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Abstract
Purpose Given clinical activity of AR-42, an oral histone deacetylase inhibitor, in hematologic malignancies and preclinical 
activity in solid tumors, this phase 1 trial investigated the safety and tolerability of AR-42 in patients with advanced solid 
tumors, including neurofibromatosis type 2-associated meningiomas and schwannomas (NF2). The primary objective was to 
define the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs). Secondary objectives included determining 
pharmacokinetics and clinical activity.
Methods This phase I trial was an open-label, single-center, dose-escalation study of single-agent AR-42 in primary central 
nervous system and advanced solid tumors. The study followed a 3 + 3 design with an expansion cohort at the MTD.
Results Seventeen patients were enrolled with NF2 (n = 5), urothelial carcinoma (n = 3), breast cancer (n = 2), non-NF2-
related meningioma (n = 2), carcinoma of unknown primary (n = 2), small cell lung cancer (n = 1), Sertoli cell carcinoma 
(n = 1), and uveal melanoma (n = 1). The recommended phase II dose is 60 mg three times weekly, for 3 weeks of a 28-day 
cycle. DLTs included grade 3 thrombocytopenia and grade 4 psychosis. The most common treatment-related adverse events 
were cytopenias, fatigue, and nausea. The best response was stable disease in 53% of patients (95% CI 26.6–78.7). Median 
progression-free survival (PFS) was 3.6 months (95% CI 1.2–9.1). Among evaluable patients with NF2 or meningioma 
(n = 5), median PFS was 9.1 months (95% CI 1.9–not reached).
Conclusion Single-agent AR-42 is safe and well tolerated. Further studies may consider AR-42 in a larger cohort of patients 
with NF2 or in combination with other agents in advanced solid tumors.
Trial registration NCT01129193, registered 5/24/2010.
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Introduction

Histone deacetylase (HDAC) enzymes catalyze removal of 
acetyl groups from lysine in proteins, including histone pro-
teins, resulting in tight DNA interaction with the nucleosome, 

which regulates transcription [1]. This epigenetic regulation 
is performed by 18 HDAC proteins, that fall into four classes 
(I–IV) [2]. HDACs have been implicated in hematologic and 
solid tumor malignancies through altered acetylation of his-
tones and non-histone proteins involved in cell growth, differ-
entiation, and apoptosis [3–5]. As a result, HDAC inhibitors 
have been developed as antineoplastic agents and have proven 
efficacy in some hematologic malignancies [6]. Vorinostat 
(suberoylanilide hydroxamic acid, SAHA) and romidepsin 
(depsipeptide) are approved for relapsed cutaneous T cell 
lymphoma (CTCL) by the Food and Drug Administration 
(FDA) [7, 8]. Efficacy was also found in phase II trials of 
vorinostat in indolent non-Hodgkin’s lymphoma and diffuse 
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large B cell lymphoma (DLBCL) [9–11], panobinostat in 
CTCL and Hodgkin’s lymphoma [12, 13], and mocetinostat 
(MGCD0103) in Hodgkin’s lymphoma, relapsed follicu-
lar lymphoma, and DLBCL [14, 15]. However, the role of 
HDAC inhibitors in the treatment of solid tumors is less clear. 
There are no FDA approvals for single-agent HDAC inhibitors, 
though phase II trials have shown activity of AN-9 (pivaloy-
loxymethyl butyrate) in metastatic non-small cell lung cancer 
(NSCLC) [16] and vorinostat in recurrent glioblastoma mul-
tiforme (GBM) [17].

AR-42 (previously licensed by Arno Therapeutics, now 
licensed by Recursion Pharma, REC-2282) is an orally bio-
available, small molecule pan-HDAC inhibitor containing 
hydroxamate-tethered phenylbutyrate, promoting histone H3 
and H4 lysine acetylation, tubulin acetylation, inhibition of the 
PI3K/AKt pathway, cell cycle arrest at  G2, and apoptosis via 
a caspase-dependent mechanism [18–22]. In preclinical stud-
ies, AR-42 has activity in vitro in prostate cancer [22, 23] and 
breast cancer [24] cell lines. AR-42 has activity both in vitro 
and in vivo in cell lines and animal models of CLL [20], man-
tle cell lymphoma [20], acute lymphoblastic leukemia/lym-
phoma [20], multiple myeloma [25], Burkitt lymphoma [20], 
hepatocellular carcinoma [26], urothelial carcinoma [27, 28], 
colon cancer [29], embryonal carcinoma [30], ovarian cancer 
[31, 32], pancreatic cancer [33], vestibular schwannomas [19], 
and meningiomas [34]. In fact, the activity of AR-42 was supe-
rior to that of vorinostat in Burkitt lymphoma mouse models 
[20]. Preclinical pharmacology studies in rodents showed that 
AR-42 penetrates the blood brain barrier, suggesting it may 
be effective in central nervous system (CNS) tumors [19, 35]. 
A phase 1 trial of AR-42 in patients with multiple myeloma 
and T and B cell lymphomas found a maximum tolerated dose 
(MTD) of 40 mg three times weekly for 3 weeks of a 28-day 
cycle, with durable responses in a patient with multiple mye-
loma and a patient with mantle cell lymphoma, concluding that 
AR-42 is safe and that further investigation of combination 
regimens of AR-42 should be performed in lymphoma and 
multiple myeloma [36].

In this phase 1 study in patients with primary CNS and 
advanced solid tumors, the primary objectives were to inves-
tigate the safety and tolerability of AR-42 given as a single 
agent by defining the MTD and describing dose-limiting tox-
icities (DLTs). The secondary objectives included description 
of preliminary clinical activity in patients with CNS and solid 
tumors, and determination of the pharmacokinetics (PK) of 
AR-42.

Materials and methods

Patients

This phase I trial (NCT01129193) was approved by The 
Ohio State University Cancer Institutional Review Board 
and written informed consent was obtained from all 
patients. The study was performed in accordance with the 
Declaration of Helsinki. Eligible patients included adults 
with histologically or cytologically confirmed advanced 
or recurrent solid tumors for which no standard therapy 
was available, or who declined available standard treat-
ment. Effort was made to enroll patients with tumor types 
for which there was preclinical data supporting the use 
of AR-42. Up to three prior cytotoxic chemotherapy 
treatments in the metastatic setting and prior hormonal, 
biologic or targeted therapy were allowed. Patients were 
required to have adequate renal (creatinine ≤ 1.5 × upper 
limit of normal (ULN) or creatinine clearance ≥ 50 mL/
min), hepatic (total bilirubin < 1.5  mg/dL, AST/
ALT ≤ 2.5 × ULN or ≤ 5 × ULN with liver metastasis), and 
bone marrow function (absolute neutrophil count ≥ 1500/
μL and platelets ≥ 100,000/μL). Patients were excluded if 
they had a prolonged QTc > 450 ms in males and > 470 ms 
in females, or symptomatic CNS metastases. Asympto-
matic, treated brain metastases were allowed.

Study design

This was a phase I, open-label, single-center, first-in-
human, dose-escalation study of single-agent oral AR-42, 
which followed a 3 + 3 cohort design and included an 
expansion cohort at the MTD. In the dose-escalation 
phase, the starting dose was 30 mg/day, one dose level 
below the MTD of 40 mg/day found in a previous phase I 
trial of this agent in patients with hematologic malignan-
cies [36]. During stage A of the dose escalation, the dose 
for successive cohorts was increased by 100% until the 
first grade 2 drug-related (definite, probable, or possible) 
toxicity was observed in one patient, which initiated stage 
B. In stage B, three more patients were enrolled at the last 
dose level of stage A, then subsequent dose increases were 
by 33%, rounded to the nearest 10 mg. Intra-patient dose 
escalation was not allowed. The MTD was planned to be 
the highest dose at which no more than 1 of 6 patients 
experienced a DLT. Once the MTD was determined, up to 
an additional ten patients could be enrolled at the MTD 
dose level to investigate the activity of AR-42.

AR-42 was obtained from Arno Therapeutics (Par-
sippany, NJ). The drug was administered orally on an 
empty stomach three times weekly, every other day, for 
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3 consecutive weeks of a 28-day cycle. Premedication 
included at least one antiemetic. Upfront prophylactic 
growth factors were not allowed, but could be used for 
neutropenic fever. Concurrent radiation was only allowed 
for palliation of pain from bone metastasis, and the irra-
diated area could not be used for response assessment. 
Treatment was continued until disease progression, unac-
ceptable toxicity, or patient withdrawal from study.

Safety and tolerability

In addition to close monitoring of physical exam, vital signs, 
performance status, and labs, electrocardiograms (EKGs) 
were performed frequently to monitor the QTc. Specifically, 
12-lead EKGs were obtained in triplicate pre-dose and 2, 
4, 8, and 24 h post-dose on cycle 1 days 1 and 19. EKGs 
were also collected prior to AR-42 administration on cycle 
1 days 5 and 8, cycle 2 day 1, day 1 of every other subse-
quent cycle (i.e., C4D1 and C6D1), and at the end of the 
study. Toxicities were graded based on the National Cancer 
Institute (NCI) Common Terminology Criteria for Adverse 
Events (CTCAE) v4.0. A DLT was defined as any grade 3–4 
non-hematologic adverse event during cycle 1, excluding 
clinically insignificant lab abnormalities that resolved within 
24 h, nausea/vomiting that resolved to grade 2 or less within 
24 h, or liver function test abnormalities that resolved to 
less than grade 1 within 7 days. Hematologic DLTs included 
grade 4 neutropenia for > 7 days, febrile neutropenia, grade 
3 neutropenia with infection, grade 3 thrombocytopenia, 
or grade 2 thrombocytopenia with clinically meaningful 
bleeding that occurred during cycle 1. Dose delays and dose 
reductions due to drug-related toxicities were performed per 
study protocol (Supplemental Table 1). Dose delays longer 
than 2 weeks for toxicity, or more than 4 weeks for any rea-
son, resulted in removal from the study. Safety was evaluated 
in all patients who received at least one dose of AR-42. All 
patients were followed after the end of active study partici-
pation for toxicity evaluation for at least 30 days, or longer 
until resolution of treatment-related adverse events.

Response evaluation

Disease assessment was performed by computed tomogra-
phy (CT) or magnetic resonance imaging (MRI) at baseline, 
and after every two cycles, approximately every 6–8 weeks. 
Response, progression, and stable disease were defined 
by the NCI Response Evaluation Criteria in Solid Tumors 
(RECIST) guidelines, v1.1 [37]. Patients were evaluable for 
response if they had measurable disease at baseline and com-
pleted at least one cycle of treatment prior to repeat imaging, 
or had objective disease progression prior to the end of cycle 
1. Patients were contacted monthly after the end of study 
participation to assess survival.

Statistical methods

Patient characteristics, type and frequency of adverse 
events, as well as dose and toxicity characteristics were 
summarized through descriptive statistics. The proportion 
of patients with stable disease by dose level was summa-
rized, and includes the exact 95% confidence interval for 
the overall proportion. For evaluable participants, pro-
gression-free survival (PFS) was defined as the time from 
enrollment to the date of progression or to the date last 
known to have stable disease. Patients who began other 
treatments prior to disease progression were censored on 
the date of initiation of alternative therapy. The method of 
Kaplan and Meier summarized PFS time, with confidence 
intervals calculated based on the log–log transformation. 
The median PFS of the subsets of patients with CNS and 
non-CNS tumors were calculated post hoc. All reported 
p values and confidence intervals were two-sided, and 
reported at the nominal level; all analyses were performed 
using Stata 15.0.

Pharmacokinetics

Plasma pharmacokinetic (PK) samples were collected to 
investigate AR-42 PK following the first dose (day 1) and 
last dose (day 19) of cycle 1. Plasma sampling time points 
included pre-dose and post-dose at 0.25, 0.5, 1, 1.5, 2, 4, 8, 
10, and 24 h on cycle 1 days 1 and 19. An additional 48-h 
sample was obtained post-dose on cycle 1, day 1. Plasma 
concentrations of AR-42 were measured using a validated 
LC–MS/MS method as previously described [36, 38].

Non-compartmental analysis (NCA) of plasma AR-42 
concentration–time data was completed in WinNonlin 
(v.6.3, Pharsight, St. Louis, MO) to estimate PK param-
eters using trapezoidal linear interpolation with extravas-
cular dosing. Uniform weighting and the BestFit method 
were used for terminal phase regression. Estimation of the 
elimination rate constant (λz) was estimated using regres-
sion of the last three or four measurable time points when 
an adjusted R2 value > 0.85 could be obtained. Area under 
the curve from zero to 24 h (AUC 0−24 h), terminal Half-
life (t1/2), terminal volume of distribution (Vz/F), systemic 
plasma clearance (CL/F) and area under the curve from 
zero to infinity (AUC 0−∞) were estimated and summarized 
using geometric mean and geometric standard deviation 
unless otherwise noted. To evaluate for association of 
cycle 1 pharmacokinetic parameters and incidence of 
grade 3 or 4 toxicities during cycle 1 or 2, the Mann–Whit-
ney U test was used to compare the Cmax, AUC 0−24 h, and 
CL/F between patients that experienced a grade 3 or 4 tox-
icity and patients that did not have a grade 3 or 4 toxicity.
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Results

Patients

Seventeen patients were enrolled between June 2012 and 
November 2013. Baseline demographics are shown in 
Table 1. The most common disease was NF2-associated 

schwannoma and meningioma (n = 5), followed by urothe-
lial carcinoma (n = 3), breast cancer (n = 2), non-NF2-related 
meningioma (n = 2), carcinoma of unknown primary (n = 2), 
small cell lung cancer (n = 1), Sertoli cell carcinoma (n = 1), 
and uveal melanoma (n = 1). Going forward, NF2-associated 
schwannoma and meningioma will be referred to as “NF2” 
and non-NF2-related meningioma will be referred to as 
“meningioma.” Together NF2 and meningioma will be con-
sidered “CNS tumors” and the remaining solid tumors will 
be considered “non-CNS tumors.” Clinically, the two carci-
nomas of unknown primary were suspected to be urothelial 
carcinoma and pancreaticobiliary in origin. Patients were 
heavily pretreated with a median of 2 (range 0–3) prior sys-
temic therapies.

As shown in Table 2, three patients (cohort 1A) were 
enrolled at the starting dose of 30 mg with no DLTs. The 
dose was increased to 60 mg (cohort 2A), where the sec-
ond patient experienced grade 2 thrombocytopenia, so 
dose-escalation phase B was initiated. Three more patients 
were enrolled at 60 mg (cohort 1B) with one patient hav-
ing a DLT of grade 3 thrombocytopenia. Another three 
patients were initiated at 60 mg (cohort 1B), with a fourth 
patient enrolled to replace a patient who was non-com-
pliant and not evaluable. There were no DLTs in this 
group. At the 60-mg dose, there were two patients that 
required a dose reduction and four that had a dose delay. 
The dose was then increased by 33% to 80 mg, at which 
two patients were enrolled (cohort 2B). The first patient 
withdrew after two doses and was replaced; the second 
patient experienced grade 3 thrombocytopenia and a grade 
4 psychiatric disorder, which was considered a DLT. At 
this point, although two DLTs were not reached at the 
80-mg dose, the decision was made to define the recom-
mended phase II dose (RP2D) as 60 mg once daily, three 
times weekly, every other day, for 3 consecutive weeks 
of a 28-day cycle. The episode of psychosis was only 
“possibly” related to AR-42 and may have been due to 

Table 1  Patient demographics and characteristics at baseline

a One likely urothelial carcinoma, one likely pancreaticobiliary

Characteristic n = 17

Median age (range)—year 49 (20–80)
Gender—no. (%)
 Male 6 (35.3)
 Female 11 (64.7)

Race—no. (%)
 White non-hispanic 15 (88.2)
 Other 2 (11.8)

ECOG performance status—no. (%)
 0 10 (58.8)
 1 7 (41.2)

Primary tumor—no. (%)
 Neurofibromatosis type 2 5 (29.4)
 Urothelial carcinoma 3 (17.6)
 Carcinoma of unknown  primarya 2 (11.8)
 Breast 2 (11.8)
 Meningioma 2 (11.8)
 Small cell lung cancer 1 (5.9)
 Sertoli cell carcinoma of testis 1 (5.9)
 Uveal melanoma 1 (5.9)

Prior lines of systemic therapy—no. (%)
 0 5 (29.4)
 1–2 5 (29.4)
 3 7 (41.2)

Table 2  Dose levels with number of patients, dose delays, dose reductions and dose-limiting toxicities (DLTs)

a Grade 2 thrombocytopenia experienced by second patient, so advanced to stage B
b Includes 2 cohorts of 3 patients, plus one patient to replace a patient who was non-compliant and not evaluable
c First patient withdrew after 2 doses due to progression and was replaced. Second patient experienced a DLT
d Grade 3 thrombocytopenia and grade 4 psychiatric disorder at dose level 2B occurred in the same patient, counting as one DLT

Dose level AR-42 dose 
(mg)

No. of patients 
enrolled (n = 17)

No. of dose 
delays

No. of dose 
reductions

No. of patients 
with a DLT

Description of DLT

1A 30 3 0 0 0 –
2A 60 2a 0 0 0 –
1B 60 7b 4 2 1 Thrombocytopenia (grade 3)
2B 80 2c 0 0 1 Thrombocytopenia (grade 3)d

Psychiatric disorder (grade 4)d

Expansion cohort 60 3 0 0 –
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concurrent medications or underlying psychiatric illness, 
however, given the severity of the grade 4 psychosis in the 
context of multiple patients with transient, mild episodes 
of confusion in this study and the phase I study of AR-42 
in hematologic malignancies [36], as well as the frequency 
of thrombocytopenia, it was felt to be unsafe to enroll fur-
ther patients at the 80-mg dose. This decision was further 
supported by the MTD of only 40 mg in the phase I trial of 
AR-42 in hematologic malignancies [39]. The expansion 
cohort enrolled three patients at the RP2D, for a total of 
12 patients at 60 mg.

The median duration of treatment was 85 days (range 
5–838), equivalent to 3.0 cycles (range 0.2–29.9). Most com-
monly, patients stopped the study drug due to progression of 

disease (n = 12), followed by patient decision to discontinue 
treatment resulting in withdrawal from the study (n = 3).

Safety and tolerability

Seventeen patients were evaluable for toxicity. As shown in 
Table 3, the most common treatment-related adverse events 
(TRAEs) of any grade were thrombocytopenia (n = 13), 
fatigue (n = 11), nausea (n = 10), anemia (n = 10), elevated 
creatinine (n = 8), leukopenia (n = 8), lymphopenia (n = 7), 
hypophosphatemia (n = 7), neutropenia (n = 7), and diarrhea 
(n = 6). Grade 3 TRAEs included thrombocytopenia (n = 5), 
lymphopenia (n = 3), hypophosphatemia (n = 3), nausea 
(n = 2), anemia (n = 2), anorexia (n = 1), weight loss (n = 1), 

Table 3  All grade 3–4 and most 
common grade 1–2 treatment-
related adverse events

Grade 1–2, n (%) Grade 3–4, n (%) All grades, n (%)

Thrombocytopenia 8 (47.1%) 5 (29.4%) 13 (76.5%)
Fatigue 11 (64.7%) – 11 (64.7%)
Nausea 8 (47.1%) 2 (11.8%) 10 (58.8%)
Anemia 8 (47.1%) 2 (11.8%) 10 (58.8%)
Elevated creatinine 8 (47.1%) – 8 (47.1%)
Leukopenia 8 (47.1%) – 8 (47.1%)
Lymphopenia 4 (23.5%) 3 (17.6%) 7 (41.2%)
Hypophosphatemia 4 (23.5%) 3 (17.6%) 7 (41.2%)
Neutropenia 7 (41.2%) – 7 (41.2%)
Diarrhea 6 (35.3%) – 6 (35.3%)
Anorexia 4 (23.5%) 1 (5.9%) 5 (29.4%)
Hypoalbuminemia 5 (29.4%) – 5 (29.4%)
Vomiting 4 (23.5%) – 4 (23.5%)
Dizziness 4 (23.5%) – 4 (23.5%)
Myalgia 4 (23.5%) – 4 (23.5%)
Constipation 4 (23.5%) – 4 (23.5%)
Elevated alanine aminotransferase (ALT) 4 (23.5%) – 4 (23.5%)
Elevated alkaline phosphatase 4 (23.5%) – 4 (23.5%)
Weight loss 2 (11.8%) 1 (5.9%) 3 (17.6%)
Elevated aspartate aminotransferase (AST) 3 (17.6%) – 3 (17.6%)
Impaired concentration 3 (17.6%) – 3 (17.6%)
Dry mouth 3 (17.6%) – 3 (17.6%)
Dysgeusia 3 (17.6%) – 3 (17.6%)
Headache 3 (17.6%) – 3 (17.6%)
Hyponatremia 3 (17.6%) – 3 (17.6%)
Cough 2 (11.8%) – 2 (11.8%)
Dehydration 2 (11.8%) – 2 (11.8%)
Limb edema 2 (11.8%) – 2 (11.8%)
Hypermagnesemia 2 (11.8%) – 2 (11.8%)
Hypernatremia 2 (11.8%) – 2 (11.8%)
Hypersomnia 2 (11.8%) – 2 (11.8%)
Elevated international normalized ratio (INR) 2 (11.8%) – 2 (11.8%)
Psychiatric disorder – 1 (5.9%) 1 (5.9%)
Thromboembolic event – 1 (5.9%) 1 (5.9%)
Hematuria – 1 (5.9%) 1 (5.9%)
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hematuria (n = 1), and venous thromboembolism (n = 1). The 
only grade 4 TRAE was psychosis at the 80-mg dose. There 
were no treatment-related deaths. The only cardiac toxicity 
observed was one patient with a grade 1 QTc prolongation. 
All treatment-related adverse events are listed in Supple-
mental Table 2 and all overall adverse events are listed in 
Supplemental Table 3.

During cycle one, one patient (5.9%) developed a grade 
4 toxicity, five patients (29.4%) developed at most a grade 3 
toxicity, five patients (29.4%) developed at most a grade 2 
toxicity, four patients (23.5%) developed at most a grade 1 
toxicity, and the remaining two patients (11.8%) experienced 
no toxicities. In subsequent cycles, there were no patients 
with a grade 4 toxicity, two of the patients with grade 2 tox-
icity during cycle one developed a grade 3 toxicity, and three 
of the patients with grade 1 toxicity during cycle one devel-
oped a grade 2 toxicity. One patient, who remained on study 
for 69 days, never experienced any toxicity of any grade.

The only dose delay or reduction during cycle 1 was for 
a patient on 60 mg, who experienced the DLT of grade 3 
thrombocytopenia. In subsequent cycles, there were four 
patients at the 60-mg dose who required dose delays and 
one of these four patients required a dose reduction. The 
dose delays, regardless of attribution, were due to creatinine 
elevation, thrombocytopenia, upper respiratory infection, 
and a hospitalization for fatigue and urinary tract infection. 
The dose reduction for one patient during cycle 2 was due to 
fatigue, which was ultimately attributed to hypopituitarism 
from previous cranial irradiation for meningioma.

Response

Fifteen patients were evaluable for response. Two of the 17 
patients did not complete cycle 1, 1 due to non-compliance 
and 1 due to a DLT (grade 4 psychosis) without evidence of 
progression, and thus were not evaluable. The best overall 
response was stable disease, seen in 1 of 3 patients who 
received 30 mg and 7 of 11 patients who received 60 mg, 
resulting in 8 of 15 patients, or 53% (95% CI 26.6–78.7) 
of patients experiencing stable disease. Among the patients 
with stable disease, three patients had a 5–18% decrease in 
the sum of the diameters of the target lesions from base-
line. These patients had NF2, Sertoli cell carcinoma, and 
carcinoma of unknown primary, suspected to be urothelial 
carcinoma.

As shown in Fig. 1, the median PFS time was 3.6 months 
(95% CI 1.2–9.1). In patients with non-CNS solid tumors 
(n = 10), median PFS was 1.7 months (95% CI 0.1–5.0). The 
two patients that were non-evaluable for response had CNS 
tumors, but among the remaining evaluable patients with 
NF2 or meningioma (n = 5), median PFS was 9.1 months 
(95% CI 1.9–not reached (NR)). All evaluable patients with 
NF2 or meningioma received 60 mg.

Pharmacokinetics

Analysis was performed using data from 3, 12, and 2 patients 
at the 30-mg, 60-mg, and 80-mg dose levels, respectively. 
Mean plasma concentration and time profiles of AR-42 in 
patients on day 1 and day 19 after an oral administration of 
AR-42 are shown in Fig. 2. Individual plasma AR-42 peak 
plasma concentration (Cmax) and AUC 0−24 h values ranged 
from 0.54 to 3.25 μM and 4.93–27.6 μM*h across the dose 
range, respectively. The elimination rate constant λz was 
not estimable on day 19 for two patients taking 60 mg daily. 
Elimination  t1/2 ranged from approximately 8–13 h. AR-42 did 
not accumulate in these patients when given 3 times weekly 
for 3 weeks of a 4-week cycle. Cmax, AUC 0−24 and AUC 0−∞ 
remained consistent between day 1 and day 19 (Supplemental 
Table 4). AUC 0−24 and AUC 0−∞ were roughly 50% higher in 
the 80-mg dose group as compared to the 60-mg dose group, 
which suggests a potential loss of dose proportionality. How-
ever, only two patients were treated at the 80-mg dose level, 
and a conclusion cannot be drawn.

During cycles 1 and 2, patients that experienced a grade 3 
or 4 toxicity had significantly higher median Cmax (1.54 μM 
vs. 1.04 μM, p = 0.0016) and median AUC (16.45 μM *h vs 
11.3 μM*h, p = 0.036), but not median CL/F (10.48 L/h vs 
15.8 L/h, p = 0.0745), compared to patients that did not experi-
ence a grade 3 or 4 toxicity. These data support an observable 
plasma exposure–toxicity relationship, which may be useful 
for management of grade 3–4 toxicities in future studies.

Discussion

This phase 1 study demonstrates that AR-42 is safe and 
tolerable in patients with primary CNS and advanced solid 
tumors. The phase II recommended dose is 60 mg orally 

Fig. 1  Median PFS of primary CNS and advanced solid tumors 
treated with AR-42
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once daily, three times weekly, every other day, for 3 con-
secutive weeks of a 28-day cycle.

The most common toxicities were cytopenias, fatigue, 
and nausea. The toxicities seen with AR-42 are consistent 
with the reported side effect profile of other HDAC inhibi-
tors. Previously reported side effects of AR-42 and other 
HDAC inhibitors include cytopenias, fatigue, nausea, vomit-
ing, diarrhea, anorexia, weight loss, asthenia, dehydration, 
and non-specific GI symptoms [9, 10, 17, 36, 40–44]. The 
most common toxicity of any grade was thrombocytope-
nia, but there were no clinically significant bleeding events, 
and platelet count improved with dose hold and reduction, 
if necessary. Thrombocytopenia was also common in the 
phase I trial of AR-42 in hematologic malignancies (16 of 27 
patients), but the degree was less severe here, with no grade 
4 thrombocytopenia. Historically, there has been concern for 
cardiac toxicity with HDAC inhibitors, particularly QTc pro-
longation, non-specific ST and T wave changes, and arrhyth-
mias [45–47]. In this study, there was only one patient who 
experienced a grade 1 QTc prolongation at 30 mg and there 
were no other cardiac toxicities observed at any dose. This 
is consistent with the clinically insignificant QT prolon-
gation seen in the phase I study of AR-42 in hematologic 
malignancies, where 8 of 27 patients had a grade 1 QTc 
prolongation, with a mean QTc change of 27.4 ms, which 
all spontaneously resolved without dose hold or adjustment 
[36]. Overall, AR-42 is safe and tolerable.

Although this was only a phase I study, not designed to 
evaluate efficacy, the anti-tumor activity of this small, het-
erogeneous cohort of patients is reported. The best response 
to AR-42 was stable disease in 53% (95% CI 26.6–78.7) 
of patients. The overall cohort median PFS was 3.6 months 
(95% CI 1.2–9.1) with the wide confidence interval likely 
due to the inclusion of patients with NF2, which has a more 
indolent natural history than the non-CNS malignant solid 

tumors included in this study. In patients with non-CNS solid 
tumors, median PFS was 1.7 months (95% CI 0.1–5.0). The 
seeming lack of activity of single-agent AR-42 seen here in 
advanced non-CNS solid tumors is consistent with phase 
II studies of other single-agent HDAC inhibitors in solid 
tumors including romidepsin in metastatic castrate-resistant 
prostate cancer [42], GBM [48], and colorectal cancer [49], 
panobinostat in metastatic renal cell carcinoma [43], and 
vorinostat in recurrent GBM [17], ovarian carcinoma, pri-
mary peritoneal carcinoma [50], head and neck cancer [41], 
NSCLC, colorectal cancer, and metastatic breast cancer [40, 
51]. Overall, the lack of single-agent activity of AR-42 in 
non-CNS solid tumors is consistent with the limited activity 
of other single-agent HDAC inhibitors in solid tumors, and 
does not warrant further investigation.

NF2 is a rare disease of multiple, slow-growing tumors 
for which the standard of care is surgery and radiation, with 
no effective systemic therapies [52, 53]. In this study, the 
median PFS was 9.1 months (95% CI 1.9–NR) in patients 
with NF2 or meningioma, with 1 of these 5 patients having 
longer than 27 months of follow-up without progression. 
Based on preclinical studies, the mechanism of action of 
AR-42 in NF2 involves deacetylation and deactivation of 
AKT. The NF2 gene encodes the tumor suppressor protein 
merlin and loss of merlin in NF2 results in proliferation of 
Schwann and leptomeningeal cells, in part through activa-
tion of the PI3K/AKT pathway [54]. AR-42 dephospho-
rylates and deactivates AKT [55]. In preclinical studies 
in vitro, AR-42 decreased AKT phosphorylation and sup-
pressed proliferation of schwannoma and meningioma cell 
lines by cell cycle arrest at  G2 and apoptosis [18]. In vivo, 
AR-42 crossed the blood–brain barrier in a mouse model and 
suppressed peripherally implanted xenograft and allograft 
schwannoma growth [19]. Based on the current preclinical 
and clinical data for AR-42 in NF2, and given the lack of 

Fig. 2  Pharmacokinetics by dose on a day 1 and b day 19
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effective systemic therapies for this disease, further inves-
tigation of the clinical activity of AR-42 in a larger cohort 
of patients with NF2 may be considered. For future clini-
cal studies in NF2, in accordance with published suggested 
response criteria in NF2, use of volumetric radiographic 
measurements and validated hearing response assessments 
with word recognition scores should be considered [53]. In 
addition, notably, one of the five patients with NF2 in this 
study eventually chose to discontinue treatment after many 
months on therapy due to persistent mild side effects, high-
lighting that it may be difficult for young patients to adhere 
to a long-term treatment with even low-grade, symptomatic 
toxicities. This population may benefit from the minimum 
effective dose, rather than the maximum tolerated dose.

Future studies should explore AR-42 in combination with 
other cancer-directed therapies for advanced solid tumors. 
There have been attempts to combine HDAC inhibitors 
with DNA-damaging agents including platinum-based 
chemotherapy [56], PARP inhibitors [57], topoisomerase 
inhibitors [58], and radiation [59], as well as other cyto-
toxic chemotherapy agents [60], proteasome inhibitors [61], 
hormonal therapy [62], tyrosine kinase inhibitors [63], hypo-
methylating agents [64], rituximab [65], bevacizumab [66], 
and immune checkpoint inhibitors [67–69]. The only FDA-
approved HDAC inhibitor in combination is panobinostat 
with bortezomib and dexamethasone for relapsed or refrac-
tory multiple myeloma [70]. Specifically AR-42 has shown 
preclinical activity when combined with decitabine for 
AML, doxorubicin for osteosarcoma, 5-FU for breast cancer, 
cisplatin for urothelial carcinoma, and pazopanib for mela-
noma cells resistant to trametinib plus dabrafenib [71–75]. 
A recent preclinical study also demonstrated potential for 
AR-42 to overcome anabolic resistance in cancer-associated 
cachexia [76]. AR-42 and other HDAC inhibitors downregu-
late thymidylate synthetase, so AR-42 may be able to over-
come resistance to pemetrexed or 5-FU, and AR-42 has also 
been shown to modulate ERBB2 receptor phosphorylation 
[74, 77–80]. Both of these effects may be exploited with 
combination therapies. A phase I study of AR-42 combined 
with decitabine in 13 patients with acute myeloid leukemia 
(AML) demonstrated similar safety and toxicities to those 
reported here, though the biological endpoint of increased 
miR-29b expression was not reached, and AR-42 will not 
be explored further in AML [39]. Unfortunately, the only 
phase I study of AR-42 in combination for a solid tumor 
to date, which used AR-42 with pazopanib in sarcoma and 
kidney cancer, was terminated due to two DLTs at the first 
dose level (NCT02795819), highlighting the risk for higher 
toxicity with combination regimens.

Finally, patient selection for genetic or molecular markers 
may identify a subset of patients most likely to respond to 
AR-42 and other HDAC inhibitors. Unfortunately, despite 
encouraging preclinical studies, in a phase II study that 

enrolled patients with urothelial carcinoma with mutations 
or deletions in CREB binding protein (CREBBP) and/or 
E1A binding protein p300 (EP300), mocetinostat failed 
to show efficacy [81]. However, for example, mutations in 
BRCA1-associated protein (BAP1), which predispose to 
mesotheliomas, uveal melanomas, cutaneous melanoma, 
and renal cell carcinoma, dysregulate HDAC proteins and 
sensitize cells to HDAC inhibitors [82–84]. Targeting solid 
tumors with BAP1 mutations may reveal a subset of patients 
that respond to AR-42.

In summary, AR-42 is safe and tolerable in primary CNS 
and advanced solid tumors. A larger study is needed to eval-
uate efficacy in NF2. Consideration may be given to studies 
of AR-42 in combination with other agents for solid tumors 
and in subsets of patients with sensitizing mutations.
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