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Abstract
Qinghaosu, known as artemisinin (ARS), has been for over two millennia, one of the most common herbs prescribed in 
traditional Chinese medicine (TCM). ARS was developed as an antimalarial drug and currently belongs to the established 
standard treatments of malaria as a combination therapy worldwide. In addition to the antimalarial bioactivity of ARS, 
anticancer activities have been shown both in vitro and in vivo. Like other natural products, ARS acts in a multi-specific 
manner also against hematological malignancies. The chemical structure of ARS is a sesquiterpene lactone, which contains 
an endoperoxide bridge essential for activity. The main mechanism of action of ARS and its derivatives (artesunate, dihy-
droartemisinin, artemether) toward leukemia, multiple myeloma, and lymphoma cells comprises oxidative stress response, 
inhibition of proliferation, induction of various types of cell death as apoptosis, autophagy, ferroptosis, inhibition of angiogen-
esis, and signal transducers, as NF-κB, MYC, amongst others. Therefore, new pharmaceutically active compounds, dimers, 
trimers, and hybrid molecules, could enhance the existing therapeutic alternatives in combating hematologic malignancies. 
Owing to the high potency and good tolerance without side effects of ARS-type drugs, combination therapies with standard 
chemotherapies could be applied in the future after further clinical trials in hematological malignancies.

Keywords  Artemisia annua L. · Artemisinin · Artesunate · Combination therapies · Hematological malignancies · 
Leukemia
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Introduction

For over two millennia Qinghaosu, known as artemisinin 
(ARS) in Western cultures, has been one of the most com-
mon herbs prescribed to treat febrile symptoms in traditional 
Chinese medicine (TCM). The earliest mention occurs in 
the Hou Bei Ji Fang (A Handbook of Prescriptions for 
Emergency Treatment) by Ge Hong (317–420 A.D.) as a 
remedy with anti-pyretic activity. Subsequently, qinghaosu 
soup, pills, and powders have been described for relieving 
malaria symptoms. Later, the herbalist Li Shi Zhen pub-
lished in Compendium of Materia Medica (1596) that “fever 
and colds” could be treated with qinghaosu preparations [1].

Artemisia annua L. came under the spotlight during the 
Vietnam War when the Vietnamese government asked China 
for help to manage the effects of malaria that infected nearly 
half of the militaries. A program for the discovery of new 
anti-malarial drugs, known as National Project 523 was 
launched in 1967 by the Chinese government that estab-
lished a screening program of traditional Chinese plants. 
A modified extraction procedure was later able to isolate 
ARS, the active principle of Artemisia annua L. (sweet 
wormwood) [2]. The structure of Artemisia annua L. was 
elucidated in 1974, showing a sesquiterpene lactone, with 
an endoperoxide bridge essential for activity. Together with 
the corresponding derivatives, ARS attracted worldwide 
attention, and ARS-based combination therapies nowadays 
belong to the globally established standard treatments for 
malaria [1, 3]. Following the elucidation of this structure, 
many derivatives were synthesized with substitutions at the 
lactone carbonyl group to improve solubility in both water 
and oil. Water-soluble derivative such as artesunate (ART) 
and dihydroartemisinin (DHA), the latter considered to be 
the main active metabolite of ARS, and oil-soluble deriva-
tives such as artemether (ARM) and arteether (Fig. 1) have 
been synthesized [1, 4].

In the 1980s, the World Health Organization (WHO) offi-
cially recommended ARS-type derivatives for malaria treat-
ment, particularly as a part of combination therapies with 

other antimalarial drugs for their impressive activity against 
multidrug-resistant forms of Plasmodium falciparum both 
in vitro and in vivo [1]. Tu Youyou was honored with the 
2015 Nobel Prize for Physiology or Medicine [3] for having 
isolated and studied ARS which saved the lives of millions 
of malaria patients.

Numerous natural products originated from Chinese 
medicine exhibit anti-cancer activities which include anti-
proliferative, pro-apoptotic, anti-angiogenic effects, as well 
as regulating autophagy, reversing multidrug resistance, bal-
ancing immunity, and enhancing chemotherapy. ARS-like 
compounds also exert profound activity against tumor cells 
in vitro and in vivo [5–8] suggesting that ARS-type drugs 
could be applied in clinical oncology, probably as part of 
combination therapy [9–12].

Our group has been working over the past 2 decades with 
ARS-type compounds and has demonstrated the antiulcero-
genic effects of two isolates from A. annua [13], activity 
against parasite [14] and the toxicity effects in pregnant 
mice [15]. Recently, the development of a transdermal bio-
adhesive treatment for children’s treatment has been demon-
strated [16]. Driven by the demand for alternative drugs to 
improve the survival and decrease the relapse rate of acute 
myeloid leukemia (AML), our group has also demonstrated 
the antileukemic effects of natural products such as catechins 
and quercetin over the last decade [17, 18].

In addition to acute leukemias, other hematologi-
cal malignancies can also benefit from natural products. 
Hematologic malignancies are cancers that begin in the 
cells of blood-forming tissue such as the bone marrow, or 
in the cells of the immune system and may be considered 
liquid tumors. A single germline or somatic mutation in 

Fig. 1   Chemical structure of compounds derived from traditional 
Chinese medicine (TCM)
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the lymphohematopoietic stem cell may be prone to clonal 
expansion depending on new mutations acquired [19].

Multiple myeloma (MM), for example, is a malignancy 
of terminally differentiated plasma cells that primarily 
reside in the bone marrow (BM); however, in a later stage 
of the disease, they can also be detected in peripheral 
blood and extramedullary sites [20]. Lymphomas arise 
from lymphocytes that are at different stages of develop-
ment and the subtype characteristics, B-cell and T-cell 
neoplasms reflect the cell from which they originated 
[21]. Leukemias are, in general, a heterogeneous group 
of disorders characterized by clonal expansion, abnormal 
proliferation of undifferentiated myeloid or lymphoid pro-
genitors, and variable response to therapy [22].

Currently, chemotherapy, immunotherapy, and hemat-
opoietic stem cell transplantation are the main therapeutic 
approaches against these diseases. Despite the progress in 
treatment, the outcome of AML in adult patients remains 
dismal [22]. Approximately 35%–40% of patients under 
the age of 60 years old are cured. The prognosis for the 
elderly is improving but remains grim. Furthermore, older 
patients have unfavorable cytogenetic features probably 
reflecting antecedent myeloid disorders which underwent 
clonal evolution. Relapse and/or disease refractoriness and 
drug resistance to standard chemotherapies are the major 
causes of treatment failure [23].

One current challenge in the treatment of cancer is to 
overcome cancer drug resistance. Combination therapies 
were applied to prevent resistance by combining drugs 
with different targets, modes of action and distribution of 
the side effects in the body to reduce toxicities. Natural 
products act in a multi-specific manner, exhibiting several 
modes of action simultaneously [11, 12]. For example, 
ARS-type drugs induce oxidation, and can lead to DNA 
damage and breaking of double-strands. Thus, many stud-
ies have shown the additive or synergistic effects of ARS-
type drugs with standard chemotherapies. Doxorubicin, 
frequently used for chemotherapy of hematological can-
cers, exhibited profound synergism with ART in various 
MM cell lines [24]. Moreover, a synergistic interaction 
was observed with cytarabine plus ART or DHA in AML 
[25], as well as in other tumor cell lines. Interestingly, the 
spectrum of drugs that can be combined with ARS and 
its derivatives is remarkably broad and comprises natural 
products, radiotherapy, and photodynamic therapy, and 
also antibodies or recombinant proteins [11, 12].

A PubMed search using the keywords leukemia, 
lymphoma, multiple myeloma, artemisinin, artesunate, 
artemether, and dihydroartemisinin yielded a result of 82 
papers published over the period of 25 years.

This review supplies an update on the mechanism of 
action, synergistic effects, and new hybrid compounds of 

ARS-type drugs, as well as a possible role in the treatment 
of hematological malignancies.

Cytotoxicity activity of ARS and derivatives

In the 1990s, many researchers described the cytotoxicity 
of ARS and its derivatives in leukemia cell lines (Table 1). 
Nine compounds isolated from Artemisia annua L., includ-
ing terpenoids and flavonoids, were tested in vitro on a P388 
murine lymphocytic leukemia cell line and ARS showed the 
highest cytotoxicity [26]. Furthermore, a panel of 55 tumor 
cell lines showed that ART, a semi-synthetic derivative, was 
most active against leukemia and colon cancer cell lines [5].

Efflux pumps of ATP-binding cassette (ABC) transporter 
family extrudes drug molecules that passively diffuse into 
cancer cells in an active ATP-consuming manner out of the 
cells. These pumps reduce the intracellular accumulation 
of many anticancer drugs to sub-therapeutic levels leading 
to the survival of cancer cells and consequently failure of 
chemotherapy. ARS-type drugs exhibit multi-specific inter-
action with P-gp. The derivatives can act on both sides, as a 
substrate or an inhibitor of P-gp. The currently ARS deriva-
tives, ART, DHA, and ARM, are not transported by P-gp. 
In additional, they can act as an inhibitor of P-gp, which 
exhibits the potential to reverse MDR [27]. Efferth and col-
laborators tested 22 TCM derived compounds in multidrug-
resistant acute lymphoblastic leukemia cell lines (CCRF-
CEM), such as doxorubicin-selected P-glycoprotein (P-gp)/
MDR1-expressing CEM/ADR5000, vinblastine-selected 
P-gp/MDR1-expressing CEM/VLB100, and epirubicin-
selected multidrug resistance-related protein 1 (MRP1)-
expressing CEM/E1000 sublines. ART, homoharringtonine, 
and bufalin were the most active and potent compounds and 
had the lowest IC50 in wild-type CCRF-CEM cells. ART 
modulated multidrug resistance and increased daunorubicin 
uptake in CEM/E1000 cells [28].

Ethanolic leaf extracts of A. annua from Brazilian (hybrid 
CPQBA 2/39 × PL5) and Chinese origins were tested on leu-
kocytes and Molt-4 (human acute lymphoblastic leukemia) 
cell line for comparison with DHA. An increased biological 
activity was expected since A. annua leaves have flavonoids 
that may synergize with ARS. Both extracts had high anti-
oxidant capacity and toxicity toward leukemia cells; how-
ever, whereas ethanolic extracts were more potent in killing 
Molt-4 cells at 24 h, DHA was significantly more potent 
than ethanolic extracts in killing Molt-4 cells at 48 and 72 h. 
Furthermore, DHA presented less toxicity in leukocytes than 
the Brazilian and Chinese extracts with the Brazilian extract 
revealing a better safety index (LD50 value 28.23 μg/ml) 
compared to Chinese extract at 24 h [29].

The combination of DHA and sodium salicylate (SS) sig-
nificantly reduced cancer cell proliferation [30]; however, 
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no interaction between DHA and SS was indicated. Nutri-
tional supplements that affect the oxidative status of cells 
such as vitamin C, with antioxidant proprieties, and vitamin 
D3, and hydrogen peroxide (H2O2) with pro-oxidant prop-
erties, cause significant Molt-4 cell death when combined 
with DHA [31]. Furthermore, the interaction between H2O2 
and DHA was found to be additive, which may be due to 
mechanisms similar to apoptosis mediation by reactive oxy-
gen species (ROS).

Moreover, ART showed high cytotoxicity toward MV4-
11 and MOLM-13 cell lines with the downregulation of 
SRC, a key protein in cell proliferation and survival. The 
antileukemic activity of ART was confirmed in various xen-
ograft models resulting in significant survival prolongation 
[32]. Xenograft mice models transplanted with MOLM14 
cells treated with ART-838, a semi-synthetic ARS-derived 
trioxane diphenylphosphate dimer, presented repression of 
tumor growth (83% less growth than in controls). Indeed, a 
B-acute lymphoblastic primagraft leukemia model treated 
with ART-838 had an extended mean survival of 20 days 
(55% prolongation) compared to controls [6]. Drenberg and 
coauthors also showed lower leukemic infiltration in a xeno-
graft mice leukemia (ML-2) model treated with ART twice 
daily, in another xenograft model (MOLM-13), ART treat-
ment added no survival benefit [25].

Interestingly, ARS suppressed proliferation via the down-
regulation of NOTCH1 signaling which may be up-regulated 
in several cancers [33]. In addition, ARS and derivatives also 
inhibited cell growth in MM and lymphoma cells. Holien 
and coauthors observed that ART decreased cell growth in 
nine MM and five lymphoma cell lines [34].

Role of iron

Since the onset of studies with ARS derivatives and cancer, 
many studies have shown a crucial role of iron in the anti-
cancer activity of ARS-type drugs. Lai and Singh showed, 
for the first time in leukemia cell lines, that combined incu-
bation of holotransferrin and DHA can selectively destroy 
cancer cells, whereas the effect was significantly less on nor-
mal lymphocytes [50]. The same group also showed that the 
addition of sodium butyrate (1 mM) to the culture medium 
together with DHA (20 μM) and holotransferrin (12 μM) 
acted synergistically in Molt-4 cell lines [51]. Moreover, 
Efferth and collaborators showed that iron (II)-glycine sul-
fate (Ferrosanol®) and transferrin enhanced the cytotoxicity 
of ART, maltosyl-β-cyclodextrin-encapsulated-ART (ART-
MCD) and ARS against leukemia cell lines compared to 
each derivative without iron. Furthermore, expression lev-
els of mitochondrial aconitase (ACO2) and ceruloplasmin 
(CP) correlated with the IC50 values of several artemisinin 
derivatives when administered with ferrous iron [52]. ART Ta
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treatment also regulated the expression of drug efflux pumps 
involved in iron homeostasis as observed after ART incu-
bation with the CCRF-CEM cell line which increased the 
expression of the ATP-binding cassette (ABC) transporter 
ABCB6 and reduced ABCB7 expression [53].

In fact, tumor cells express significantly more trans-
ferrin receptor on their cell surface than normal cells and 
transferrin endocytosis is higher in tumor cells compared 
to normal cells. Tagging an ARS analog to transferrin, both 
iron and ARS were transported into cancer cells and the 
“tagged-compound” was very potent and selective in kill-
ing cancer cells [54]. To improve the cytotoxicity of ARS, 
the same group of researchers covalently tagged ARS to a 
peptide that binds to a cavity on the surface of the transferrin 
receptor (ARS-TfR). After endocytosis, iron released from 
TfR reacted with the ARS moiety and formed free radicals, 
leading to cell death. They also demonstrated that ARS-
TfR was more potent and an extremely selective anti-tumor 
agent compared to ARS itself [55]. Two synthetic ARS com-
pounds, ARS dimer-alcohol (dimer-OH) and ARS-tagged 
holotransferrin (ART-TF), were more potent and showed no 
significant cross-resistance toward a DHA-resistant Molt-4 
(RTN) cell line [56]. Indeed, combined ARS, pretreated with 
holotransferrin, and hyperbaric oxygen, resulted in an addi-
tional 22% decrease in growth of Molt-4 cell line compared 
with ARS treated alone [57].

Moreover, DHA, 10β-(p-bromophenoxy) DHA 
(PBrDHA), and 10β-(p-fluorophenoxy) DHA (PFDHA) 
demonstrated selective cytotoxicity activity of the endop-
eroxide group toward leukemia cells over normal periph-
eral blood mononuclear cells (PBMC). In HL-60 cells, the 
compounds with endoperoxide induced caspase-dependent 
apoptotic cell death characterized by mitochondrial mem-
brane depolarization, caspases-3 and -7 activation, and sub-
G0/G1 DNA formation, concentration- and time-dependent. 
Deoxy-10β-(p-fluorophenoxy) DHA (dPFDHA), which 
lacks the endoperoxide bridge, was less active, confirming 
the importance of this functional group [35]. In addition, 
ARS-type drugs exerted effects in lymphoma cells. Wang 
and coauthors demonstrated enhanced cytotoxicity effects 
of co-treatment of DHA plus holotransferrin in T-cell lym-
phoma cells with inhibition of TfR mRNA expression [58] 
(Table 2).

Oxidative stress response

Efferth showed that ART induced apoptosis of leukemia 
cells mainly through the mitochondrial pathway via gen-
eration of reactive oxygen species (ROS) [32, 63]. Further-
more, the induction of ROS by ART was accompanied by 
increased phosphorylation of histone H2AX (γ-H2AX), a 
marker for double-strand DNA damage, and activation of 

c-Jun N-terminal kinase (JNK), a mitogen-activated protein 
kinases (MAPK) family member [32], suggesting a strong 
pro-oxidant effect of ART on leukemic cells.

Moreover, Zhang and collaborators showed that the cyto-
toxicity induced by DHA correlated with superoxide (O2

−) 
levels, measured by dihydroethidine (HET) fluorescence, in 
a concentration-dependent way. Furthermore, the co-incu-
bation with the superoxide scavenger TEMPOL dramatically 
reduced the HET fluorescence. Indeed, an increase in protein 
levels of four antioxidant enzymes, catalase, copper/zinc-
superoxide dismutase (CuZnSOD), manganese-superoxide 
dismutase (MnSOD), and glutathione peroxidases 1 and 2 
(GPX 1/2) were observed in Molt-4 cell lines [64]. Another 
evidence of the antileukemic mechanism of ARS deriva-
tives through ROS generation was obtained using N-tert-
butyl-alpha-phenylnitrone (PBN), a compound that effec-
tively sequesters free radicals, or deferoxamine (DX), an iron 
chelating agent, which attenuated the cytotoxicity of DHA. 
Altogether, these results suggest that DHA induced the for-
mation of toxic-free radicals via an iron-mediated process 
[65] (Table 3).

Cell cycle arrest

Two novel derivatives, containing cyano and aryl groups at 
C-10 carbon of the ARS structure, showed a potent antipro-
liferative in vitro effect, leading to cell cycle arrest (Table 4) 
in G0/G1 phase [38]. The active metabolite of ARS, DHA, 
also arrested the cell cycle at G0/G1 phase with downregu-
lation of cyclin D, CDK2, and CDK4 [36]. Furthermore, 
ARS-type drugs induced cell cycle arrest in MM and lym-
phoma cells. DHA induced cell cycle arrest at sub-G0/G1 
phase in U266 MM cells [40]. Moreover, ARM induced cell 
cycle arrest at G0/G1 phase in diffuse large B-cell lymphoma 
(DLBCL) cells with a decrease of cyclin D1, CDK2, and 
CDK4 [44]. In addition, the hydrophilic ARS-derivative, 
ART, caused cell cycle arrest in both G0/G1 and G2/M phase 
in adult T-cell leukemia/lymphoma cells with decreased lev-
els of activator protein-1 (AP-1) and NF-κB signaling [49].

Programmed cell death

Apoptosis

Numerous studies have demonstrated the role of ARS and 
derivatives in the induction of apoptosis (Table 5). Singh 
and Lai demonstrated that DHA induces apoptosis, but not 
necrosis in Molt-4 cell line [61]. Increased phosphoryla-
tion of p38 mitogen-activated protein kinases (MAPK), but 
not JNK, or extracellular signal-regulated kinase (ERK) is 
required for DHA-induced apoptosis through both intrinsic 
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and extrinsic pathways in HL-60 cells [59] while ROS is 
dispensable. Furthermore, DHA induced apoptosis of U937, 
Jurkat, and HL-60 cell lines, primary human AML and acute 
lymphoma leukemia (ALL) cells in vitro accompanied by 
inactivation of MEK/ERK, MCL-1 down-regulation, cas-
pase activation and finally apoptosis. Moreover, DHA-
mediated inhibition of xenograft tumor growth associated 
with apoptosis induction, MCL-1 down-regulation, and ERK 
inactivation [67].

The active metabolite, DHA and its derivative X-11, 
acted through a NOXA-mediated pathway and downregu-
lated MCL-1 through a new cascade of O2

−/FOXO3a/NOXA 
[7]. The endoperoxide moiety of DHA or X-11 interacted 
with iron to form carbon-center radicals. Thereby, increased 
levels of O2

− through the endoperoxide moiety contributed 

to NOXA induction and finally apoptosis. NOXA protein 
bound to MCL-1 leads to Bak activation, and finally apop-
tosis [7].

The Bcr/Abl fusion gene is the pathogenic factor for 
chronic myeloid leukemia development. Lee and colleagues 
showed that DHA blocked BCR/ABL tyrosine phosphoryla-
tion and suppressed, in a concentration-dependent manner, 
downstream signaling pathways such as AKT and ERK, and 
also suppressed NF-κB protein expression, leading to the 
release of cytochrome c from mitochondria and activation 
of caspase cascade [68]. Furthermore, DHA suppresses Bcr/
Abl mRNA amplification in imatinib-resistant cell lines [69].

DHA further downregulated MCL-1 expression, though 
not mRNA expression, suggesting a MCL-1 turnover by 
the proteasome. Ddit3, which encodes CHOP protein, a key 

Table 3   Oxidative stress response induced by ARS-type drugs

Arrows ↑ indicate increase and arrows ↓ indicate decrease compared to the control group

Cell line Derivative Treatment Effect References

In vitro
 HL-60 DHA 0.5 µM treated up to 12 h Induction of apoptosis inde-

pendent of ROS but slightly 
increased O2

−

[59]

 HL-60 DHA, X-11 0.8 µM DHA and 0.2 µM X-11 
treated for 15 h

O2
−↑ [7]

 HL-60 and THP-1 DHA 0, 5, 10, and 15 µM treated for 
12 h

ROS↑ [36]

 MOLM14 ART, ART-838 5 µM ART and 0.1 µM ART-838 
treated for 24 h

ROS↑ [6]

 MV4-11, KG1a, and AML 
primary blast

ART​ 1–2 µM treated for 24 h ROS↑, H2AX↑, p-JNK↑ [32]

 ML-2, MV4-11, and MOLM-13 ART, DHA 1–10 µM treated for 24 h ROS↑ (MV4-11) and minimal 
increase in other cell lines

[25]

 Jurkat and CCRF-CEM ART​ 10.4 µM and 1.3 µM, respectively, 
treated for 30 min

ROS-mediated apoptosis [63]

 Molt-4 DHA 0–20 µM treated for 16 h O2
−↑, antioxidant enzymes↑ [64]

 Molt-4 DHA + PBN 12.2 µM DHA + 0.25, 0.5, and 
1.0 mM PBN treated for 24 h

Cytotoxicity of DHA↓ [65]

DHA + DX 12.2 µMDHA + 10, 20, and 30 µM 
DX treated for 24 h

Cytotoxicity of DHA↓

 K562 DHA 20 nM holotransferrin (pretreated 
for 1 h) + 10 µM DHA or DHA 
alone treated for 48 h

ROS↑ both groups, but higher 
levels in group pretreated with 
holotransferrin

[62]

 MT-2 and HUT-102 ART​ 0, 0.4, 2, and 10 µM and 0, 2, 10, 
and 50 µM, respectively, treated 
for 24 and 48 h

ROS↑, γH2AX↑ [49]

 JJN3 and RPMI-8226/R5 ART​ 125 µM treated up to 24 h ROS↑ (early) and O2
−↑ (late) [24]

 DAUDI and CA-46 ART​ 0, 5, 10, and 20 µM treated up to 
24 h

ROS↑ (ferroptosis related) [66]

 Ramos ART + mAb rituximab 140 µM rituximab (pre-incubated 
for 3 h) + 50 µM or 100 µM 
ART treated for 6 h

ROS↑, MnSOD↓, catalase↓ [48]

 Jurkat DHA + holotransferrin 0, 10, 20, 40, and 80 µM 
DHA + 20 µM holotransferrin 
treated for 48 h

ROS↑ [58]



10	 Cancer Chemotherapy and Pharmacology (2021) 87:1–22

1 3

regulator of the endoplasmic reticulum (ER) stress pathway 
contributed to repression of MCL-1 protein by DHA in 
B-acute lymphoblastic leukemia (B-ALL) mice cells con-
taining the BCR-ABL protein (BCR-ABL+). Interestingly, 
DHA synergized with ABT-263, a BH3-mimetic, inducing 
apoptosis, supporting the hypothesis that DHA can repress 
MCL-1 protein expression. Combined treatment of DHA 
and ABT-263 extended survival and showed repression in 
circulating leukemia cells of mice transplanted with BCR-
ABL+B-ALL cells. Furthermore, a decrease of MCL-1 pro-
tein was observed in ex vivo analysis of splenic blast cell 
of BCR-ABL+B-ALL mouse after in vivo DHA treatment 
[70]. Indeed, in HL-60 cells, DHA treatment decreased TfR 
expression at the mRNA and protein level, upregulated the 
proapoptotic protein Bax and downregulated the antiapop-
totic protein BCL-2, resulting in the activation of caspase-3 
and apoptosis [60].

Combined treatment of ARS derivatives with other com-
pounds has also shown effects on the apoptosis of leukemic 
cells. For example, DHA and an inhibitor of 6-phosphoglu-
conate dehydrogenase (6PGD) induced synergistic apopto-
sis of the chronic myeloid leukemia K562 cell line through 
AMPK (AMP-activated protein kinase) signaling pathway. 
Moreover, combined treatment significantly decreased tumor 

growth in a xenograft model beyond the increased levels of 
phospho-AMPK [71]. ART and arsenic trioxide (ATO) also 
increased K562 cell line apoptosis and necrosis [72].

ART induced apoptosis of leukemic T cells through the 
intrinsic pathway with cytochrome c release and caspase-9 
activation [63]. In another study, ART treatment of KBM-5 
(chronic myeloid leukemia) cell line exerted apoptosis 
effects through suppression of multiple signaling pathways 
including suppression of p38/ERK/STAT5/CREB phos-
phorylation [8]. Moreover, ART showed high cytotoxicity 
toward MV4-11 and MOLM-13 cells, Bcl-2 reduction, loss 
of mitochondrial membrane potential (MMP) and induc-
tion of the intrinsic mitochondrial pathway [32]. In vitro 
studies also showed that, in the acute monocytic leukemia 
cell line THP-1, ART decreased STAT3 protein levels and 
activated caspase-3 and -8. These results were reproduced 
in a xenograft model [73]. Furthermore, Cao and collabora-
tors described DHA-induced apoptosis of THP-1 cell line 
through AKT and ERK downregulation at mRNA and pro-
tein levels and activation of caspase-3 [74].

Drenberg and collaborators showed potent activity of 
ART and DHA in AML cell lines (ML-2, CMS, MV4-
11, U937, M07e, MOLM-13) representing subtypes and 
genetic lesions associated with high risk and poor prognosis. 

Table 4   Cell cycle arrest induced by ARS-type drugs

Arrows ↑ indicate increase and arrows ↓ indicate decrease compared to the control group

Cell line Derivative Treatment Effect References

In vitro
 HL-60, THP-1, and KG1 DHA 0, 5, 10, and 15 µM treated for 12 h G0/G1 phase arrest, cyclin D↓, 

CDK2↓, CDK4↓
[36]

 MOLM14 ART and ART-838 5 µM ART and 0.1 µM ART-838 
treated for 24 h

Sub-G0/G1 phase arrest and G0/G1 
phase arrest

[6]

 K562 DHA 20 nM holotransferrin (pretreated for 
1 h) + 10 µM DHA treated for 48 h

G2/M phase arrest and partially 
arrested in sub-G0/G1 phase

[62]

 MT-2 and HUT-102 ART​ 0, 0.4, 2, and 10 µM treated for 24 h G0/G1 and G2/M phase arrest, AP-1↓, 
NF-κB↓, CDK1↓, CDK2↓, CDK4↓, 
CDK6↓, cyclin B1↓, cyclin D2↓, 
cyclin E↓, p21↑

[49]

 P388 (murine leukemia) ARS derivatives con-
taining cyano and 
aryl groups

12 nM and 11 nM treated for 21 h G0/G1 phase arrest [38]

 P388 (murine leukemia) DHA containing 
cyano and aryl 
groups

NS G0/G1 phase arrest [39]

 U266 DHA 0, 1, 3, 10, 30, and 100 µM treated 
for 48 h

Sub-G0/G1 phase arrest [40]

 SP2/0 (murine myeloma) ART​ 0–104 µM treated for 24 h G0/G1 phase arrest [43]
 OCI-Ly3 ART​ Treated for 24 h G0/G1 phase arrest [34]
 SUDHL-4 and DB ARM 0.1 mM treated for 48 h G0/G1 phase arrest, cyclin D1↓, 

CDK2↓, CDK4↓
[44]

 Jurkat DHA + holotransferrin 0, 10, 20, 40, and 80 µM 
DHA + 20 µM holotransferrin 
treated for 48 h

G0/G1 phase arrest [58]
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MV4-11 cells were the most sensitive with IC50 value of 
0.092 μM and 0.24 μM for ART and DHA, respectively. 
Both derivatives induced apoptosis, caspase-3 and -7 acti-
vation, in addiction, ROS and lysosomal induction. ARS 
derivatives also showed synergistic interaction with cyta-
rabine (Ara-C) when drugs were administered sequentially, 
pre-treatment with DHA followed by Ara-C (CI range 
0.37–0.72) and pre-treatment with Ara-C followed by ART 
(CI range 0.49–0.9). ART produced modest inhibition in 
patient samples with the same mutations of the cell lines and 
the combination therapy with Ara-C demonstrated synergis-
tic effects [25]. The semi-synthetic ARS-derived trioxane 
diphenylphosphate dimer 838 (ART-838) was more potent 
than ART in 23 leukemia cell lines and caspase-dependent 
apoptosis was observed [6].

ART also induced apoptosis in MM and lymphoma cell 
lines, with downregulation of MYC and anti-apoptotic pro-
teins of BCL-2 family beyond caspase-3 activation [34]. Fur-
thermore, ART overcame drug resistance in MM lineage and 
induced apoptosis predominantly through the non-caspase-
mediated pathway by increasing ROS levels and leading to 
a loss of mitochondrial membrane permeabilization early in 
time. Thereafter, ART translocated AIF and EndoG, factors 
of this type of apoptosis, from the mitochondria to the cyto-
plasm and subsequently to the nucleus inducing apoptosis 
together with increased levels of superoxide [24]. Wang and 
the authors observed an apoptosis induction through JNK 
signaling pathway activation in MM cell line by DHA [40]. 
Li and collaborators showed apoptosis induction and prolif-
eration inhibition of SP2/0 (murine myeloma) cells together 
with decreased NF-κB protein and transcriptional activity in 
addition to increased IκBα, which inactivated NF-κB when 
they were combined, by ART [43].

The c-Myc transcriptional factor regulated cell prolifera-
tion, differentiation, and apoptosis. The combined use of 
DHA and siNotch1 therapy induced the reduction of Notch1 
and c-Myc levels, the last downstream target of Notch1, at 
mRNA and protein levels, and also increased caspase-3 
mRNA and protein levels, subsequently inducing apoptosis 
and suppressed cell proliferation in T-cell lymphoma cells 
[46]. Furthermore, DHA reduced c-Myc protein expres-
sion at the transcriptional level and could exert antitumor 
effect by inhibiting the AKT/GSK3β pathway in T-cell lym-
phoma cells. DHA also induced apoptosis with increased 
Bax/BCL-2 ratio [47] and through Bak-dependent intrinsic 
pathway [75].

ART further demonstrated a potent anti-tumor effect 
against B-cell lymphoma cells. ART induced ER stress and 
unfolded protein response (UPR) through increased levels 
of ATF-4, ATF-6, and CHOP at mRNA and protein levels 
in BL-41 (Burkitt lymphoma) and SU-DHL-6 (large cell 
lymphocyte) cells, leading to apoptosis. In addition, ART 
suppressed the overall metabolism, affecting both respiration 

and glycolysis [45]. Moreover, Sieber and collaborators 
showed a potent cytotoxic effect of combination therapy 
using mAb rituximab and ART in B-cell lymphoma cells 
in which upstream transcriptional factors of apoptosis pro-
cess, YY1 and Sp1, regulated Fas/CD95 expression lead-
ing to the intrinsic apoptosis pathway. Combination therapy 
also induced downregulation of antioxidant proteins [48]. 
Indeed, ART induced apoptosis through caspase-dependent 
and -independent pathway together with a suppression of 
NF-κB and activator protein-1 (AP-1) signaling in adult 
T-cell leukemia/lymphoma [49] cells. Furthermore, the lipo-
philic ARS-derivative, ARM, induced apoptosis in DLBCL 
cell lines with caspase-3 induction [44].

Autophagy

Regulation of cancer cell autophagy by ARS-type drugs 
involves decreased phosphorylation of proteins of the PI3K/
AKT/mTOR pathway and increased levels of Beclin1 medi-
ated by the JNK pathway. ARS and derivatives also inhibit 
NF-κB activity through blocking Rel/p65 translocation to 
the nucleus and activate ER stress through the stress-regu-
lated protein p8 [76]. In leukemia, Wang and collaborators 
reported that DHA induced autophagy of K562 cells, pre-
treated with holotransferrin, through ROS generation fol-
lowed by LC3-II expression and caspase-3 activation [62].

A new ARS-derivative, SM1044, induced autophagy 
mediated by the CaMKK2/AMPK/ULK1 pathway through 
promoting de novo synthesis of ceramide in lymphoma cells. 
Furthermore, the new derivative also induced autophagy-
dependent apoptosis through acetylation of Survivin pro-
tein and enhanced interaction of Survivin and LC3-II [77]. 
Moreover, DHA treatment suppressed NF-κB activity by 
preventing the translocation of the Rel/p65 subunit to the 
nucleus consequently contributing to autophagy in MM and 
leukemia cell lines [78].

Ferroptosis

Ferroptosis is an iron-dependent programmed cell death 
pathway dependent on the lipid peroxidation process. In 
contrast with other programmed cell deaths, reduction of 
glutathione peroxidase 4 (GPX4) repairs enzymes, accu-
mulation of lipid peroxidation products and ROS derived 
from iron metabolism characterizes ferroptosis. ARS-type 
drugs are capable of reversing ferroptosis resistance of head 
and neck cancer cells, through inhibition of the Nrf2-ARE 
antioxidant signaling [79]. Moreover, in pancreatic cells, 
the induction of ferroptosis by ART is enhanced by GRP78 
knockdown, chaperone of ER [80]. Recently, Du and col-
laborators described that DHA treatment of the HL-60 leu-
kemic cell line induced ferroptosis through degradation of 
the heavy ferritin chain by autophagy [36]. Indeed, ART 
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activated ATF4/CHOP/CHAC1 pathway, an ER stress 
response, and enhanced ferroptosis [66] in Burkitt’s lym-
phoma cell lines.

Anti‑angiogenic effects

Angiogenesis plays a fundamental role in the neoplastic 
process. Effects of ARS-type drugs on cancer cells rely 
on perturbations of the MAPK pathway, which comprise 
ERK1/2 reduction or JNK and p38 MAPK activation, 
NF-κB inhibition and also AKT and mTOR inhibition 
promoting induction of proliferation and apoptosis of 
endothelial cell and reduction on the vascular endothelial 
growth factor (VEGF) production [81]. VEGF is the most 
potent angiogenic factor and plays an important role in the 
development and progression of leukemias (Table 6) and 
MM. Interestingly, ART and DHA reduced the expression 
and secretion of VEGF in RPMI8226 myeloma and K562 
leukemia cell lines, respectively [37, 41] and inhibited the 
formation of new microvessels in an in vivo model of chick 
chorioallantoic membrane (CAM) loaded with RPMI8226 
conditioned medium (CM) under hypoxic conditions [42]. 
Furthermore, ART, the other water soluble ARS-derivative 

compound, inhibited the production of new microvessel on 
aortic sprouting, reduced CML angiogenesis in an in vivo 
model of CAM [82], inhibited vascular endothelial cell 
(HUVEC) migration and reduced expression of VEGF and 
angiopoietin-1 (Ang-1) proteins [41].

Differentiation induced by ARS 
and derivatives

ARS potentiated 1α,25-dihydoxyvitamin D3 and all-trans 
retinoic acid induced differentiation in HL-60 promyelo-
cytic leukemia cells. ARS in combination with low con-
centration of 1,25-(OH)2D3 increased HL-60 differentia-
tion into monocytes through ERK and PKC pathways with 
an increased PKCβ1 isoform. Indeed, ARS plus all-trans 
retinoic acid induced cell differentiation into granulo-
cytes through ERK pathway [83]. ARS has a synergisti-
cally effect with interferon-α (IFN-α) in enhancing HL-60 
cell differentiation through PKCα/ERK signaling pathway 
[84]. On the other hand, DHA inhibited erythroid cell dif-
ferentiation with a decreased expression of glycophorin 
A (GpA) surface receptor and γ-globin synthesis [85] 
(Table 7).

Table 6   Angiogenesis proprieties of ARS-type drugs

Arrows ↑ indicate increase and arrows ↓ indicate decrease compared to the control group

Cell line Derivative Treatment Effect References

In vitro
 K562 DHA 0, 2, 5, and 10 µM treated for 48 h VEGF↓ (expression and secretion) [37]
 RPMI8226 DHA 0–12 µM treated for 48 h under 

hypoxia
VEGF↓ (mRNA and protein levels, 

and secretion)
[42]

 RPMI8226 ART​ 0–12 µM treated for 48 h Microvessel↓, VEGF and Ang-1secre-
tion↓, migration↓

[41]

 Jurkat DHA + holotransferrin 0, 10, 20, 40, and 80 µM 
DHA + 20 µM holotransferrin treated 
for 48 h

VEGF↓ [58]

In vivo
 KBM-5 xenograft 

model (Nude mice) 
(sc.)

ART​ 50, 100, and 200 mg/kg, ip., thrice/
week

Tumor growth↓ (55–70% of reduction 
dose-dependent), VEGF↓

[8]

 K562 CAM model ART​ 1.2 µM/100 µl per egg treated for 48 h Microvessel↓ [82]
 K562 CAM model ART​ CM pretreated with 0, 3, 6, and 12 

µM (25 ng protein/5 µl per embryo) 
treated for 48 h

Microvessel↓ (28.2, 44.3, 72.3% of 
reduction, respectively), VEGF 
secretion (CM)↓

[82]

 RPMI8226 CAM model DHA CM pretreated with 0, 3, 6, and 12 µM 
under hypoxic conditions and loaded 
onto CAM on day 8

Microvessel↓ (28.6, 41.3, 61.4% of 
reduction, respectively)

[42]

 RPMI8226 CAM model ART​ CM pretreated with 0, 3, 6, and 12 µM 
under hypoxic conditions and loaded 
onto CAM on day 8

Microvessel↓ (21.9, 38.24, and 76.9% 
of reduction, respectively)

[41]
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New hybrid compounds

Hybridization is a new approach used to improve the activ-
ity of chemical compounds [86] (Table 8). Homodimers of 
two artesunic acid molecules and heterohybrids of artesunic 
acid and betulin, a natural product that exhibited cytotoxicity 
activity toward human lung cancer, were tested in human 
sensitive and multidrug-resistant cells. CEM/ADR5000, 
multidrug-resistant leukemia cells, were not cross-resistant 
to the novel compounds and sensitivity was also observed 
for artesunic acid homodimer in CCRF-CEM cell line. 
Furthermore, artesunic acid and artesunic acid homodimer 
increased ROS formation and induced apoptosis and G0/G1 
cell cycle arrest [87].

As structure modification may improve ARS anti-cancer 
activity, a series of DHA chalcone hybrids and derivatives 
were synthetized [88] and demonstrated a high antiprolifera-
tive and cytotoxicity effect in HL-60 cell lines [89]. Addi-
tionally, new ARS–spermidine conjugates were designed to 
upregulate polyamine transporter. Amine-linked conjugates 
were approximately 1.5–2 times more active than amide-
linked conjugates in HL-60 leukemia cells and all of them 
were higher than DHA [90]. Furthermore, new dimers phos-
phate ester, screening against human leukemia and normal 
cell lines, exhibited very high potency against cancer cells 
with no toxicity to normal cells [91]. Dimers and trimers 
were more active against CCRF-CEM cells [92]. Interest-
ingly, molecular docking showed that most derivatives 
revealed similar binding sites at the transmembrane region 
of the multidrug P-glycoprotein [93] transporter.

Three hybrid molecules having aliphatic, aromatic, or 
alcoholic linkers were analyzed for their activity against 
human multidrug-resistant leukemia cells. The multidrug-
resistant cells were not cross-resistant to any of the dimers 
[94]. Therefore, new ARS-derived hybrids incorporating 
cholic acid moieties were efficient against the CCRF-CEM 
and multidrug-resistant CEM/ADR5000 cells. The majority 
of the compounds proved to be more active than ARS and 
ART alone [95]. Furthermore, a series of novel 1,2,4-tri-
oxane-based hybrids incorporating egonol and/or ferro-
cene fragments were synthesized and showed remarkable 

cytotoxicity toward CCRF-CEM cells or against multidrug-
resistant leukemia cells [96, 97].

ARS-based hydroxamic acids were synthesized with a 
possible dual mechanism of both endoperoxide bridge and 
hydroxamic acid moiety. All the compounds exhibited mod-
erate inhibition against HL-60 cells and, interestingly, dock-
ing studies of two very active compounds showed that they 
were capable of binding to HDAC2 with high affinity, even 
higher than the HDAC inhibitor, suberoylanilide hydroxamic 
acid (SAHA) [98].

Another modification of ARS derivative that has been 
demonstrated to improve their activity was a sugar attach-
ment which enhanced specificity of drug delivery, polarity, 
and solubility, to attenuate toxicity. Thus, N-glycosylated 
DHA-piperazine, glucose, maltose, and ribose were most 
active and specific against leukemic cells than DHA and 
artemisone [99].

A novel synthesis of quinazoline–ARS [100] and thymo-
quinone–ARS [101] hybrids were investigated and showed 
promising results for multidrug-resistant cell line [100, 101]. 
Furthermore, a hybrid containing egonol, isolated from Sty-
rax officinalis L. and homoegonol, with anti-inflammatory, 
antioxidant and anticancer activity, combined with thymo-
quinone and ARS were synthetized and demonstrated high 
activity [102].

The antimalarial and anticancer mechanism 
of ARS‑type drugs

This class of compounds acts in a multi-specific manner, 
exhibiting several modes of action simultaneously. Interest-
ingly, mechanisms of induction of malaria parasite death can 
be transposable to cancer cells. During the erythrocyte infec-
tion, plasmodia consume hemoglobin as a source of amino 
acids, leading to the generation of ROS by heme–iron which 
cleaves the endoperoxide moiety of the ARS-type drugs by 
a Fe+2 Fenton-type reaction, with more free radical inter-
mediate formation [103]. This can lead to macromolecular 
damage and, consequently, death to the parasite.

Table 7   Differentiation induced by ARS-type drugs

Arrows ↑ indicate increase and arrows ↓ indicate decrease compared to the control group

Cell line Derivative Treatment Effect References

HL-6O ARS + 1,25-(OH)2D3
ARS + all-trans RA

0, 1.25, 2.5, 5.0, and 10.0 µM ARS + 5 nM 1,25-
(OH)2D3 or 50 nM all-trans RA treated up to 
72 h

CD11b↑, PCK and ERK activation, PKCβ1↑
CD11b↑, CD14↑, ERK activation

[83]

HL-60 ARS + IFN-α 20 µM ARS + 104U IFN-α PKCα/ERK activation [84]
K562 DHA 0–10 µM treated 24, 48, and 72 h for cytotoxic 

effects; for further tests DHA 0.5 and 2.0 µM 
treated 24, 48, and 72 h

Inhibition of erythroid differentiation, GpA 
receptor↓, γ-globin↓

[85]
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Another mechanism of action is based on its structural 
similarity with thapsigargin, which is a highly specific inhib-
itor of sarcoendoplasmic reticulum Ca+2-ATPase (SERCA). 
Thus, ARS has been shown to inhibit the SERCA orthologue 
(PfATP6) of the P. falciparum [104] and that DHA, the 
active metabolite of ARS-type drugs, damages proteins and 
inhibits the proteasome, causing ER stress response [105].

Cancer cells have more intracellular iron than normal 
cells, thus ARS-like drugs can react with intracellular 
free iron to form cytotoxic free radicals that promote the 
death of cancer cells. A plethora of articles has revealed 
the importance of endoperoxide moiety for anticancer activ-
ity. Thus, the cleavage of the endoperoxide bridge leads to 
reactive oxygen species (ROS) formation and consequently, 
oxidative stress that induces cancer cell death. Moreover, 
the endoperoxide-reduced form of ARS, deoxyartemisinin, 
which lacks the peroxide, is inactive [7] against leukemic 
cells. Furthermore, similar to the mechanism proposed for 
antimalarial activity, the anticancer activity of ARS-type 
drug can be targeting the unfolded protein response (UPR) 
and endoplasmic reticulum (ER) response of the cancer cell 
leading to apoptosis or ferroptosis [66].

Most of the changes in the ARS structure that improve the 
pharmacological properties and pharmacokinetics of ARS 
compounds occur at C-10 carbon of DHA, enabling deri-
vation to drugs with increased biological efficacy, reduced 
undesired side effects, selected profile (e.g., lower toxicity), 
and better bioavailability.

Conclusions

In conclusion, ARS and its derivatives are active against 
hematological malignancy cells in vitro and in vivo [6, 7, 
25]. Hybrids, dimers, and trimers improved cytotoxicity 
against leukemia cells, proposing high potency even in MDR 
cells [87, 92]. It is speculated that the main mechanism of 
action is the bioactivation of the endoperoxide pharmacoph-
ore group by iron that leads ROS formation and free radical 
intermediates formation [50, 54, 63], inducing cell death 
as occurs with the malaria parasite. ARS-type drugs also 
enhance chemotherapeutic anticancer activity contribut-
ing mechanistically to additive or synergistic effects [25]. 
Collectively, this review summarizes the main studies that 
indicated the role of ARS-type drugs in the treatment of 
leukemia, lymphoma, and multiple myeloma through apop-
totic and non-apoptotic cell death (downstream mechanism), 
mainly by inducing cell cycle arrest at G0/G1 phase, inhibi-
tion of proliferation, inhibition of angiogenesis with down-
regulation of VEGF, and signal transduction modulation 
(Fig. 2). Importantly, combination therapies with standard 
chemotherapy drugs enhanced the potential of ARS-type 
drugs in adjuvant therapy in clinical oncology. No clinical 
trial for hematological malignancies has been conducted yet. 
Thus, clinical trials should be encouraged to provide more 
compelling evidence regarding the use of ARS-derivatives 
in hematological cancer treatment.

Fig. 2   Summary of the mechanisms of action of ARS-type drugs against hematological malignancies
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