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Abstract
Purpose High-dose methotrexate (HD-MTX) is widely used in the treatment of non-Hodgkin lymphoma (NHL), but the phar-
macokinetic properties of HD-MTX in Chinese adult patients with NHL have not yet been established through an approach 
that integrates genetic covariates. The purposes of this study were to identify both physiological and pharmacogenomic 
covariates that can explain the inter- and intraindividual pharmacokinetic variability of MTX in Chinese adult patients with 
NHL and to explore a new sampling strategy for predicting delayed MTX elimination.
Methods A total of 852 MTX concentrations from 91 adult patients with NHL were analyzed using the nonlinear mixed-
effects modeling method. FPGS, GGH, SLCO1B1, ABCB1 and MTHFR were genotyped using the Sequenom MassARRAY 
technology platform and were screened as covariates. The ability of different sampling strategies to predict the MTX con-
centration at 72 h was assessed through maximum a posteriori Bayesian forecasting using a validation dataset (18 patients).
Results A two-compartment model adequately described the data, and the estimated mean MTX clearance (CL) was 6.03 
L/h (9%). Creatinine clearance (CrCL) was identified as a covariate for CL, whereas the intercompartmental clearance (Q) 
was significantly affected by the body surface area (BSA). However, none of the genotypes exerted a significant effect on 
the pharmacokinetic properties of MTX. The percentage of patients with concentrations below 0.2 µmol/L at 72 h decreased 
from 65.6 to 42.6% when the CrCL decreased from 90 to 60 ml/min/1.73 m2 with a scheduled dosing of 3 g/m2, and the same 
trend was observed with dose regimens of 1 g/m2 and 2 g/m2. Bayesian forecasting using the MTX concentrations at 24 and 
42 h provided the best predictive performance for estimating the MTX concentration at 72 h after dosing.
Conclusions The MTX population pharmacokinetic model developed in this study might provide useful information for 
establishing personalized therapy involving MTX for the treatment of adult patients with NHL.
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Introduction

High-dose methotrexate (HD-MTX), a folic acid antago-
nist, serves as the cornerstone in the treatment of non-
Hodgkin lymphoma (NHL) because it prevents and treats 
neuromeningeal localization [1].

MTX is approximately 60% protein-bound [2], com-
peting with the enzymes of the folate cycle, including 
methylene tetrahydrofolate reductase (MTHFR) [3], for 
active transport across cell membranes through a single 
carrier-mediated active transport process. MTX undergoes 
intracellular metabolism by folylpolyglutamate synthetase 
(FPGS) to obtain polyglutamated MTX, and this form can 
be converted back to MTX by hydrolase enzymes (GGH). 
Small amounts of MTX polyglutamates might remain in 
the tissue for extended periods [4]. MTX can be pumped 
out of the cell by ATP-binding cassette (ABC) and trans-
ported to hepatocytes for elimination by organic anion 
transporting polypeptide (OATP) 1B1, which is encoded 
by the ABCB1 and SLCO1B1 genes, respectively [5, 6]. 
After intravenous infusion, 80–90% of the MTX dose is 
excreted unchanged in the urine within 24 h, whereas 10% 
or less of the dose is eliminated through biliary excretion 
[7].

However, treatment is often limited by severe systemic 
toxicity [1], which is related to exposure to MTX [8]. 
Delayed MTX elimination is defined as a serum MTX 
concentration above 50 µmol/L at 24 h, above 5 µmol/L 
at 48 h, or above 0.2 µmol/L at 72 h [4]. Patients that 
experience delayed MTX elimination are at elevated risk 
of toxicity, such as gastrointestinal toxicity, myelosup-
pression, mucositis, neurotoxicity, and liver and kidney 
dysfunction, which explains the importance of routinely 
monitoring the MTX concentration to guide leucovorin 
rescue and avoid potential side effects until the plasma 
concentrations decrease to below the threshold value of 
0.2 µmol/L.

The clearance of MTX exhibits a large interindividual 
variability, which leads to different exposures to the drug 
and can thus affect the clinical outcomes of the patients 
[9, 10]. Therefore, the determination of individual phar-
macokinetic (PK) parameters, such as through maximum 
posterior Bayesian (MAPB) estimation, are needed for the 
optimization of individual therapy.

Pharmacogenomics studies have demonstrated that the 
disposition, efficacy, and toxicity of MTX can be influ-
enced by single-nucleotide polymorphisms (SNPs) in the 
following genes: FPGS and GGH (which encode metabo-
lizing enzymes of MTX), SLCO1B1 and ABCB1 (which 
encode transporters of MTX), and MTHFR (which encodes 
a target of MTX) [11–13]. Taking SLCO1B1 as an exam-
ple, a previous study showed that the plasma concentration 

of MTX at 48 and 72 h is increased significantly in individ-
uals with SLCO1B1 rs4149056 variant (TC/CC genotype) 
compared with the wild-type individuals (TT genotype). 
Patients with the rs4149056 C allele exhibit a significantly 
higher frequency of adverse effects [14]. The significant 
association of SLCO1B1 rs4149056 with the serum MTX 
levels was also observed by Csordas et al. [15], and Lima 
et al. [16] and Avivi et al. [17] who also demonstrated 
that SLCO1B1 rs4149056 is associated with MTX-related 
toxicity. Lopez et al. [18] found a statistically significant 
association between the plasma concentration of MTX and 
SLCO1B1 rs11045879, and Li et al. obtained the same 
result [19]. Further investigations on whether these SNPs 
in related genes explain the interindividual variability in 
MTX pharmacokinetics are required prior to the inclusion 
of genetic information in MTX individual therapy.

The majority of population pharmacokinetic (PPK) stud-
ies on MTX have focused on acute lymphocytic leukemia 
(ALL) in children, but far less information is available 
regarding adult patients with NHL, and few studies have 
considered genetic factors as covariate effects. Moreover, 
ethnicity is one factor that might account for the observed 
differences in both the pharmacokinetics (PK) and pharma-
codynamics (PD) of drugs, which has resulted in variability 
in the responses to drug therapy [20]. Few PPK studies on 
MTX have provided pharmacogenetic information for non-
Chinese patients, but the results have been controversial 
[21–23]. To the best of our knowledge, none of the pub-
lished studies have established the PPK of HD-MTX in Chi-
nese adult patients with NHL using a method that integrates 
genetic covariates.

We would like to concentrate on the genes mentioned 
above that have been demonstrated to affect the clinical 
outcome of MTX but whose impact on the PPK of MTX 
is inconclusive or unknown. Therefore, the following can-
didate genetic variants were selected for the present study: 
rs10106 in FPGS; rs719235, rs10464903 and rs12681874 in 
GGH; rs4149056 and rs11045879 in SLCO1B1; rs1045642 
in ABCB1; and rs1801131 and rs1801133 in MTHFR.

In clinical practice, the routine monitoring of MTX con-
centrations includes several blood samplings. Patients with 
MTX concentrations at 72 h that remain above the rescue 
threshold (0.2 µmol/L) should stay longer in the hospital for 
additional hydration and leucovorin rescue. A new sampling 
strategy involves fewer samples than those used in routine 
practice. The early prediction of increased MTX concentra-
tions at 72 h based on this new sampling strategy reduces the 
number of samples and the hospital duration.

This study aimed to identify physiological and pharma-
cogenomic covariates that can explain the inter- and intrain-
dividual pharmacokinetic variability of MTX in Chinese 
adults with NHL and to explore a new sampling strategy for 
predicting delayed MTX elimination.
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Materials and methods

Patients and study design

The study involved adult patients (age ≥ 18 years) who 
were diagnosed with NHL and treated with HD-MTX 
at Fujian Cancer Hospital from July 2013 to December 
2018. Patients with diffuse large B-cell lymphoma were 
treated with MTX ± cytarabine [24, 25]. The NHL–Berlin-
Frankfurt-Münster 95 protocol (NHL-BFM95) and ALL-
Berlin-Frankfurt-Münster 95 protocol (ALL-BFM95) were 
used for the treatment of Burkitt’s and T-lymphoblastic 
lymphoma [26, 27], respectively, whereas the AspaMet-
Dex protocol was used for the treatment of NK/T-cell lym-
phoma [28].

The administration of HD-MTX at 1–3 g/m2 was followed 
by leucovorin rescue, which was administered 36 h after ini-
tiation of the MTX infusion and repeated every 6 h until the 
MTX concentration decreased to less than 0.2 µmol/L [29].

Intravenous hydration and alkalization were achieved 
12 h prior to the start of MTX therapy to provide protec-
tion against MTX-induced renal dysfunction [4]. MTX 
concentration monitoring was performed until the MTX 
plasma concentration was below 0.2 µmol/L. The study was 
approved by the ethics committee of Fujian Cancer Hospi-
tal. Informed consent was obtained from the patients and/
or guardians.

Analytical method

The plasma was separated by centrifugation at 3500  g 
for 5 min, and the separated plasma samples were used 
for analysis. The MTX concentrations were measured by 
high-performance liquid chromatography (HPLC), and 
the chromatographic system consisted of a Beckman-C18 
(150 mm × 4.6 mm, 5 μm) analytical column with a mobile 
phase of 40 mM sodium acetate buffer (pH 4.6):acetonitrile 
(88.9:11.1, v/v) and ultraviolet detection at 294 nm. The flow 
rate of the mobile phase was maintained at 1.0 mL/min. The 
injection volume was 20 μL with a run time of 6 min. The 
method was linear within the range of 0.09–3.52 µmol/L, 
and the intra- and interday precision was < 6%. The limit of 
quantification (LOQ) was 0.09 µmol/L.

Genotyping

Genomic DNA was isolated from whole blood using the 
Qiagen DNA Blood Mini Kit (Qiagen, CA, USA) follow-
ing the manufacturer’s instructions. The DNA purity and 
concentration were checked by spectrophotometric measure-
ment of the absorbance at 260 and 280 nm.

Genotyping for rs10106, rs719235, rs10464903, 
rs12681874, rs4149056, rs11045879, rs1045642, rs1801131, 
and rs1801133 was performed using the Sequenom MassAR-
RAY technology platform with the complete iPLEX Gold 
Reagent Set (Sequenom, CA, USA) by the Beijing Genomics 
Institute Genomics Company (Beijing, China). Allele detec-
tion was performed by matrix-assisted laser desorption/ioni-
zation time-of-flight mass spectrometry. The assay data were 
analyzed using Sequenom TYPER software (version 4.0). The 
primers were designed by ADS software 2.0 (Agena Biosci-
ence, CA, USA).

Base model

The pharmacokinetic analysis was conducted by nonlinear 
mixed-effects modeling using  NONMEM® Version 7.4.1 
(ICON Development Solutions, Hanover, MD, USA). The 
first-order conditional estimate method with eta-epsilon 
interaction (FOCE-I) was used throughout the model-build-
ing process. The tools used to evaluate and visualize the 
model were R Version 3.4.1 (R Foundation for Statistical 
Computing, Vienna, Austria) and PsN Version 4.6.0 (https ://
uupha rmaco metri cs.githu b.io/PsN/), which are all within the 
graphical interface Pirana Version 2.9.7 (Certara, St. Louis, 
MO, USA) [30].

Two- and three-compartment models were investigated to 
describe the concentration–time data based on a literature 
review and visual data inspection.

The interindividual variability (IIV) of the PK parameters 
was evaluated using the exponential model shown in Equa-
tion (Eq. 1):

where Pij is the parameter estimate for the ith individual on 
the jth occasion and TV(P) is a typical value for the param-
eter. The difference between logarithms of Pij and TV(P) is 
described by ηi, and kij is the interoccasion variability (IOV) 
used to represent the random difference of occasion j from 
the individual i average value.

Additive (Eq. 2), proportional (Eq. 3) and combination 
error models (Eq. 4) were evaluated to describe the residual 
variability.

where Y is the observed MTX concentration, F is the model-
predicted concentration, and EPS (1) and EPS (2) represent 
the residual error of the model with a means of 0 and vari-
ances of �2

1
 and �2

2
 , respectively.

(1)Pij = TV(P) ⋅ e�i+kij ,

(2)Y = F + EPS(1)

(3)Y = F + F × EPS(2)

(4)Y = F + F × EPS(2) + EPS(1),

https://uupharmacometrics.github.io/PsN/
https://uupharmacometrics.github.io/PsN/
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Model selection was based on the Akaike information cri-
terion (AIC), Bayesian information criterion (BIC), objec-
tive function value (OFV), parameter precision, shrinkage 
values, and visual inspection of the corresponding goodness-
of fit plots. A shrinkage value below 20% was considered 
acceptable [31].

Covariate analysis

Once the base model was selected, covariates were tested 
for their influence on pharmacokinetic parameters. The 
covariates tested were age, sex, height, body weight, body 
surface area (BSA), disease stage, hematocrit, serum creati-
nine (SCR), blood urea nitrogen (BUN), creatinine clear-
ance (CrCL), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), albumin and SNPs of FPGS, GGH, 
SLCO1B1, ABCB1, and MTHFR. CrCL was estimated using 
the Chronic Kidney Disease Epidemiology Collaboration 
2009Scr (CKD-EPI2009Scr) equation [32].

The influence of the continuous covariate (CO) of each 
patient was modeled using the following linear (Eq. 5), 
power (Eq. 6), and exponential (Eq. 7) equations:

where Pi is the value of P for the ith individual, TV(P) is 
the typical value of parameter P,  COi is the covariate of the 
ith individual,  COmedian is the median value of the covariate, 
and θ is the coefficient term to be estimated.

The effect of categorical covariates on parameter P was 
tested according to (Eq. 8), which uses sex as an example.

The influence of the SNPs on parameter P was evaluated 
by additive, recessive, and dominant genetic models using 
the following equation:

The SNPs were classified as homozygous wild-type (wt), 
heterozygous (het), and homozygous variant (var) geno-
types. For the additive model, geno = 0, 1 or 2 for the wt, 
het, and var genotypes, respectively. For the recessive model, 
geno = 0 for both the wt and het genotypes, and geno = 1 for 
the var genotype. For the dominant model, geno = 0 for the 
wt genotype, and geno = 1 for both het and var genotypes. 
In addition, θ is the estimated covariate effect.

(5)Pi = TV(P) + � ×
(

COi∕COmedian

)

(6)Pi = TV(P) ×
(

COi∕COmedian

)�

(7)Pi = TV(P) × e(�×COi∕COmedian),

(8)
P
i
= TV(P)sex = male

P
i
= TV(P) × �sex = female

(9)Pi = TV(P) + � × geno

A forward inclusion and backward elimination approach 
was used to evaluate the statistical significance of relevant 
covariates. Covariates that decreased the OFV by more than 
3.84 (p < 0.05) were added to the full model. Backward elim-
ination was then performed with a stricter statistical signifi-
cance of p < 0.01 (OFV > 6.64). An additional criterion for 
the inclusion of covariates in the final model was that the 
impacts of the covariates be biologically reasonable.

Model validation

The goodness of fit of the final model was evaluated by 
checking the plots of the observed concentrations versus 
the population-or individual predicted concentrations and 
the conditional-weighted residuals versus the population-
predicted concentrations or time. Two procedures were used 
to evaluate the stability and predictive ability of the final 
model. First, a bootstrap resampling method was applied 
[33]. One thousand bootstrap datasets were generated by 
sampling randomly from the original dataset with replace-
ment, and the medians of the parameters of the bootstrap 
dataset were then compared to the estimates of the original 
dataset. The model was further validated by the prediction-
corrected visual predictive check (PC-VPC) based on 1000 
simulated datasets [34]. The median and 95% confidence 
intervals (CI) of the simulated predictions were compared 
to the observed data.

Model application

The changes in the percentages of patients with renal dys-
function who had MTX concentrations below 0.2 µmol/L at 
72 h were analyzed using six scenarios based on the admin-
istration of 1, 2, and 3 g/m2 to patients with the same BSA 
(1.65 m2) but different renal functions (CrCL = 60 or 90 ml/
min/1.73 m2). Plasma MTX concentration–time profiles 
were simulated for 1000 hypothetical patients in each sce-
nario based on the final population PK model.

New sampling strategy

To identify suitable sampling strategies for forecasting the 
concentration at 72 h, the impact of prior observed concen-
trations on model predictability was assessed by maximum 
a posteriori Bayesian forecasting using a validation data-
set. The individual prediction (IPRED) of the concentra-
tion at 72 h was estimated based on one prior observation 
(MTX concentration at 24, 36, 42 and 48 h, respectively) 
and two prior observations (MTX concentrations at 24–36 h, 
24–42 h, 24–48 h, 36–42 h and 36–48 h). The comparison 
of the observed concentration to that estimated using the 
Bayesian approach at 72 h was denoted by the individual 
prediction error [IPE%]. The median individual prediction 



885Cancer Chemotherapy and Pharmacology (2020) 85:881–897 

1 3

error (MPE%), the root median squared relative individual 
prediction error (RMSE%), the percentage of |IPE|% within 
20% (IF20) and IF30 were used to evaluate the accuracy 
and precision of the predictability with different prior 
information.

Results

Patient characteristics

A total of 852 MTX concentrations from 91 patients with 
NHL were available for model building. Of the patients, 
70.3% were males, and 12.1% were older than 65 years. 
Twenty-one of these patients had renal dysfunction 
(CrCL < 90 mL/min/1.73 m2). Eighteen patients with 196 
observations were included in the validation dataset. The 
demographic and clinical characteristics of the patients 
included in the modeling and validation datasets are pre-
sented in Table 1.

Genotyping

Six SNPs in three genes encoding enzymes of the folate meta-
bolic pathway (FPGS, GGH, and MTHFR) and three SNPs 
in two MTX transporter genes (SLCO1B1 and ABCB1) were 

analyzed. All genotype groups were in Hardy–Weinberg equi-
librium. The genotypes of the targeted SNPs and the associated 
Hardy–Weinberg equilibrium results are shown in Table 2.

Base model

The data were best described by a two-compartment model 
according to the OFV, AIC, BIC, shrinkage values, and diag-
nostic plots. The inclusion of the IIV on the clearance (CL), 
the intercompartmental clearance (Q), and the volume of the 
central compartment (V1) significantly improved the model, 
and the OFV decreased further after the introduction of the 
IOV on the CL. The residual variability was described by a 
proportional error model.

Covariate analysis

Covariate analysis performed by forward inclusion into the 
base model indicated that the CL was affected by CrCL 
(ΔOFV = 17.1, p < 0.001). After inclusion of the CrCL on 
the CL, only the BSA could be added on the Q. After back-
ward exclusion, the final model that included the effect of the 
CrCL on the CL and that of the BSA on the Q was obtained 
(ΔOFV = 24.766, p < 0.001).

None of the genotypes exerted a significant effect on MTX 
CL or V1, and the relationship among the CL, V1 and the 
target SNPs is shown in Fig. 1.

The final PK model for MTX in Chinese adult patients with 
NHL was as follows:

(10)CL
(

L

h

)

= 6.03 ×
(

CrCL

115.1

)0.414

Table 1  Patient characteristics

Characteristic Median (range) or N

Modeling dataset Validation dataset

Age (years) 48 (18–73) 42 (18–68)
Sex (male/female) 64/27 12/6
Height (cm) 164 (149–183) 160 (147–180)
Body weight (kg) 61 (44–90) 55.5 (36.5–78)
Body surface area  (m2) 1.65 (1.28–2.06) 1.61 (1.35–1.98)
Pathology
 Diffuse large B-cell lym-

phoma
54 10

 Burkitt’s lymphoma 7 2
 T-lymphoblastic lymphoma 11 3
 NK/T-cell lymphoma 19 3
 Disease stage (I–II/III–IV) 42/49 8/10
 Hematocrit (%) 35.55 (16–48) 34.2 (23.3–41.6)
 Serum creatinine (µmol/L) 72 (32–113) 68 (40–108)
 Blood urea nitrogen 

(mmol/L)
4.28 (1.63–9.27) 4.35 (2.78–8.48)

 CrCL (mL/min/1.73 m2) 115.1 (60–153.4) 108.3 (70.2–140.5)
 Alanine transaminase 

(IU/L)
20 (2–110) 23.5 (8–107)

 Aspartate transaminase 
(IU/L)

21 (11–72) 19.5 (11–77)

 Albumin (g/L) 37.9 (21.5–50) 37 (20.7–46)

Table 2  Genotype of the targeted SNPs

wt homozygous wild-type genotype, het heterozygous variant geno-
type, var homozygous variant genotype
*Hardy–Weinberg equilibrium

Gene Rs no Genotype frequency (n/%) p*

wt het var

FPGS rs10106 47 (51.65) 35 (38.46) 9 (9.89) 0.515
GGH rs719235 70 (76.92) 19 (20.88) 2 (2.20) 0.604

rs10464903 35 (38.46) 44 (48.35) 12 (13.19) 0.753
rs12681874 39 (42.86) 41 (45.05) 11 (12.09) 0.964

SLCO1B1 rs4149056 75 (82.42) 14 (15.38) 2 (2.20) 0.192
rs11045879 27 (29.67) 48 (52.75) 16 (17.58) 0.501

ABCB1 rs1045642 41 (45.05) 38 (41.76) 12 (13.19) 0.502
MTHFR rs1801131 59 (64.84) 30 (32.97) 2 (2.19) 0.417

rs1801133 52 (57.14) 31(34.07) 8 (8.79) 0.291
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Model validation

The goodness-of-fit plots of the observations versus popula-
tion and individual predictions obtained with the final model 
were densely distributed around the line of identity, and the 
conditional-weighted residuals were normally distributed, 
which indicated that the model adequately described the 
observed concentrations (Fig. 2).

(11)Q
(

L

h

)

= 0.074 ×
(

BSA

1.65

)1.43 The bootstrap analysis was successful in 86% of the 
1000 runs, and the median parameter values as well as the 
2.5% and 97.5% percentiles agreed with the final model 
estimations and errors, which indicated the stability of the 
final model (Table 3).

The PC-VPC, which exhibited an acceptable overlap of 
the 5th,  50th, and 95th percentiles of the observed data and 
the 95% CI of the corresponding simulations indicated the 
good predictive performance of the final model (Fig. 3).

Fig. 1  Relationship among CL, V1 and the target SNPs
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Model application

The population medians of the simulated plasma concen-
tration-versus-time profiles are shown in Fig. 4. The per-
centage of patients with concentrations below 0.2 µmol/L 
at 72 h was dependent on the CrCL and related to the dose.

The percentage decreased from 65.6 to 42.6% when 
the CrCL decreased from 90 to 60 ml/min/1.73 m2 with 
the scheduled dosing of 3 g/m2, and the same trend was 
obtained with dose regimens of 1 and 2 g/m2.

New sampling strategy

Bayesian forecasting demonstrated that prior information 
could improve the prediction accuracy for the concentration 
at 72 h. Among the prior information groups, the one that 
included the MTX concentration at 36 h provided the best 
estimation of the concentration at 72 h, whereas prior infor-
mation of the MTX concentration at 24 and 42 h provided 
the best estimation among all the tested groups (MPE% 
− 3.47%, RMSE% 12.76%, IF20 = 66.67%, IF30 = 80.56%). 

Fig. 1  (continued)
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Boxplots of the individual prediction errors obtained with 
different prior information are presented in Fig. 5.

Discussion

This study provides the first reported PPK model of MTX 
in Chinese adult patients with NHL that involves genetic 
factors as covariate effects. Our results show that the CrCL 
significantly influenced the CL and that the BSA was asso-
ciated with the Q, but none of the target SNPs exerted a 
significant effect on the CL or V1.

Growing evidence suggests that polymorphisms in genes 
encoding transporters or enzymes might partly account for 
the MTX-PK variability. A study of European children and 
adolescents with lymphoblastic leukemia and malignant 
lymphoma screened ABCB1 rs1045642, MTHFR rs1801131, 
and MTHFR rs1801133 and found that only MTHFR 
rs1801133 exhibited a significant effect on the MTX phar-
macokinetics. The MTX CL in patients homozygous for the 
variant allele of MTHFR rs1801133 was 26% lower than 
that in homozygous wild-type individuals [21]. However, 
Kim et  al. [22] found a significant association between 
ABCB1 rs1045642, but not MTHFR rs1801133 and the MTX 
CL. Their study included 20 Korean patients treated with 

Fig. 1  (continued)
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low-dose MTX (10–15 mg/kg) after hematopoietic stem cell 
transplantation.

A large cohort and genome-wide association study 
showed that the SLCO1B1 genotypes were significant pre-
dictors of the AUC 0–48 h of MTX and significantly associ-
ated with the  C24 h and clearance of MTX [11]. Although 
OATP1B1 is not expressed in the kidney, SNPs of SLCO1B1 
might interfere with renal transporters responsible for MTX 
elimination in urine by affecting the accumulation of endog-
enous metabolites in blood, which are subsequently excreted 
in urine [35]. Gabrielle et al. [23] evaluated the influence of 
54 SNPs located in the SLCO1B1, ABCB1, ABCC1, ABCC2, 
ABCC3, ABCC4, ABCG2, SLC19A1, and UGT1A1 genes 

on the MTX PPK model for 187 osteosarcoma patients; in 
the patient cohort, SLCO1B1the. Woillard et al. [36] devel-
oped a three-parameter time-dependent MTX PPK model 
that accounted for the nonlinearity in the clearance using 
Pmetrics and found that the time-dependent model might be 
better than a previously published two-compartment model 
developed using NONMEM.

In the present study, we analyzed nine SNPs in FPGS, 
GGH, SLCO1B1, ABCB1, and MTHFR as covariates, and 
none of the genotypes exerted a significant effect on the 
MTX pharmacokinetic properties. The main MTX elimina-
tion route might vary among treatment protocols used for 
different types of cancer [23], which might partly account for 

Fig. 1  (continued)
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the above-mentioned inconformity. Furthermore, the present 
study might not have sufficient power to detect a significant 
association between the targeted SNPs and the MTX phar-
macokinetic properties.

In our final PPK model, the typical values of CL 
(6.03 L/h) and V1 (20.7 L) were comparable to the values 
reported by Faltaos et al. [37] (CL, 7.1 L/h; V1, 25.1 L), 
Kotnik et al. [21] (CL, 7.43 L/h; V1, 16.7 L), and Mei et al. 
[38] (CL, 6.67 L/h; V1, 24.5 L).

Some studies have reported that the MTX CL is influ-
enced by the CrCL [29, 39, 40]. Our study showed that 
incorporation of the CrCL for prediction of the MTX CL 
led to a decrease in the OFV by 17.1 points (p < 0.001). 

We also found that a decrease in CrCL corresponded to a 
lower body weight-normalized CL in both men and women 
(Fig. 6). The significant influence of CrCL on MTX CL 
could be explained by the fact that renal excretion is the 
predominant MTX elimination route.

We found an IOV on CL, which suggested that elimina-
tion parameters might vary across MTX courses. The IOV 
on CL was estimated to equal 15.4%, in agreement with pre-
vious PPK reports (14.8% and 16.6%, respectively) [21, 23].

We also found that BSA was a significant covariate in Q, 
which was similar to the results obtained in two previous 
studies [38, 39]. Although both body weight and hemato-
crit exerted a significant effect on methotrexate CL and V1 

Fig. 1  (continued)
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in some published models [41–43], no significant results 
were observed in the present study, which was similar to the 
results reported by Mei et al. [38].

Patients with high doses and renal dysfunction are at 
higher risk of delayed elimination. The time it took for the 
MTX concentration to decrease below the rescue threshold 
(0.2 µmol/L) exhibited a wide variability between groups 
with different renal functions or different doses, as shown in 
Fig. 4, which suggests that MTX monitoring should remain 
an important strategy for providing information regarding 
the elimination of MTX.

A study performed in children with ALL showed that 
Bayesian estimation using a one-sample (48 h) schedule 

yielded better results for predicting delayed elimination to 
reach a concentration less than 0.2 µmol/L compared with a 
two-sample schedule (24 and 48 h) [44]. However, Christine 
et al. [45] tested a one-sample schedule (each of the avail-
able blood samples) and a two-sample schedule (five combi-
nations) and demonstrated that two sampling times (24 and 
48 h) allowed more precise and accurate determination of 
individual pharmacokinetic parameters. In the present study, 
the two-sample schedule (24 and 42 h) showed the most 
accurate and precise prediction of the concentration at 72 h.

This study has some limitations. First, the sample 
size was relatively small (852 observations from 91 

Fig. 1  (continued)
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patients). Second, some important SNPs, such as SLC19A1 
rs1051266, ABCB1 rs1128503, ABCC1 rs28364006, 
ABCC2 rs3740065, ABCG2 rs2231142, and ABCG2 
rs13120400, were not identified in this study but will be 
taken into consideration in our future studies. Third, the 
present study relied on routine MTX monitoring data, 
which did not include concentrations of MTX in urine or 
concentrations of MTX metabolites.

Conclusion

An MTX population pharmacokinetic model for Chinese 
adult patients with NHL was developed and validated. 
Lower CrCL resulted in lower MTX CL, and the BSA 
was positively correlated with Q. It is important to assess 
the renal function in each patient prior to the initiation of 
chemotherapy, and to pay attention to the MTX accumu-
lations in patients with a high BSA. None of the targeted 

Fig. 2  Goodness-of-fit plots of the final model. a Observed concen-
tration vs. individual-predicted concentration, b observed concentra-
tion vs. population-predicted concentration (PRED), c conditional-

weighted residuals (CWRES) vs. PRED, and d CWRES vs. time after 
the last dose. The solid lines in a and b are identity lines, and the 
solid lines in c and d are zero lines. The Y-axis is on a log scale
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SNPs in FPGS, GGH SLCO1B1 ABCB1 or MTHFR 
exerted a significant effect on the MTX pharmacokinetic 
properties. Model simulation quantified the differences 

in reaching the threshold at 72 h between patients with 
different renal functions and doses. A schedule involving 
two samples, at 24 and 42 h, might be able to forecast 

Table 3  Population 
pharmacokinetic parameters of 
MTX

RSE relative standard error

Parameter Symbol Final model estimate 
(RSE%)

Bootstrap median 2.5–97.5% 
percentile 
range

CL (L/h) θ1 6.03 (9) 5.71 5.15–6.91
V1 (L) θ2 20.70 (10) 19.68 16.94–24.48
Q (L/h) θ3 0.074 (18) 0.069 0.050–0.098
V2 (L) θ4 3.76 (25) 3.61 1.31–6.22
CrCL on CL θ5 0.414 (23) 0.396 0.212–0.615
BSA on Q θ6 1.43 (36) 1.49 0.269–2.58
Interindividual variability (%)
 CL η1 51.6 (14) 49.7 37.0–62.9
 V1 η2 48.3 (19) 44.3 22.8–64.4
 Q η3 65.6 (13) 62.3 49.7–78.3

Interoccasion variability (%)
 CL k 15.4 (12) 15.0 11.0–19.0
 Residual error ε 0.319 (5) 0.321 0.285–0.352
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Fig. 3  Prediction-corrected visual predictive check of the final model. The dots indicate the observed concentrations. The lines represent the 5th, 
50th, and 95th percentiles of the observed data. The shaded areas are the 95% confidence intervals for the same percentiles of the simulations
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Fig. 4  Simulated plasma profiles of MTX under conditions involving different renal functions and dosages
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Fig. 5  Box plots of the individual prediction errors in different scenarios



895Cancer Chemotherapy and Pharmacology (2020) 85:881–897 

1 3

delayed elimination, but this finding needs to be validated 
in a prospective study.
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