patient status is 
described, for atezolizumab. This analysis explored the 
impact of covariates on atezolizumab clearance (CL) over 
time during treatment using data pooled from one Phase 1 
study (PCD4989g) and two Phase 3 studies where atezoli-
zumab was administered as monotherapy (IMvigor211 study 
in mUC and OAK study in NSCLC). The results support the 

hypothesis that CL variation over time is associated with 
patients’ prognostic factors and disease status as shown with 
other checkpoint inhibitors [8–12, 27]. The popPK analysis 
dataset included a large population of 1519 patients with 
cancer, mainly mUC or NSCLC, receiving 1–20 mg/kg or 
1200 mg of atezolizumab, q3w by IV infusion. As previ-
ously reported [7], atezolizumab concentrations were well 
described by a linear, two-compartment model with zero-
order intravenous infusion and first-order elimination. The 

Fig. 4  Individual profiles of fractional change in CL (black), albu-
min (red), and SLD (blue) according to the time-varying covariates 
model. Short vertical arrows: timing and result of ADA measure-
ments; horizontal gray area: ± 30% change in CL; vertical pink area: 
period of time when the patient was ADA+ ; black line: locally-

weighted smooth line of fractional change in CL from baseline; red 
line: locally-weighted smooth line of fractional change in albumin 
from baseline; blue line: locally-weighted smooth line of fractional 
change in sum of longest diameter from baseline. SD stable disease, 
PR partial response, PD progressive disease
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typical values of CL and V1 (0.235 L/day (9.79 mL/h) and 
3.36 L, respectively) were comparable to those found in 
the previous analysis (0.200 L/day (8.33 mL/h) and 3.28 L, 
respectively), and the estimated half-life of 21 days was 
similar to that reported previously with Phase 1 patients [7].

The impact of baseline covariates on atezolizumab CL 
was re-assessed on this base model. The covariate analy-
sis using baseline covariates found a positive relationship 
between weight and CL and V1, as well as a positive rela-
tionship between both SLD and ADA and CL, and a negative 
relationship for albumin with CL. In addition to the relation-
ship with bodyweight, volumes of distribution (V1 and V2) 
and CL were lower in females compared to males. Compared 
to the Phase 1 Model [7], some additional covariates were 
found to impact CL in this larger population: neutrophil 
count, alkaline phosphatase, and bilirubin, all of which had 
small effects on CL (< ± 10%).

The change of CL over time was best described by a 
model with time-varying covariates [12] than with a previ-
ously proposed empirical time-dependent Emax function 
[8–11]. The maximum decrease in CL estimated with the 
Emax model (22%) is of similar magnitude to that esti-
mated for other checkpoint inhibitors [28]. The main driver 
for change in CL over time was albumin level variations, 
with a decrease in CL mirroring an increase in albumin 
(improvement in patient’s status) and to a lesser extent 
the change in SLD over time (Supp Fig S4). This finding 
supports the hypothesis that atezolizumab PK is impacted 
by prognostic factors and disease status that could include 
cancer cachexia as suggested by others for PD-1 and PD-L1 
inhibitors, i.e., nivolumab [8, 9], pembrolizumab [10, 27], 
avelumab [11] or durvalumab [12]. The time-varying 
covariate model provides a broader mechanistic under-
standing of the relationship between the disease status 
(tumor burden, and cancer inflammation) and atezolizumab 
PK. The current findings on the importance of time-vary-
ing covariates to drive change in CL during treatment for 
atezolizumab are in line with what is described by Baverel 
[12] for durvalumab and by Li [13] for pembrolizumab. 
The time-varying covariate model makes more mechanis-
tic sense than the Emax model as it is more flexible with 
patients improving and worsening (or vice versa) while 
on-treatment with successive CL decreases and increases. 
When using the empirical time-dependent function, indi-
vidual patients have to have a continuous decrease or an 
increase in CL but not both in sequence. This flexibility 
likely explains why the time-varying covariates model 
fits the data better, as previously observed [12]. Of note 
time-varying PK for checkpoint inhibitors has been mainly 
investigated for single-agent treatments. Similar investi-
gations need be conducted with combination treatments. 
Since this phenomenon is related to treatment effect, some 

differences when combined with chemotherapies may be 
expected.

Evaluation of ADA impact on pharmacokinetics appears 
to be more sensitive when ADA is considered as time-var-
ying compared to stationary in popPK models [29]. In both 
the baseline covariates stationary model [7] and the time-
varying covariates model, treatment-emergent, ADA status 
had a small impact on CL (13.7% increase in the baseline 
model and 9.3% increase in the time-varying model). Of 
note a larger increase in clearance (22%; range 18–49%) 
was seen in a comparison of individual (posthoc) CL esti-
mates in ADA-positive patients vs. ADA negative-patients 
[4]. Those estimates are unadjusted for covariate effects. 
Patients who later develop ADA tended to have poorer 
baseline prognostic factors, so the faster CL in ADA-pos-
itive patients is due to both the impact of ADA and that of 
associated baseline prognostic. The popPK model adjusts 
for baseline prognostic imbalances and estimates the inde-
pendent effect of ADA, which is smaller.

None of the covariates impact atezolizumab CL by 
more than a ± 30% threshold. This is similar to the esti-
mates from the previous stationary Phase 1 model for 
atezolizumab and with data from other checkpoint inhibi-
tors [8–13] and need be interpreted in the context of flat 
exposure response [6, 7] for atezolizumab. These results 
provided greater insights into the effects of covariates on 
atezolizumab PK over time but do not warrant any change 
in the current atezolizumab dosing recommendations.

Conclusion

Time-dependent changes in covariates, notably albumin 
level and tumor burden, best described the change in CL 
with time. This is consistent with the hypothesis that the 
main driver for change in CL over time is the improvement 
in the patient’s health status. The time-varying covariates 
PK model includes the effects of body weight, albumin 
levels, ADA, gender, neutrophil count, alkaline phos-
phatase, and bilirubin levels on atezolizumab CL. When 
adjusted for the effects of baseline covariates, the impact 
of time-varying ADA on atezolizumab CL is inconsequen-
tial (9%). The overall impact of covariates on atezolizumab 
CL is similar in magnitude to that found with the Phase 1 
time-stationary popPK model with no change to atezoli-
zumab dosing recommendations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00280- 021- 04276-4.

Author contributions MM, PC, VQ, MB, NS, JYJ and RB wrote the 
article and designed the research. RZ prepared the datasets. MM per-
formed the analyses.

https://doi.org/10.1007/s00280-021-04276-4


221Cancer Chemotherapy and Pharmacology (2021) 88:211–221 

1 3

Declarations 

Conflict of interest M. Marchand is employed by Certara Strategic 
Consulting. R. Zhang, B. Wu, P. Chan, V. Quarmby, M. Ballinger, N. 
Sternheim, J.Y. Jin, and R. Bruno are employed by Genentech, Inc.

References

 1. Chen DS, Mellman I (2013) Oncology meets immunology: the 
cancer-immunity cycle. Immunity 39:1–10. https:// doi. org/ 10. 
1016/j. immuni. 2013. 07. 012

 2. Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-
generation immunotherapy–inhibiting programmed death-ligand 1 
and programmed death-1. Clin Cancer Res 18:6580–6587. https:// 
doi. org/ 10. 1158/ 1078- 0432. CCR- 12- 1362

 3. Herbst RS, Soria J-C, Kowanetz M et al (2014) Predictive cor-
relates of response to the anti-PD-L1 antibody MPDL3280A in 
cancer patients. Nature 515:563–567. https:// doi. org/ 10. 1038/ 
natur e14011

 4. TECENTRIQ (atezolizumab) [package insert] (2020) Genentech, 
Inc, South San Francisco

 5. TECENTRIQ (atezolizumab) [summary of product characteris-
tics] (2020) Roche Registration Limited, Welwyn Garden City

 6. Morrissey KM, Marchand M, Patel H et  al (2019) Alterna-
tive dosing regimens for atezolizumab: an example of model-
informed drug development in the postmarketing setting. Cancer 
Chemother Pharmacol 84:1257–1267. https:// doi. org/ 10. 1007/ 
s00280- 019- 03954-8

 7. Stroh M, Winter H, Marchand M et al (2017) Clinical pharma-
cokinetics and pharmacodynamics of atezolizumab in metastatic 
urothelial carcinoma. Clin Pharmacol Ther 102:305–312. https:// 
doi. org/ 10. 1002/ cpt. 587

 8. Liu C, Yu J, Li H et al (2017) Association of time-varying clear-
ance of nivolumab with disease dynamics and its implications on 
exposure response analysis. Clin Pharmacol Ther 101:657–666. 
https:// doi. org/ 10. 1002/ cpt. 656

 9. Bajaj G, Wang X, Agrawal S et al (2017) Model-based popula-
tion pharmacokinetic analysis of nivolumab in patients with solid 
tumors. CPT Pharmacomet Syst Pharmacol 6:58–66. https:// doi. 
org/ 10. 1002/ psp4. 12143

 10. Li H, Yu J, Liu C et al (2017) Time dependent pharmacokinetics 
of pembrolizumab in patients with solid tumor and its correla-
tion with best overall response. J Pharmacokinet Pharmacodyn 
44:403–414. https:// doi. org/ 10. 1007/ s10928- 017- 9528-y

 11. Wilkins JJ, Brockhaus B, Dai H et al (2019) Time-varying clear-
ance and impact of disease state on the pharmacokinetics of ave-
lumab in merkel cell carcinoma and urothelial carcinoma. CPT 
Pharmacomet Syst Pharmacol 8:415–427. https:// doi. org/ 10. 1002/ 
psp4. 12406

 12. Baverel PG, Dubois VFS, Jin CY et al (2018) Population pharma-
cokinetics of durvalumab in cancer patients and association with 
longitudinal biomarkers of disease status. Clin Pharmacol Ther 
103:631–642. https:// doi. org/ 10. 1002/ cpt. 982

 13. Li H, Sun Y, Yu J et al (2019) Semimechanistically based mod-
eling of pembrolizumab time-varying clearance using 4 longitudi-
nal covariates in patients with non-small cell lung cancer. J Pharm 
Sci 108:692–700. https:// doi. org/ 10. 1016/j. xphs. 2018. 10. 064

 14. Horn L, Gettinger SN, Gordon MS et al (2018) Safety and clinical 
activity of atezolizumab monotherapy in metastatic non-small-cell 

lung cancer: final results from a phase I study. Eur J Cancer 
101:201–209. https:// doi. org/ 10. 1016/j. ejca. 2018. 06. 031

 15. Powles T, Durán I, van der Heijden MS et al (2018) Atezolizumab 
versus chemotherapy in patients with platinum-treated locally 
advanced or metastatic urothelial carcinoma (IMvigor211): a mul-
ticentre, open-label, phase 3 randomised controlled trial. Lancet 
391:748–757. https:// doi. org/ 10. 1016/ S0140- 6736(17) 33297-X

 16. Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab 
versus docetaxel in patients with previously treated non-small-cell 
lung cancer (OAK): a phase 3, open-label, multicentre randomised 
controlled trial. Lancet 389:255–265. https:// doi. org/ 10. 1016/ 
S0140- 6736(16) 32517-X

 17. Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-
L1) treatment leads to clinical activity in metastatic bladder can-
cer. Nature 515:558–562. https:// doi. org/ 10. 1038/ natur e13904

 18. Petrylak DP, Powles T, Bellmunt J et al (2018) Atezolizumab 
(MPDL3280A) monotherapy for patients with metastatic urothe-
lial cancer: long-term outcomes from a phase 1 study. JAMA 
Oncol 4:537–544. https:// doi. org/ 10. 1001/ jamao ncol. 2017. 5440

 19. SL Beal, LB Sheiner, AJ Boeckmann, RJ Bauer (1989) NONMEM 
7.4 users guides

 20. R Core Team (2016) R: A Language and Environment for Statisti-
cal Computing. https:// www.R- proje ct. org/. Accessed 07 Sep 2020

 21. Lindbom L, Ribbing J, Jonsson EN (2004) Perl-speaks-NONMEM 
(PsN)—a Perl module for NONMEM related programming. Com-
put Methods Programs Biomed 75:85–94. https:// doi. org/ 10. 
1016/j. cmpb. 2003. 11. 003

 22. Lindbom L, Pihlgren P, Jonsson EN, Jonsson N (2005) PsN-
Toolkit—a collection of computer intensive statistical methods 
for non-linear mixed effect modeling using NONMEM. Comput 
Methods Programs Biomed 79:241–257. https:// doi. org/ 10. 1016/j. 
cmpb. 2005. 04. 005

 23. Karlsson MO, Holford N (2008) Model evaluation. A tutorial on 
visual predictive checks. PAGE 17 (2008) Abstr 1434 www. page- 
meeti ng. org/? abstr act= 1434

 24. Tomita M, Ayabe T, Maeda R, Nakamura K (2018) Comparison 
of inflammation-based prognostic scores in patients undergoing 
curative resection for non-small cell lung cancer. World J Oncol 
9:85–90. https:// doi. org/ 10. 1440/ wjon1 097w

 25. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate 
method to estimate glomerular filtration rate from serum creati-
nine: a new prediction equation. Modification of Diet in Renal 
Disease Study Group. Ann Intern Med 130:461–470. https:// doi. 
org/ 10. 7326/ 0003- 4819- 130-6- 19990 3160- 00002

 26. Karlsson MO, Savic RM (2007) Diagnosing model diagnostics. Clin 
Pharmacol Ther 82:17–20. https:// doi. org/ 10. 1038/ sj. clpt. 61002 41

 27. Turner DC, Kondic AG, Anderson KM et al (2018) Pembroli-
zumab exposure-response assessments challenged by associa-
tion of cancer cachexia and catabolic clearance. Clin Cancer Res 
24:5841–5849. https:// doi. org/ 10. 1158/ 1078- 0432. CCR- 18- 0415

 28. Centanni M, Moes DJAR, Trocóniz IF et al (2019) Clinical phar-
macokinetics and pharmacodynamics of immune checkpoint 
inhibitors. Clin Pharmacokinet 58:835–857. https:// doi. org/ 10. 
1007/ s40262- 019- 00748-2

 29. Wang Y-MC, Wang J, Hon YY et al (2016) Evaluating and report-
ing the immunogenicity impacts for biological products—a clini-
cal pharmacology perspective. AAPS J 18:395–403. https:// doi. 
org/ 10. 1208/ s12248- 015- 9857-y

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1158/1078-0432.CCR-12-1362
https://doi.org/10.1158/1078-0432.CCR-12-1362
https://doi.org/10.1038/nature14011
https://doi.org/10.1038/nature14011
https://doi.org/10.1007/s00280-019-03954-8
https://doi.org/10.1007/s00280-019-03954-8
https://doi.org/10.1002/cpt.587
https://doi.org/10.1002/cpt.587
https://doi.org/10.1002/cpt.656
https://doi.org/10.1002/psp4.12143
https://doi.org/10.1002/psp4.12143
https://doi.org/10.1007/s10928-017-9528-y
https://doi.org/10.1002/psp4.12406
https://doi.org/10.1002/psp4.12406
https://doi.org/10.1002/cpt.982
https://doi.org/10.1016/j.xphs.2018.10.064
https://doi.org/10.1016/j.ejca.2018.06.031
https://doi.org/10.1016/S0140-6736(17)33297-X
https://doi.org/10.1016/S0140-6736(16)32517-X
https://doi.org/10.1016/S0140-6736(16)32517-X
https://doi.org/10.1038/nature13904
https://doi.org/10.1001/jamaoncol.2017.5440
https://www.R-project.org/
https://doi.org/10.1016/j.cmpb.2003.11.003
https://doi.org/10.1016/j.cmpb.2003.11.003
https://doi.org/10.1016/j.cmpb.2005.04.005
https://doi.org/10.1016/j.cmpb.2005.04.005
http://www.page-meeting.org/?abstract=1434
http://www.page-meeting.org/?abstract=1434
https://doi.org/10.1440/wjon1097w
https://doi.org/10.7326/0003-4819-130-6-199903160-00002
https://doi.org/10.7326/0003-4819-130-6-199903160-00002
https://doi.org/10.1038/sj.clpt.6100241
https://doi.org/10.1158/1078-0432.CCR-18-0415
https://doi.org/10.1007/s40262-019-00748-2
https://doi.org/10.1007/s40262-019-00748-2
https://doi.org/10.1208/s12248-015-9857-y
https://doi.org/10.1208/s12248-015-9857-y

	Time-dependent population PK models of single-agent atezolizumab in patients with cancer
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Studies and patients
	Data analysis
	Population PK model development

	Results
	Data
	Covariate analysis
	Performance and parameter estimates for population PK models
	Model comparison
	Impact of covariate effects and clinical relevance

	Discussion
	Conclusion
	References




