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Abstract
As the main substance in some traditional Chinese medicines, cucurbitacins have been used to treat hepatitis for decades 
in China. Currently, the use of cucurbitacins against cancer and other diseases has achieved towering popularity among 
researchers worldwide, as detailed in this review with summarized tables. Numerous studies have reported the potential 
tumor-killing activities of cucurbitacins in multiple aspects of human malignancies. Continuous research on its anticancer 
activity mechanisms also brings a glimmer of light to the treatment of patients with lung cancer. In line with the promising 
roles of cucurbitacins against cancer, through various molecular signaling pathways, it is justifiable to propose the use of 
cucurbitacins as a potential mainline chemotherapy before the onset and after the diagnosis of lung cancers. Here, this article 
mainly summarized the findings about the biological functions and underlying mechanisms of cucurbitacins on lung cancer 
pathogenesis and treatment. In addition, we also discussed the safety and efficacy of their application for further research 
and even clinical practice.
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Introduction

Lung cancer is a worldwide public health problem and 
has been a major cause of mortality in recent years [1–3]. 
According to the report of global cancer statistics, there are 
approximately 2.1 million new cases of lung cancer diag-
nosed each year, and 1.8 million patients died of lung cancer 
in 2018 [4–6]. In clinical practice, the treatments that are 
available for lung cancer include surgical resection, radio-
therapy and chemotherapy drugs [7, 8]. Specific treatment is 
mainly based on the diagnosis and clinical staging of patients 

[9]. However, the status quo is that the clinical screening of 
lung cancer is not accessible for each patient. As a result, 
patients are usually diagnosed at advanced stages. At the 
same time, the 5-year survival rate of lung cancer, which 
continues to decrease as the disease stage progresses, with 
comprehensive consideration of various factors, only varies 
from 4–17% [10, 11]. Even though some emerging thera-
peutic strategies, including targeted therapy and immuno-
therapy, have exhibited momentous clinical benefits [7, 10, 
12], some patients do not show durable remission, and some 
tumor cells have been refractory to response with the anti-
cancer drugs [10, 13, 14].

Therefore, to further prolong the life expectancy of these 
patients, and better improve their quality of life, the progress 
of research regarding more sophisticated diagnostic methods 
and more effective therapeutic drugs for early lung cancer 
needs to be sped up.

Cucurbitacins, natural products originally derived from 
Cucurbitaceae, have been shown to possess strong antitu-
mor activity by modulating multiple signaling pathways 
in vivo and in vitro [15–17]. With several unique advantages, 
such as lower toxicity and fewer side effects, these com-
pounds could more promptly be moved into clinical prac-
tice [18–20]. Currently, besides the Cucurbitaceae, cucurbi-
tacins can also be extracted from various families of plants 
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worldwide [18, 21]. In terms of structural composition, 
except for the nucleus skeleton of tetracyclic cucurbitane, 
cucurbitacins carry different oxygen-containing functional 
groups in different positions. There are approximately 12 
different classes of cucurbitacins, divided from A to T with 
over 200 derivatives [21]. After years of accumulation, a 
growing contingency of researchers have confirmed their 
activity against several human pathological processes, for 
example, the anticancer effects, anti-inflammatory action, 
immunomodulatory capacities, etc. [15, 22–24]. Emerging 
evidence documents that cucurbitacin has a certain degree 
of inhibitory effect on a variety of tumors [25–27]. Nowa-
days, the research advancement of cucurbitacins in vari-
ous human cancers have been reviewed in several papers 
[18, 28–32]. Especially, a recent review has summarized 
the potential anti-cancer properties in breast cancer [33]. 
However, the detailed biological functions and regulatory 
mechanisms of cucurbitacins in the occurrence and devel-
opment of lung cancer are poorly summarized. Recently, 
its potent antagonized efficacy in lung cancer attracts the 
attention of researchers and has been well-identified in dif-
ferent experiments (Tables 1, 2). Therefore, as a promising 
antitumor drug, the detailed roles of cucurbitacins in lung 
cancer research and treatment are worthy of further research. 
To date, the major mechanisms of action involve apoptosis 
induction, cell cycle arrest, cytoskeleton regulation and so 
on [21, 34–38]. Although a large number of reports exist 
regarding the effective anticancer functions of cucurbitacins, 
their detailed mechanisms have not been fully elucidated 
so far.

In this article, we mainly summarize the application of 
cucurbitacins in lung cancers, focusing on the therapeutic 
functions and related biological mechanisms (Fig. 1). The 
isolated cucurbitacin components with attractive anticancer 
activity for lung cancer have been reported to include A, B, 
D, E, I, Q, IIa and their derivatives. Furthermore, the safety 
problems are also discussed for the purpose of clinical appli-
cation in the future.

Cucurbitacin B

Cucurbitacin B (CuB) is one of the most active and popular 
cucurbitacins studied. It is widely distributed in a variety 
of plants, mainly in the form of glycosides. CuB and its 
derivatives, extracted from different parts of different plants, 
showed significant cytotoxicity to different lung cancer cells, 
including A549, SK-LU1 and so on [39, 40]. Although the 
roles of CuB have not yet been elucidated clearly, relevant 
mechanisms and targets that have been discovered deserve 
our attention.

Epidermal growth factor receptor (EGFR), which is 
normally overexpressed in various cancers, is a key target 

for lung cancer therapy, especially for non-small-cell 
lung cancer (NSCLC) [41–43]. For patients who carry 
a sensitizing mutation in EGFR, tyrosine kinase inhibi-
tors (TKIs) are recommended first [6, 44, 45]. A recent 
study has found that CuB could directly suppress EGFR 
signaling through the lysosomal pathway both in vitro and 
in vivo, which is distinct from TKIs [46]. Consequently, 
CuB successfully impeded cell migration and invasion in 
the gefitinib-resistant (GR) NSCLC EGFR/ERK pathway. 
The CIP2A/PP2A/Akt axis was verified to play a dominant 
role in CuB-induced cell proliferation inhibition through a 
series of studies by Liu PF’s group [46].

Indeed, it was also reported that CuB inhibited tumor 
growth and cell colony formation regardless of their EGFR 
expression in different studies [47–49]. Another possible 
reason for this attractive result might, in part, stem from 
the inhibitory effect of CuB on the downstream molecules 
of EGFR. Khan N et al. [48] revealed that CuB suppressed 
PI3K/Akt/mTOR and signal transducer and activator of 
transcription 3 (STAT3) signaling both in EGFR-mutant 
and EGFR-wild-type lung cancer cells, leading to growth 
inhibition along with G2-phase cell cycle blocking. As 
the downstream molecules of EGFR, STATs have been 
recognized as promising targets for cancer treatment as 
well [50]. Existing evidence indicated that Janus kinase 
(JAK)-STAT3 signaling played a significant role in pro-
moting cancer progression, with effects on tumor cell 
proliferation, survival and invasion [51–53]. As early as 
2004, it was found that CuB inhibited the JAK-STATs 
pathway in vitro and in vivo and induced apoptosis and 
tumor growth inhibition [54]. Li YM’s group revealed that 
CuB suppressed cell proliferation and induced caspase-
related apoptosis through the STAT3 pathway, along with 
cytochrome c release and Bcl-2 reduction. Upregulation 
and activation of STAT1, the important effector in IFN-γ 
signaling, further enhanced the antitumor effects of CuB 
[55]. Similar to STAT3, Akt is also closely related to cell 
survival and proliferation and is commonly overexpressed 
in cancer cells [56, 57]. Treatment with CuB was found 
to result in decreased viability and improved apoptosis of 
lung cancer cells by causing inhibition of PI3K/Akt/mTOR 
signaling pathway [48]. To sum up, CuB may provide an 
opportunity to overcome the common clinical problems of 
EGFR-TKI therapy in lung cancer, that is, poor sensitiv-
ity and drug resistance [41, 46]. Aside from the EGFR/
Akt pathway mentioned above, CuB exhibited significant 
inhibitory effects on the migratory and invasive abilities 
of NSCLC cells in vitro and in vivo, with attenuation of 
the canonical Wnt/β-catenin signaling pathway [46, 58]. 
Given that the migration and invasion potentials in lung 
cancer often predict progression and recurrence [59, 60], 
CuB has good prospects in inhibiting the progression of 
lung cancer tumors and enhancing the treatment response.
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Table 1   The anti-lung cancer activities of cucurbitacins in vitro

Type Source Cell lines Active concentration Biological outcomes Related molecular Refs

CuB Purchased H1975
H820

0.1, 0.2, 0.4 μM 
0.05, 0.1, 0.2 μM

Growth and proliferation↓
Invasion and migration↓
Apoptosis↑

caspase-3,8, PRAP
LAMP-1, EGFR, ERK
CIP2A/PP2A/Akt

46

CuB Purchased A549 0.1, 1.0 μM Proliferation↓
G2/M cell cycle arrest
Apoptosis↑

caspase-3 and 9
cytochrome c
cyclin B1, Bcl-2, STAT3

47

CuB Purchased A549, H1650 0.2, 0.4, 0.6 μM Growth and colony↓
Apoptosis↑
G2-phase cell cycle arresst

AMPKα, PI3K/Akt/
mTOR, 4EBP1, eIF-
4E, p70S6K

STAT3
sestrin-3

48

CuB Purchased H1299 0.1, 0.35 μM Viability↓
Morphological change
G2/M cell cycle arrest
Apoptosis↑

p38 MAPK/Hsp27, 
F-actin, Rac, cdc42

ERK, STAT3, WAF1, 
cdc2p34, cyclin B1, 
D1, PCNA

Bcl2, Bax, cytochrome 
c, caspase-3, 9, PARP, 
gelsolin, thiol, GSH

49

CuB Unkown A549, H1299 0.025–0.1 μM Migration↓ (0.01–0.1 μM)
Invasion↓
Stemness↓

canonical Wnt/β-catenin
GSK-3, TCF-1, MMP-2, 

vimentin, MYC, Cyclin 
D1, VEGF, Survivin-
FZD-7, E-Cadherin

58

CuB Purchased A549 0.05, 0.1, 0.2 μM Proliferation↓
DNA-double strand breaks
G2/M cell cycle arrest

ATM-Chk1-Cdc25C-
Cdk1, Cyclin B1

ATM-p53-14–3-3-s
ROS

61

CuB L. graveolense Roxb H1299 0.06, 0.6, 0.86 μM Proliferation↓
Apoptosis↑

TSGs, Oncogenes, TPGs
DNMTs, HDACs,HATs

64

DACE Semisythesis from CuB A549 0.5 μM, 1 μM Growth and colony↓
G2/M cycle arrest
Apoptosis↑ (1 μM)

F-actin,
caspase-3, Cyclin B1, 

survivin
STAT3, PI3K/AKT
ERK, EGFR, Ras, Raf

40

CuE Purchased A549 0.25, 1, 2.5 μM Proliferation↓ Wnt/β-catenin, cyclin 
D1, cyclin E, Menin

70

CuE Purchased 95D 0.05, 0.2,1 μM Proliferation↓
MMP depolarization
Apoptosis↑
Autophagy↑
Regulating cytoskeleton

ROS
PTEN, AKT/mTOR
Bcl-2, Bcl-xL, capase-3, 

7, 9, PARP
LC3II, p62, Beclin-1, 

ULK
F-actin

71

CuE Purchased H2030-BrM3, PC9-
BrM3

0.05, 1 μM Viability↓ 
(IC50 = 0.146/0.187 μM)

Migration and invasion↓
Brain metastatic↓

YAP, GTIIC reporter, 
CTGF, CYR61, EREG, 
ERK

72

CuI Unkown A549 0.1-10 μM Proliferation↓ (10 μM)
Apoptosis↑ (10 μM)

JAK/STAT3 75

CuI Purchased A549 0.1–10 μM / STAT1, STAT3 76
CuI Purchased NSCLC-derived CD133-

positive cells
0.1, 0.15 μM Proliferation↓

Apoptosis↑
Differentiation↑
Sensibilization

STAT3
survivin, Bcl-2,Bcl-

xl,Capsase-3

77

CuI Goya A549 0.0625–4 μM Growth↓ PAK1 80
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↑ Promoting
↓ Inhibiting

Table 1   (continued)

Type Source Cell lines Active concentration Biological outcomes Related molecular Refs

CuI Purchased A549 0.3, 0.4 μM Proliferation↓ (0.2, 0.3, 
0.4 μM)

Apoptosis↑
Pro-death autophagy↑

LC3IILC3I
ERK/mTOR/STAT3

81

CuI Unkown A549 0.05, 0.1, 0.2 μM Proliferation↓
Apoptosis↑

PI3K/Akt/p70S6K
LDH, caspase-3,9

82

CuA Purchased A549 40, 100, 200 μM Proliferation↓
Apoptosis↑
Morphology change
G2/M cell cycle arrest

PI3K/Akt/mTOR 83

CuD Ecballium elaterium NSCLC-N6 1.93–9.68 μM Proliferation↓
G1 phase cell cycle arrest
Apoptosis↑

Cdk1 85

CuD Purchased H1299 0.019–0.39 μM Proliferation↓
Morpahological change
G2/M cell cycle arrest
Apoptosis↑

survivin, Bcl-2, Bax, cas-
pase-3,8,9, PARP

cyclin A1, B, D, cdc2, 
cdc 25c

ErB3, ErB2, PI3K, Akt, 
ERK, STAT3,

p38 MAPK, JNK, NF-κB

86

CuQ Purchased A549 10 μM Apoptosis↑ STAT3, ERK 54
CuIIa H. amalils Diell H1299 17.77, 88.86 μM Growth↓

Apoptosis↑
Cell cycle progression↓

F-actin, RhoA, survivin, 
PRAP

Histone H3

90

CuIIa Purchased A549 50, 60, 70 μM Growth↓ (40-80 μM)
apoptosis↑
G2/M cell cycle arrest

EGFR, Raf, MEK, ERK
STAT3, survivin, cyclin 

B1,

91

Table 2   The anti-lung cancer activities of cucurbitacins in vivo

↑ Promoting
↓ Inhibiting

Type Administration Route Model Active concentration Biological outcomes Related molecular Refs

CuB Unkown H1975 xenograft model 0.5 mg/kg Tumor growth↓ CIP2A, EGFR 46
CuB Intraperitoneal H1299 xenograft model 1 mg/kg Tumor growth↓ STAT3, WAF1, cyclin B1, 

Cdk1, Bcl2, Bax, caspase-3
49

CuB Intraperitoneal NKK-induced lung cancer 
mice

0.1, 0.2 mg/kg Tumorigenesis↓ Wnt/β-catenin
MMP-2, E-Cadherin, Cyclin 

D1, Cox-2, PCNA, VEGF

58

CuB Unkown NKK-induced lung cancer 
mice

0.1,0.2 mg/kg Tumorigenesis↓ PNCA, TSGs, Oncogenes, 
TPGs, DNMTs, HDACs

64

CuE Intraperitoneal H2030-BrM3 cell murine 
model

0.2 mg/kg Brain metastatic↓
Survival time↑

YAP 71

CuI Intraperitoneal A549 xenograft model 1 mg/kg Tumor growth↓ 75
CuI Intraperitoneal NSCLC-derived CD133-posi-

tive-Xenograft Model
1 mg/kg Tumor growth↓

Metastasis↓
Sensibilization
Survival↑

77

CuQ Intraperitoneal A549 xenograft model 1 mg/kg Tumor growth↓ STAT3 54
CuIIa Intravenous Lewis lung carcinoma mouse 

model
5, 10, 15 mg/kg Tumor size↓ 90
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It is worthy to note that EGFR-wild-type and EGFR-
mutant NSCLC cells exhibited differential expression of ses-
trin-3 with the treatment of CuB [48]. In Khan N’s studies, 
the connection between sestrin-3 and the AMPKα/mTOR1 
axis was verified, which was partly involved in the CuB-
induced growth attenuation in H1659 (EGFR-mutant). The 
elevated protein and mRNA expression of sestrin-3 resulted 
in inhibition of the mTOR1 complex and its downstream 
molecules through phosphorylation of AMPKα. This pro-
vided a novel sight for a potential treatment mechanism 
of CuB. The role that CuB-induced setrin-3 downregula-
tion played in A549 cells (EGFR-mutant) was not clearly 
explained. Recent research unveiled the role of sestrin-3 in 
cellular redox balance as an antioxidant against the produc-
tion of ROS, which was ignored by Khan N. As a result, it 
was speculated that the inhibition of sestrin-3 may be related 
to an increase in ROS production as a potential anticancer 
mechanism of CuB. In fact, ROS production was observed 
in A549 cells by Guo J [61], which was consistent with the 
putative results. Nevertheless, validation is still needed in 
further research, along with mechanistic insight into the dif-
ferent effects of CuB on sestrin-3. As was evident in Guo 

J’s experiments, CuB induced DNA damage along with the 
promotion of the ATM-Chk1-Cdc25C-Cdk1 cascade in 
A549 mediated by reactive oxygen species (ROS) forma-
tion, which induced G2/M cell cycle arrest [61].

As a redox regulator of tumor pathophysiology, ROS 
upregulation promotes cancer occurrence and development 
and is therefore proposed to be a promising target [62, 63]. 
Beyond that, intracellular thiols and glutathione (GSH) are 
other redox regulators in cancer cells. CuB was tested to see 
if it could interrupt the cellular redox balance in NSCLC 
cells through the downregulation of protein thiols and the 
GSH/GSSG ratio starting from a 0.1 μM concentration [49], 
but no marked change in ROS was observed at 3 h. Given 
that ROS formation was observed after 24 h of CuB treat-
ment [61], it was suggested that the effects on ROS may be 
lagging, and CuB may interact directly with thiols. In addi-
tion, the cytotoxicity of CuB based on thiols and GSH spe-
cifically manifested as a reduction in cell viability and induc-
tion of G2/M cell cycle arrest and mitochondrial apoptosis. 
Furthermore, the epigenetic analysis indicated that CuB sup-
pressed the activities of DNA methyltransferases (DNMTs) 
and histone deacetylases (HDACs) and facilitated histone 

Fig. 1   Overview of the effects of the natural compound cucurbitacins on aberrant signaling pathways in lung cancer research and therapy
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acetyltransferases (HATs), which led to the upregulation of 
some key tumor suppressor genes (p16, p21) and concurrent 
downregulation of some key tumor promoter genes (hTERT) 
[64]. However, CuB negatively regulated the protein expres-
sion pertaining to oncogenes (c-MYC, K-RAS) in H1299 
without significant alteration of the mRNA expression. 
Hence, it provides a novel perspective for the chemothera-
peutic potential of CuB for patients with cancer.

Izabella TS et al. [40] synthesized a new derivation of 
CuB, namely, 2-deoxy-2-amine-cucurbitacin E (DACE). 
DACE has an amino moiety in C2 instead of the hydroxyl 
group, compared to CuB, which brings out a nucleophilic, 
basic and hydrogen bond donor/acceptor group. In addi-
tion, the mechanism of action was changed along with an 
optimized solubility and bioavailability via the alteration 
of hybridization from sp3 to sp2 in C2. In the presence 
of DACE, the activation of the EGFR, STAT3, PI3K/Akt 
and ERK pathways was inhibited in A549 cells, similar to 
the inhibition seen with CuB. Of note, the Ras/Raf/MEK 
pathway was considered a key signaling pathway of DACE-
induced cytotoxicity in vitro and in vivo. As illustrated in 
various NIH3T3 model cell lines, DACE exhibited selectiv-
ity toward malignant cells that were transduced with RAF 
or RAS.

Cucurbitacin E

Cucurbitacin E (CuE) is a well-known antifeedant, and 
shows strong antitumor activity in various cancers both 
in vitro and in vivo [65–68]. A recent study from Cheng 
SE’s group has identified CuE as a promising STAT3 inhibi-
tor that displays attractive cytotoxicity on human lung cancer 
A549 cells [69]. In this article, CuE successfully inhibited 
ATPγS-induced expression of COX-2 mRNA and PGE2 
generation through its downregulation of STAT3, which 
provided a new prospective treatment for chronic lung 
pathologies.

In addition, with regard to mechanisms in lung cancer 
research, increasing studies have demonstrated that CuE 
attenuated cell proliferation mediated by inhibition of the 
Wnt/β-Catenin signaling axis along with upregulation of 
the tumor suppressor Menin [70]. In addition, with the 
activation of caspase family proteins, Unc-51-like kinase 
1 (ULK-1) phosphorylation and BECN1 upregulation in 
95D cancer cells, CuE treatment induced apoptosis and 
autophagy by weakening the Akt/mTOR pathway. Further 
results were obtained when an accumulation of LC3II and 
CuE-induced cytotoxicity were enhanced by pretreatment 
with the autophagy inhibitors chloroquine and bafilomycin. 
Moreover, it is noteworthy that these functions were medi-
ated by ROS generation [71]. One recent study indicated that 
CuE inhibits the migration and invasion of H2030-BrM3 and 

PC9-BrM3 cells through the Yes-associated protein (YAP) 
signaling pathway, among which, both H2030-BrM3 with 
KRAS mutation and PC9-BrM3 with EGFR mutation are 
prone to metastasize. Especially in the H2030-BrM3 murine 
model, CuE successfully reduced brain metastasis through 
the downregulation of YAP. In addition to these direct 
effects, CuE also had a negative impact on YAP modulation 
by interfering with the EGFR/MAPK/ERK axis [72]. It was 
reported that the EGFR/MAPK/ERK pathway influenced 
CTGF and CYR61 expression, the downstream genes of the 
Hippo/YAP pathway [73]. Altogether, this research provided 
new insight for the treatment of metastatic lung cancer.

Cucurbitacin I

Cucurbitacin I (CuI), also called JSI-124, was first extracted 
from plants that belonged to cucurbitaceae and was also 
found in cruciferae [67, 74]. The first time that CuI was 
thought to be a possible agent for lung cancer treatment 
was when its anticancer activity was identified in A549 
cells and in a xenograft model where it was identified as a 
targeted JAK/STAT3 inhibitor [75]. By screening the NCI 
Structural Diversity Set comprising a library of 1,992 com-
pounds, Blaskovich MA et al. [75] uncovered that CuI was 
highly selective for the JAK/STAT3 signaling pathway by 
functioning on STAT3 DNA-binding activity precisely and 
had no obvious effect on other oncogenic pathways such 
as Akt, ERK1/2 and JNK. For example, CuI treatment of 
human lung adenocarcinoma Calu-1 cells, which lack 
constitutive STAT3 activation, showed no clear impact on 
cellular apoptosis in vitro or on corresponding xenograft 
tumor growth. On account of its pharmacological targeting 
of STAT3, subsequent research on CuI against lung cancer 
was mainly focused on the modulation of STAT signaling. 
Like CuB, CuI dose-dependently blocked STAT3 signal-
ing but promoted STAT1 signaling, possibly by disrupting 
actin filaments [76]. The findings indicated that the actin 
filaments physically interacted with STAT3 in A549 cells 
and thus regulated STAT3 phosphorylation through two 
different signaling complexes, the IL-6 receptor complex 
and the focal adhesion complex. Meanwhile, actin fila-
ments could also significantly promote STAT1 dephospho-
rylation by physically interacting with STAT1. Thus, these 
data demonstrated the interesting roles of CuI on the actin 
filament-mediated STAT signaling regulation. In addi-
tion, the compound CuI also displays anticancer stem cell 
properties, especially in NSCLC-derived CD133 + cells by 
deactivating the STAT3 signaling. CuI successfully inhib-
ited the proliferation of CD133 + cells and promoted their 
differentiation into CD133- cells with lower tumorigenicity 
and radio-resistance, to significantly improve the therapeutic 
effects [77].
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To date, apart from STAT3, other recent works reported 
that CuI could act as an inhibitor of p21-activated kinase 
1 (PAK1), which can promote proliferation and invasion 
in multiple solid tumors [78, 79]. CuI treatment resulted 
in A549 cell growth arrest by blocking phosphorylated 
PAK1 [80]. CuI was also verified to promote pro-death 
autophagy by inhibiting ERK activation and the downstream 
STAT3 phosphorylation level in A549 cells [81]. Based on 
autophagy induction, the triggered cell death and apoptosis 
with CuI treatment have been enhanced to some extent. In 
fact, similar to the findings from Blaskovich MA’s group 
[75], they also further revealed that CuI treatment had no 
remarkable effect on the PI3K/Akt signaling cascade. How-
ever, CuI inhibits p-ERK expression, and this is absolutely 
the opposite of Blaskovich MA’s results. Comparing the 
details of the two experiments, the discrepancy may arise 
from the distinct duration of CuI treatment. Nevertheless, 
there were no explanations regarding CuI-induced phospho-
rylation of ERK at early timepoints.

In addition, some inconsistent functions of CuI on PI3K/
Akt/mTOR modulation have been found recently. When CuI 
acts at a very low concentration (50 nM), it could markedly 
attenuate the phosphorylated AKT and p70S6K pathway, 
at last leading to cell growth inhibition of human NSCLC 
A549 cells [82]. These contradictory results might be due 
to different standards; one considered the level of phospho-
rylation only, while the other chose the ratio of phosphoryla-
tion to dephosphorylation or dephosphorylation only, which 
needs to be well-clarified in further studies.

Other cucurbitacins

In addition to CuB, CuE and CuI mentioned above, other 
independent research teams have discovered cucurbitacin 
compounds that also have pivotal functions against the 
pathological behaviors of human lung cancers, including 
cucurbitacin A, D, E, Q, IIa, etc.

Cucurbitacin A (CuA), mainly isolated from Cucumis 
species with a narrow distribution, is identified as a potential 
PI3K/Akt/mTOR signaling suppressor in A549 cells [64]. 
Specifically, CuA treatment blocked the cell cycle progres-
sion in a dose- and time-dependent manner, triggering cell 
proliferation inhibition and apoptosis induction in A549 lung 
cancer cells [83].

Cucurbitacin D (CuD) is one of the most common deriva-
tives from Cucurbitaceae and has strong antitumor proper-
ties [54, 67, 84]. Jacquot C. and her group found that CuD 
triggered CDK1 overexpression at the transcriptional level, 
leading to G1-phase cell cycle arrest, succedent apoptosis 
induction, and eventually irreversible growth inhibition in 
NSCLC-N6 cells [85]. In addition, Ku JM et al. [86] further 
explained the molecular mechanisms behind CuD’s actions 

against lung cancer. In H1299 cells, CuD administration 
obviously induced cell apoptosis incidence by increasing the 
apoptosis markers (cleaved caspases and increased proapop-
totic protein Bcl-2). Further exploration indicated that CuD 
inhibited ErbB3 signaling, which could bind many down-
stream signaling proteins correlated with cancer progression 
and prognosis. More importantly, it was worth noting that 
trichosanthes, the main derivatives from CuD, successfully 
inhibited the growth of patient-derived tumor cells [86, 87].

Cucurbitacin Q (CuQ) has been discovered as a more 
selective inhibitor that disrupts STAT3 without significant 
effects on other carcinogenic biomarkers in A549 cells, espe-
cially JAK [54]. However, more in-depth studies are needed 
to further clarify its specific role in disrupting STAT3 
signaling.

Cucurbitacin IIa (CuIIa), also called hemslecin A, is the 
major bioactive cucurbitacin in Hemsleya amabilis and has 
been verified to have antitumor effects in different cancers, 
including lung cancer [88, 89]. Unlike the other cucurbi-
tacins, CuIIa could not cause death in H1299 cells by reg-
ulating the JAK/STAT3 pathway [90]. However, a recent 
kinase inhibition assay indicated that CuIIa could directly 
act as a potential EGFR-TKI with an IC50 value of 1.455 nM 
[91]. Due to its evident antagonistic effects on EGFR onco-
genic signaling, CuIIa successfully induced cell apoptosis 
and cell-cycle arrest in A549 lung cancer cells [91]. In addi-
tion, the CuIIa homolog, CuIIb, could also exhibit more 
potent activity against A549 cells [92].

Characterization of the concentration 
and structure

Collectively, the effective concentration of cucurbitacins 
in  vitro ranges from 10  nM ~ 200  μM [58, 83]. At the 
nanomolar level, it was reported that CuB inhibited tumor 
cells stemness and angiogenesis via the canonical Wnt/β-
catenin axis [70], induced ATM-dependent DBS through 
ROS [61] and regulated epigenetic alteration, although it 
was clearly stated that STAT3 did not change significantly. 
CuI had an impact on the PI3K/Akt/p70S6K pathway [82] 
and PAK1 beginning at a 50 nM concentration [80]. In addi-
tion, CuE was declared to augment the level of ROS [71] 
and inhibit the YAP signaling pathway [72]. It was worth 
noting that the lagging effects on ROS mentioned above 
compared to the interaction between thiol and CuB may 
be due to its insignificant impact at high concentrations 
of CuB [61]. These cucurbitacins functioned on different 
targets at 0.1 to 1 μM, while CuA blocked the PI3K/Akt/
mTOR axis from 40 μM, CuQ inhibited STAT3 with an IC50 
of 3.77 ± 1.7 μM in A549 cells [54], and CuIIa attenuated 
EGFR from 40 μM [91]. However, another study showed 
that CuA could inhibit the cell proliferation of A549 cells 
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with an IC50 of 0.4 ± 0.013 μM [93]. On account of insuf-
ficient evidence, further research may be needed to ascertain 
whether CuA functions at a lower dose.

Given the characteristics of these cucurbitacins, the dif-
ferent active concentrations may partly derive from struc-
tural differences such as highly oxidized tetracyclic triter-
penoids. A lanostane skeleton with multiple substituents, 
including hydroxyls at C-16 and C-20, carbonyls at C-11 
and C-22, and a methyl at C-9 rather than C-10 in lanos-
tane, along with an unsaturated double bond at position 5 
was the common structure. Among these cucurbitacins that 
exhibited antitumor activity in lung cancer, the discrepan-
cies were mainly embodied in C-1, 2, 3, 2 3, 24, and 25. 
Compared with others, CuB seems to have the most typi-
cal traits, which represented the majority of substitutions. 
Lang KL et al. pointed out that the cytotoxic potency of 
cucurbitacins in A549 cells was related to multivariate fac-
tors, among which, the electrophilicity of molecules played 
a pivotal role, according to multivariate SAR and QSAR 
analyses of cucurbitacin derivatives. The derivatives that 
carried an amino (compound 32, also known as DACE) or 
bromine (compound 34) at C-2 exhibited the most potent 
cytotoxicity, among 43 compounds, in A549 cells. On this 
foundation, further studies that focused on DACE proposed 
that the double bond, along with the amino substitution that 
formed a conjugated structure, and the Michael acceptor (α, 
β-unsaturated ketone) in the side chain should be noticed 
[40]. Likely, CuIIa, whose conjugated 23,24 olefinic bond 
was saturated, functioned at high concentrations, which sup-
ported the importance of the Michael acceptor. Meanwhile, 
CuIIa was unable to inhibit phosphorylation of STAT3 in 
A549 cells even though it could promote the expression of 
STAT3 in H1299 cells due to the absence of a 23, 24 double 
bond. Notably, the special side chain of CuIIa made its com-
bination with EGFR more stable [90]. According to Sun J’s 
study, the absence of 3-carboxy in CuQ, which was replaced 
by a hydroxyl, led to higher selectivity towards STAT3 
without any obvious effects on JAK2, while the presence of 
11-hydroxyl in CuA eliminated its anti-STAT3 activity [54]. 
Furthermore, Lang and his group hinted at the importance 
of a 25-acetoxy group [93], which seemed limited after con-
sidering the cytotoxicity of CuI and CuD.

Safety and efficiency

The toxicity of cucurbitacins and related derivatives has 
been reported for a long time. Garg S et al. concluded that 
CuB caused some poisoning events up until 2018 [18]. In 
addition, six other kinds of cucurbitacins were recognized 
as acutely toxic, with the exception of CuE, which was an 
irritant, according to the Laboratory Chemical Safety Sum-
mary Datasheet (LCSS). The median lethal dose (LD50) of 

CuB in mice was 14 mg/kg (oral route), 2.73 mg/kg (intra-
muscular route), and 1 mg/kg (subcutaneous route) [94]. 
The experiments performed in mice with lung tumors found 
that low doses of CuB, such as 0.1 mg/kg (intraperitoneal), 
successfully impeded tumor growth. It was confusing that no 
toxicity reaction was observed in H1299 xenograft mice with 
1 mg/kg intraperitoneal CuB [49], which may depend on the 
purity of CuB or differences in the model. Furthermore, it 
was reported that the IC50 of CuB against 16-HBE, a kind 
of human bronchial epithelial-like cell, was 4.23 ± 0.81 μM, 
which was much higher than its active concentration in lung 
cancer cells [46]. With regard to CuD, it exhibited simi-
lar LD50 values in rats as CuB, namely, 8.2 mg/kg (oral), 
3.4 mg/kg (subcutaneous), and 1.3 mg/kg (intraperitoneal) 
[95]. However, the active dose for lung cancer in  vivo 
remains unclear. CuA, I, Q, and IIa lacked relevant toxicity 
data in mice, although there were no side effects mentioned 
in the A549 xenograft model or in a Lewis lung carcinoma 
mouse with 1 mg/kg intraperitoneal CuQ [54] or 15 mg/kg 
intravenous CuIIa, respectively [90]. However, one kind of 
adverse reaction, edema, was reported in an A549 xenograft 
model [75] but not in an NSCLC-derived CD133-positive-
xenograft model [77]. Ultimately, it was attractive that CuE 
could inhibit brain metastasis and improve the survival time 
of H2030‐BrM3 murine cells after 0.2 mg/kg intraperitoneal 
CuE [72], whose LD50 was as high as 340 mg/kg (oral) [96]. 
All in all, the active dose and lethal dose of different types 
of cucurbitacin are not the same, which may be associated 
with the diversity in structure.

Cucurbitacins are originally derived from Chinese tra-
ditional herbal plants that are used in dietary supplements 
and in medicine [97]. These compounds have shown vari-
ous bioactivities against human disorders with the devel-
opment of modern science and technology. On account of 
their attractive anti-inflammatory, anti-tumor and hepato-
protective effects, several Chinese medical patents based on 
cucurbitacins have been approved by the China Food and 
Drug Administration as an adjuvant treatment strategy for 
patients with chronic hepatitis and primary liver cancer [98]. 
Similarly, hemsleyadine tablets, which contain CuIIa and IIb 
as the main ingredients, have been used clinically to treat 
bacillary dysentery, enteritis and acute tonsillitis for a period 
of time [99, 100]. In Italy, a topical preparation for treating 
mono- or bilateral exudative otitis media in children, called 
Sinuclean Nebules, is already on the market. It is a saline 
solution with 45 mg of various cucurbitacins from Ecbal-
lium elaterium, including CuB, CuD, CuI and CuE [101]. 
In addition, a clinical trial examining the effect of CuB in 
patients with lung cancer indicated that oral use of CuB at 
120 μg three times a day, i.e. approximately 6 μg/kg after 
conversion according to the standard human weight of 60 kg 
[102], can effectively decrease the frequency of immature 
myeloid cells (imCs); this may represent a deficiency of 
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antitumor immunity in advanced patients [103]. And there 
were no serious adverse reactions reported in these patients. 
Nevertheless, because of this trial did not directly explore 
the anti-tumor effects of CuB, more clinical trials were 
needed to explore whether the dose in cells and animals can 
provide similar clinical benefit in lung cancer patients. As 
illustrated in Table 2, the experimental dose range of most 
cucurbitacins in mouse is 0.1–1 mg/kg. According to the 
conversion formula recommended by the practice guidance 
[102], Human Equivalent Dose (mg/kg) = Animal dose (mg/
kg) × (Animal Km ÷ Human Km), the human equivalent dose 
range is 0.008–0.081 mg/kg, i.e. 8–81 μg/kg, which may 
be used as the recommended dose for future clinical trials 
evaluating the anti-tumor functions of cucurbitacins. In addi-
tion, Km in the conversion formula is a correction factor that 
is calculated by dividing the average body weight of species 
to its body surface area. As reported by US Food and Drug 
Administration, the Km values in mouse and human are 3 
and 37, respectively. Evidently, these evaluations will shed 
more light on how to properly treat infections or cancer with 
cucurbitacins without inducing apparent and serious adverse 
effects at recommended concentrations. Even so, more inves-
tigations on the clinical application of cucurbitacin-based 
therapies are required to reveal the details regarding their 
safety and efficacy.

In addition, to elucidate the underlying biological func-
tions of cucurbitacins, specific and sensitive detection meth-
ods need to be developed. Evaluating the pharmacokinetics 
and pharmacodynamics would afford information on the 
development of cucurbitacin-based therapy. As early as 
2006, a group from Canada established a promising method 
for quantitative analysis of CuI in rat plasma based on liquid 
chromatography/mass spectrometry (LC–MS) [104]. Sub-
sequently, other cucurbitacin compounds have been quan-
titatively analyzed with LC–MS methods in the plasma of 
different species [105, 106], for example, rhesus monkeys 
[99]. In addition, Wang Z’s group conducted several experi-
ments to test the pharmacokinetic parameters of CuB and 
CuE in rat plasma by UHPLC-MS/MS [98, 107], and they 
found that the absolute oral bioavailability of CuB and CuE 
was very low (only approximately 10%). Surprisingly, with 
a high volume of distribution, these compounds were widely 
distributed in several organs including the lung, spleen and 
kidney [105]. However, the major pathways of CuB metabo-
lism still require detailed clarification.

Bioavailability is another barrier to the use of plant-
derived chemopreventive agents [17, 108–110]. Scientists 
put forward some attempts seeking the optimum carrier 
to improve the bioavailability of cucurbitacins. Micelles, 
including poly(ethylene oxide)-block-poly(ε-caprolactone) 
(PEO-b-PCL) and poly(ethylene oxide)-block-poly 
(α-benzyl carboxylate ε-caprolactone) (PEO-b-PBCL), were 
evaluated as the solubilizers and delivery vehicles for CuI 

and CuB [111, 112]. These drug conjugates make CuI and 
CuB more soluble, thus ameliorating their antitumor activ-
ity. Moreover, Lv Q and his group reported another similar 
mucoadhesive buccal film micelle as an effective carrier for 
CuB delivery [113]. Recently, a novel phospholipid complex 
carried CuB and not only ameliorated its permeability but 
also improved the targeted killing effect on cholangiocarci-
noma cells to a certain extent [114]. According to the lat-
est research, polymer nanoparticles modified with collagen 
peptides (CuB-MMs-CPs) have been developed to evidently 
increase the cellular uptake and transportation of CuB. The 
animal experiment involving rapid-growing rats further veri-
fied the significantly increased tumor inhibition caused by 
CuB-MMs-CPs [115]. In summary, choosing nanomicelles 
as a potential cucurbitacin carrier could be an effective strat-
egy to overcome the difficulties in bioavailability.

To date, although there is a certain theoretical basis for 
the safety and efficacy of cucurbitacin-based therapy, these 
studies provide only limited information due to a lack of 
reliable clinical evidence. Thus, more studies are needed as 
a reference for its approval for extensive clinical application.

Perspective on cucurbitacins

As novel compounds extracted from a number of plant fami-
lies all over the world, cucurbitacins have been used in the 
diet and in medicine for a long time. For instance, Goya 
containing CuI grows in Okinawa, Japan, while Ibervillea 
sonorae-containing CuIIb is a kind of traditional Mexican 
medicine [116]. Referring to earlier research, the anti-lung 
cancer activity of CuD from Sloanea zuliaensis was first 
reported around 2003 [117]. After that time, CuB and its 
derivatives, which were isolated from different plants, also 
showed significant cytotoxicity against different lung cancer 
cells [93, 118, 119].

Currently, finding novel intervention strategies for lung 
cancer that can overcome treatment failure in the clinic is 
becoming urgent [120, 121]. Natural agents with emerg-
ing cytotoxicity tend to attract more attention, due to their 
economic superiority and multitarget effects compared 
to synthetic products. A number of plant-derived mol-
ecules have been selected for further research, including 
cucurbitacins [20, 29, 122]. Abou-Salim MA et al. [123] 
designed innovative nitric oxide-donating cucurbitacin-
inspired estrone analogs (NO-CIEAs) and suggested that 
NO-CIEAs exhibited more potent sensitization activity to 
cancer chemotherapy. More evidence has indicated that 
CuB and CuD derivatives both exhibited significant syn-
ergistic anticancer effects on human lung cancers in vivo 
and in vitro when used in combination with known chem-
otherapy drugs, such as paclitaxel [124] and cisplatin 
[86, 125]. It was remarkable that the cucurbitacins could 
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function even at 0.005 μM, further ensuring the safety of 
the treatment. In addition, targeting of STAT3 signaling 
by CuI significantly enhanced the chemoradiosensitivity 
in CD133-positive cells isolated from patients with lung 
cancer [77]. Above all, further investigation of these issues 
may help identify more promising strategies to enhance 
the benefits of therapeutic response in the treatment of 
patients with lung cancer.

Conclusion

As novel natural tetracyclic triterpenoid compounds, 
cucurbitacins display a wide range of biological effects. 
Moreover, with significant cytotoxic properties, cucur-
bitacins possess very potent effects toward a number of 
cancer cells. Herein, we summarized the pharmacological 
principles and mechanisms of action of different cucurbi-
tacins in lung cancer research. Furthermore, the possibil-
ity of cucurbitacins actually entering clinical use for the 
treatment of lung cancer is also discussed in this article. 
The compounds CuA, B, D, E, I, Q and IIa were well-
summarized as potential anticancer agents with different 
mechanisms in lung cancer. They successfully inhibited 
tumor growth and induced cell apoptosis and cell cycle 
arrest, with no obvious toxicity for normal lung tissues. 
Furthermore, these compounds could impair cell migra-
tion, which occurs in aggressive malignancy and has a 
negative influence on the chemotherapy response. The evi-
dence mentioned above highlights the preponderance of 
cucurbitacins as promising agents for lung cancer preven-
tion, based on existing favorable evidence of their safety 
and efficacy. Nevertheless, for use in clinical practice, 
more clinical trials focused on cucurbitacins as mainline 
targeted anticancer therapies for lung cancer, either as 
independent effectors or as supplements, are warranted.
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