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Abstract
Purpose This study aimed to develop a population pharmacokinetic (PPK) model to investigate the impact of GSTA1, GSTP1, 
and GSTM1 genotypes on busulfan pharmacokinetic (PK) variability in Chinese adult patients.
Methods Forty-three and 19 adult patients who underwent hematopoietic stem cell transplantation (HSCT) were enrolled for 
modeling group and validation group, respectively. All patients received twice-daily intravenous busulfan as part of condi-
tioning regimen before HSCT. The PPK model was developed by nonlinear mixed-effect modeling. Covariates investigated 
were age, sex, actual body weight, body surface area, diagnoses, hepatic function markers, GST genotypes and conditioning 
regimen.
Results A total of 488 busulfan concentrations from 43 patients were obtained for the PPK model. The PK of intravenous 
busulfan was described by one-compartment model with first-order elimination with estimated clearance (CL) of 14.2 L/h 
and volume of distribution of 64.1 L. Inclusion of GSTA1 genotype as a covariate accounted for 1.1% of the inter-individual 
variability of busulfan CL (from 17.8% in the basic model to 16.7% in the final model). The accuracy and applicability of 
the final model were externally validated in the independent group. The difference of busulfan PK between Chinese patients 
and Caucasian patients existed because of the rarity of haplotype *B in Chinese population.
Conclusions Although the GSTA1 genotype-based PPK model of intravenous busulfan was successfully developed and 
externally validated, the GSTA1 genotype was not considered to be clinically relevant to busulfan CL. We did not suggest 
the guidance of GSTA1 genotype on initial busulfan dose in Chinese adult patients.
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Introduction

High-dose busulfan is commonly used as the cornerstone 
of chemotherapy regimen prior to hematopoietic stem cell 
transplantation (HSCT) [1]. Targeted busulfan is necessary 
because of the definite dosage–response relationship and 
narrow therapeutic index: subtherapeutic busulfan systemic 
exposure, expressed as area under the curve (AUC) < 900 
μmol × min/L, results in relapse or graft failure, while 
supratherapeutic AUC > 1500 μmol × min/L, is associated 
with fatal toxicities, such as hepatic veno-occlusive disease 
(VOD) [2, 3]. Since very few busulfan AUCs achieve the 
therapeutic range after their initial standard doses [4, 5], 
an individualized busulfan initial dose is warranted for the 
targeted AUCs to improve clinical efficiency.
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Noteworthily, studies [6–8] showed that glutathione 
S-transferase (GST) genotypes played a positive role in 
the individualization of busulfan dose for optimal clinical 
outcomes. GSTs, which are the enzymatic superfamily of 
detoxification, catalyze the conjugation of busulfan with 
glutathione (GSH) in liver [9]. Of all, GSTA1 is the pre-
dominant GST isoenzyme of busulfan metabolism, with 
minor contributions by GSTM1 and GSTP1 in vitro studies 
[10]. GST polymorphisms, gene deletion or single nucleotide 
polymorphism (SNP), cause a decreased metabolic activity 
of busulfan in patients with genetic variants [11]. In pediat-
ric patients, Nava et al. [6] showed that GSTA1 diplotypes 
linked to poor busulfan metabolism and associated with 
AUCs within the toxic range. Consistently, GSTA1 diplo-
types influenced the prediction errors of the weight- and 
age-based methods which are used to calculate the initial 
doses of busulfan. However, busulfan initial dosing guided 
by GST genotypes is not recommended in clinical practice 
due to inconsistent effect of the genetic polymorphism on the 
pharmacokinetic, efficacy, or toxicity of busulfan [12]. Stud-
ies about the influence of GST polymorphisms on busulfan 
pharmacokinetic (PK) are scant in Asian patients. The PK 
study of Yin et al. [8] demonstrated that GSTA1 and GSTP1 
polymorphisms are significantly associated with busulfan 
exposure in Chinese adult patients. In addition, both Yin 
et al. [8] and our previous study [13] showed low busulfan 
exposure after the first dose in the Chinese population. We 
found that about half of the first AUCs were below the thera-
peutic range. These are a necessity to personalize the initial 
dose of busulfan to improve clinical outcome in Chinese 
patients.

 This study aimed to quantify the impact of GSTA1, 
GSTP1, and GSTM1 genotypes on busulfan PK variabil-
ity by population pharmacokinetic (PPK) analysis, and to 
clarify the role of genetic factors on the individualization of 
busulfan initial dose in Chinese adult patients undergoing 
HSCT.

Materials and methods

Patients

Forty-three adult patients who underwent HSCT for malig-
nant diseases were enrolled in the modeling group at the 
department of Blood Marrow transplantation of Ruijin Hos-
pital, Shanghai, China, from May 2011 to October 2014. 
Nineteen adult patients were enrolled in the validation group 
from March 2017 to August 2017. All procedures performed 
in this study were approved by the Ruijin Hospital Research 
Ethics Committee and in accordance with the 1964 Hel-
sinki Declaration. Before the study, informed consent was 
obtained from the enrolled patients.

All patients received intravenous busulfan (Busulfex; 
Kyowa Hakko Kirin Co., Ltd, Tokyo, Japan) at 1.6 mg/
kg twice daily. Busulfan was given as part of the BUCY, 
BUFLU, and CBV regimens. For BUCY regimen, busulfan 
was given over 2 h for 4 days on days − 8 to − 5 followed by 
intravenous cyclophosphamide (CY) 60 mg/kg once daily on 
days − 3 and − 2. For BUFLU regimen, intravenous fludara-
bine (FLU) 30 mg/m2 was given once daily with busulfan 
on day − 6 and − 3. The CBV regimen in validation group 
included 3 days of busulfan from day − 8 to − 6, VP16 at 
400 mg/m2 daily on day − 5 and − 4 and CY 50 mg/kg daily 
on day − 3 and − 2. Then, gemcitabine was given at 75 mg/
m2 on day − 9 and at 10 mg/m2 on day − 5, respectively.

Blood sampling and analysis

Blood samples were collected before busulfan infusion and 
at 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, 4 h, 5 h, 6 h, 8 h, and 10 h 
after starting the first dosing. All the blood samples were 
drawn from a peripheral vein in the arm opposite to the cen-
tral line where busulfan was infused. 3 mL of whole blood 
sample was collected in EDTA anticoagulant glass tubes. 
1 ml of whole blood for DNA extraction was taken from 
the samples obtained before busulfan infusion. The residual 
whole blood was centrifuged at 3000 rpm for 10 min at 4 °C 
for plasma separation. Busulfan plasma concentrations were 
analyzed using a validated analytical method [13] by liq-
uid chromatography–electrospray–tandem mass spectrom-
etry. High-performance liquid chromatography separations 
were performed on an Agilent Eclipse XDB-C18 analytical 
column (100 mm × 2.1 mm, 3.5 μm) with a column tem-
perature of 40 °C. The plasma was eluted using a mobile 
phase composed of 2 mmol/L ammonium formate solution 
(0.1% formic acid)-acetonitrile (60:40, V/V) at a flow rate 
of 0.2 mL/min. Electrospray ionization mass spectrom-
etry was performed in multiple reaction monitoring mode 
with the target ions m/z 264.2 → 151.1 (busulfan) and m/z 
278.3 → 69.2. The linearity range of busulfan standard curve 
was 25–2500 ng/mL (R = 0.999). The intraday and inter-day 
accuracies of busulfan quality control samples were from 
96.4 to 109.2% and from 99.2 to 111.2%, respectively. The 
extraction recovery of busulfan was from 102.0 to 113.7%.

DNA extraction and glutathione S‑transferases 
genotyping

The whole blood samples for DNA extraction were obtained 
before HSCT. DNA was extracted from peripheral blood 
lymphocytes by TIANamp Blood DNA Kit (Tiangen Bio-
tech Co., Ltd, Beijing, China). The following genetic vari-
ants were determined: GSTA1 -69 C/T (rs3957357), GSTP1 
313A/G (rs1695), GSTM1 (null allele). The GSTA1 haplo-
type (GSTA1*A and GSTA1*B) was determined by the -69 
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C/T variation in the prompter region of GSTA1. This SNP 
was previously shown in complete linkage disequilibrium 
with -631T/G, -567T/G, and -52G/A [14]. The SNPs in 
the GSTA1 and GSTP1 genes were genotyped by SNaP-
shot assay according to the manufacturer’s protocols (ABI 
SNaPshot Multiplex kit, CA, USA). The promoter region 
of the GSTA1 gene was amplified with the forward primer 
GSTA1-F (5′-GCT CGA CAA CTG AAT TCC AGGTC-3′) 
and the reverse primer GSTA1-R (5′-CCC TAG TCT TTG 
CAC CCA ACT CAT -3′). The promoter region of the GSTP1 
gene was amplified with the forward primer GSTP1-F (5′-
CTC ATC CTT CCA CGC ACA TCCT-3′) and the reverse 
primer GSTP1-R (5′-TTT CTT TGT TCA GCC CCC AGTG-
3′). Analysis was carried out using Genemapper software 
(version 4.1; Life Technologies). The GSTM1 gene was PCR 
amplified (215 bp) together with albumin gene (268 bp) as 
an internal control [15]. The primer pairs were as follows: 
GSTM1-F, 5′-GAA CTC CCT GAA AAG CTA AAG C-3′ 
and GSTM1-R, 5′-GTT GGG CTC AAA TAT ACG GTG 
G-3′, which yield a 215 bp fragment and β-actin-F, 5′- CAA 
CTT CAT  CCA CGT TCA CC-3′ and β-actin-R, 5′- GAA 
GAG CCA AGG  ACA GGT AC-3′, which yield a 268 bp 
fragment. PCR products were analyzed on a 2% agarose gel.

Development of a population pharmacokinetic 
model

A PPK model was developed by nonlinear mixed-effect 
modeling using Phoenix NLME software, Version 1.4 
(Pharsight, A Certara Company, USA), according to the best 
practices and guidance [16]. The first-order conditional esti-
mation method with extended least squares method (FOCE 
ELS) was adopted in the whole process to estimate PK 
parameters and their variability.

Structure model

Plasma concentration data were natural logarithm trans-
formed before PPK modeling. Initially, a one-compartment 
model with first-order elimination was used as the base 
model, according to our previous study [13]. The model was 
parameterized in terms of total body clearance (CL) and 
volume of distribution (Vd). The inter-individual variability 
of the PK parameters was estimated using an exponential 
error model, where Pi represents the individual parameter 
estimate, P is the typical parameter estimate, and ηi is the 
unexplained inter-individual variability, which is assumed 
to follow a normal distribution with a mean of 0 and vari-
ance ω2:

Pi = P × e
�i.

A residual variability (additive, proportional, exponen-
tial and mixed random intra-individual residual error) model 
was explored to account for the intra-individual variability 
according to the log-likelihood (LL) difference between 
models [the improvement of objective function value 
(OFV)].

Covariate analysis

The effects of age, sex, actual body weight, body surface 
area (BSA), diagnoses, hepatic function markers [alanine 
transaminase (ALT), aspartate aminotransferase (AST), 
alkaline phosphatase (ALP), total bilirubin (TBI)], GST 
genotypes, and conditioning regimen on pharmacokinetic 
parameters were investigated as potential covariates . The 
effects of continuous covariates were modeled in a linear or 
nonlinear relationship using the following equations:

where tv (P) is the typical value of P, Pi is the value of P for 
individual, and θ is the estimated effect of the covariate on P.

For categorical covariates, the effect on P was modeled 
using the following equation:

where indicator represents the binary covariate being 
assigned to 0 or 1.

The stepwise covariate modeling and likelihood ratio test 
were used to test the effect of each variable. The selection 
of covariates was initially selected by data visualization 
and biological plausibility. Further screening of potential 
covariates was performed by forward addition (P < 0.05) 
and backward elimination (P < 0.01) based on the changes 
in OFV: any decreases in OFV by more 3.84 and 6.63 (1 
degree of freedom) denote an improved fit at P < 0.05 and 
P < 0.01, respectively. An additional criterion for covariate 
retention was reduction in the inter-individual variability and 
improvement in the parameter estimate precision. Clinical 
significance was also considered for retention of a potential 
covariate.

Model validation

Accuracy and stability of prediction of the final covariate 
model were validated both internally and externally.

Graphical inspection of the final model adopted good-
ness-of-fit plots, including observed concentrations (OBS) 
versus population predicted concentrations (PRED), OBS 

Pi = tv(P) + � × (covariate∕typical value)

Pi = tv(P) + � × (covariate − typical value)

Pi = tv(P) × (covariate∕typical value)�

Pi = tv(P)Indicator = 0

Pi = tv(P) × �Indicator = 1
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versus individual predicted concentrations (IPRED), con-
ditional weighted residuals (CWRES) versus PRED, and 
CWRES versus time after the first dose. The CWRES results 
were summarized graphically using the quantile–quantile 
(Q–Q) plot and the histogram. Bootstrap analysis was per-
formed for internal validation of model. 1000 resamples 
from the original data were performed. Mean values and 
95% confidence interval (CI) of bootstrap parameters were 
compared with estimates of the final model. The final model 
was also evaluated graphically and statistically by visual pre-
dictive checks (VPC). The final model parameters were used 
to simulate a data set for 200 replicates and the 5th and 95th 
CIs of simulated values were processed for VPC.

To validate the developed model externally, the model 
was further evaluated in an independent group of adult 
patients undergoing HSCT. The individual PK parameters 
were predicted by Bayesian estimation (MAXEVAL = 0 in 
the estimation step, where MAXEVAL is the maximum 
number of model evaluations that can be used) with Phoenix 
NLME using the parameters of the final model. The predic-
tive performance was evaluated by calculating the prediction 
error (PE) and absolute prediction error (APE) using the 
following equations:

Statistical analysis

The continuous variables were represented as mean with 
standard deviation or 95% CI. Statistical significance of the 
difference between groups was calculated by Chi square test. 
P values < 0.05 were considered significant.

Results

Patients’ characteristics and GST genetic frequencies

The mean age of patients was 31.5 years, and 74.4% of them 
were male. The mean weight was 64.3 kg in the modeling 
group (n = 43). There were 19 enrolled patients in the val-
idation group. The age, sex, and weight were not signifi-
cantly different (P > 0.05) between the validation group and 
modeling group. Patients’ characteristics are presented in 
Table 1. Most of the enrolled patients received allogenous 
HSCT from a human leukocyte antigen-matched donor 
using peripheral blood stem cells for their hematological 
malignancies. Five patients in the validation group received 
autologous HSCT.

The GST genetic frequencies are shown in Table 2. 10 of 
43 (23.2%) patients were heterozygous genotype of GSTA1 

PE% = (Bayesian simulated − Observed)∕ Observed

APE% = |Bayesian simulated − Observed|∕ Observed

(GSTA1*A*B), and only 1 patient (2.4%) was homozygous 
GSTA1 (GSTA1*B*B). Genetic frequency of GST A1*B hap-
lotype was 14.0%. Both GSTA1 and GSTP1 genetic frequen-
cies of patients in modeling group were in Hardy–Weinberg 
equilibrium (HWE). 2 of the 19 patients in validation group 
were heterozygous and homozygous GSTA1*B, respectively. 
The GSTA1 genetic frequency was not in HWE.

Structure model

A total of 488 busulfan concentrations from 43 patients 
were obtained for model development. A one-compartment 
model with first-order elimination best described the PK of 
intravenous busulfan. The intra-individual variability of the 
plasma concentration was estimated using the proportional 
error model finally. The estimated CL and Vd of basic model 
were 14.2L/h and 64.1L, respectively.

Covariate analysis

Age, actual body weight, body surface area, and hepatic 
function markers (ALT, AST, ALP, TBI) were tested as 
continuous covariates. Sex, diagnoses, GST genotypes, and 
conditioning regimen were tested as categorical covariates, 
while non-Hodgkin’s lymphoma, myelodysplastic syn-
dromes, and hybrid acute leukemia patients were analyzed 
together with acute lymphoblastic leukemia patients relative 
to the patients with acute myelocytic leukemia and chronic 
myelocytic leukemia due to their small number. The patients 
with GSTA1*B*B or GSTP1*G*G were excluded to avoid 
statistical deviation.

GSTA1 genotype was a covariate on busulfan CL in a sta-
tistically significant manner. OFV decreased by 15.64 from 
4942.75 (basic model) to 4927.11 (final model), adding the 
covariate of GSTA1 genotype. The individualized CL was 
estimated by the following equation:

where GGSTA1= 1 for GSTA1*A*B, 0 for GSTA1*A*A. Pop-
ulation-estimated CL of the final model was 15.0 L/h for a 
typical patient with GSTA1*A*A wild type. The inter-indi-
vidual variability of CL declined from 17.8 to 16.8%, after 
inclusion of GSTA1 genotype as a covariate. The estimated 
PPK parameters and bootstrap results are listed in Table 3.

Model evaluation

Goodness-of-fit plots of the final model in Fig. 1 showed that 
the PRED and IPRED were in reasonable agreement with 
OBS. Distribution of CWRES versus predicted concentra-
tion and time after dose were shown to be close to zero and 
uniformly distributed within the range (− 2 to 2) in the final 

CL = tv CL ×
(
1 + CLpart × G

GSTA1

)
× e

�ij,
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model. Additionally, the CWRES distribution and histogram 
indicated that the assumption of normal distribution of the 
differences between PRED and OBS was acceptable, as 
shown in Figure S1. The robustness of the final model was 
internally validated by the bootstrap results. The population-
estimated parameters were similar to the simulation values 
and within 95% CI from bootstrap analysis, as shown in 
Table 3. The VPC in Fig. 2 showed that the observed values 
were almost all positioned within the 5th and 95th CIs of 
simulated values. The results demonstrated the accuracy of 
the final model.

Busulfan concentrations from 19 patients in the exter-
nal validation group were used to validate the final GSTA1 
genotype-based model. The predictive performance of the 
final PPK model was evaluated by the comparison between 
the observed values  (CLobs and AUC obs) and the simulated 
values  (CLsim and AUC sim),as shown in Fig. 3. The Bayesian 
simulated PK parameters highly correlated with the observed 
data  (r2 = 0.98 for the  CLobs with  CLsim and r2 = 0.84 for the 
AUC obs with AUC sim). The mean PE (MPE,  %) and mean 
APE (MAPE,  %) of the  CLsim were 4.04% (95%CI: 4.02% 
to 4.06%) and 4.39% (95% CI: 4.57% to 4.51%). The MPE 

Table 1  Characteristics of 
patients in the modeling group 
and validation groups

ALL acute lymphoblastic leukemia, Allo allogenous, AML acute myelocytic leukemia, ATG  antithymocyte 
globulin, Auo autologous, BMI body mass index according to National Heart, Lung, and Blood Institute 
weight categories, CLL chronic lymphoblastic leukemia, CML chronic myelocytic leukemia, HAL hybrid 
acute leukemia, HL Hodgkin’s lymphoma, HSCT hematopoietic stem cell transplantation, MDS myelod-
ysplastic syndromes, NHL non-Hodgkin’s lymphoma, MS matched sibling, MUD matched unrelated donor

Characteristic Modeling group (n = 43) Validation group (n = 19)

Age, years, mean (SD) 31.5 (10.6) 35.4 (10.9)
Sex (male), n % 32 (74.4) 12 (63.2)
Weight, kg, mean (SD) 64.3 (13.1) 65.5 (7.31)
Height, cm, mean (SD) 171.8 (13.1) 169.1 (8.07)
BSA,  m2, mean (SD) 1.80 (0.274) 1.73 (0.147)
BMI classification (kg/m2), n
Normal (range 18.5–24.9) 33 15
Overweight (range 25.0–29.9) 10 4
Diagnosis, n %
 AML 19 (44.2) AML 3 (15.8)
 ALL 12 (27.9) ALL 3 (15.8)
 CML 4 (9.3) CML 1 (5.3)
 NHL 5 (11.6) CLL 1 (5.3)
 MDS 2 (4.6) NHL 5 (26.3)
 HAL 1 (2.4) MDS 4 (21.0)

HL 2 (10.5)
Type of donor, n %
 MS-allo-HSCT 30 MS-allo-HSCT 11
 MUD-allo-HSCT 13 MUD-allo-HSCT 3

Auto-HSCT 5
Conditioning regimen, n %
 Busulfan-cyclophosphamide 22 (51.2) CBV + gemcitabine 5 (26.3)
 Busulfan-fludarabine-ATG 21 (48.8) Busulfan-fludarabine-ATG 14 (73.7)

Table 2  GST genetic frequencies of modeling group and validation 
group

*P = 0.005 from Hardy–Weinberg equilibrium test

SNP Genotype Frequency (%)

Modeling group (n = 43)
 GSTA1-69C/T (rs3957357) CC 32 (74.4%)

CT 10 (23.2%)
TT 1 (2.4%)

 GSTP1313A/G (rs1695) AA 30 (69.8%)
AG 12 (27.9%)
GG 1 (2.3%)

 GSTM1 deletion Positive 23 (53.5%)
Null 20 (46.5%)

Validation group (n = 19)
 GSTA1-69C/T (rs3957357) CC 17 (89.4%)*

CT 1 (5.3%)
TT 1 (5.3%)
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Table 3  Population 
pharmacokinetic parameters 
of intravenous busulfan and 
bootstrap results

Parameter Base model Final model Bootstrap (n = 1000)

Mean 95% CI

Pharmacokinetic parameter
 V (L) 64.1 64.1 64.1 (60.7 to 67.5)
 CL (L/h) 14.2 15.0 15.0 (14.0 to 15.9)
 CLpart − 0.214 − 0.215 (− 0.282 to − 0.127)

Inter-individual variability
 ωV (%) 16.7 14.6 14.5 (14.2 to 14.9)
 ωCL (%) 17.8 16.7 16.7 (15.9 to 17.1)

Residual variability
 Proportional σ (%) − 14.2 − 14.1 − 14.2 (− 16.1 to − 12.1)

Fig. 1  Goodness-of-fit plots of the final model. a Observed concen-
trations versus population predicted concentrations; b observed con-
centrations versus individual predicted concentrations; c conditional 
weighted residuals versus population predicted concentrations; d 

conditional weighted residuals versus time after the first dose. OBS 
means observed concentration; PRED means population predicted 
concentrations; IPRED means individual predicted (IPRED) concen-
trations; CWRES means conditional weighted residuals
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and MAPE of the AUC sim were − 2.55% (95%CI: − 2.58% 
to − 2.52%) and 4.93% (95%CI: 4.92% to 4.94%).

Discussion

In this study, we developed the PPK model of intravenous 
busulfan, incorporating GST A1 genotype, and externally 
validated the accuracy and stability of the model in Chi-
nese adult patients undergoing HSCT. The estimated CL 
of intravenous busulfan was 14.2 L/h (3.64 mL/min per kg) 
and consistent with the CL of 4.02 mL/min per kg in another 
study [8] of Chinese adult patients, higher than 1.9 mL/min 
per kg and 3.34 mL/min per kg in Caucasian patients [17, 

18]. Inclusion of GSTA1 genotype as a covariate accounted 
for 1.1% of the inter-individual variability of busulfan CL 
in the final model.

The fast metabolism of busulfan might relate with the eth-
nic difference of GSTA1 genotype between Chinese patients 
and Caucasian patients. The patients with GST A1*B haplo-
type were the poorer metabolizers with lower CL of busulfan 
compared to those with wild type. The studies of Kusama 
et al. [19] and Kim et al. [20] showed significant impact 
of GST A1 genotype on busulfan CL. Genetic frequency of 
GST A1*B haplotype was 14.0% with 1 patient of homozy-
gous excluded to avoid statistic deviation in our study. The 
distribution was consistent with the rarity of haplotype *B 
in the Asian population (42.9% versus 13.9% in the Cau-
casians and Asians) [21]. GSTA1-69C/T (rs3957357), with 
-631T/G, -567 T/G, and -52 G/A, is located in the promoter 
region of GSTA1 gene. GSTA1-69C/T can adequately iden-
tify GSTA1*B haplotype which showed significant decline 
of GSTA1 protein expression in vitro [22]. Ansari et al. [23] 
further distinguished *B 1b, *B 1a and *B 2 haplotypes 
by − 513 (rs11964968), − 1142 (rs58912740). Then, Nava 
et al. [6] classified *A*B and *B*B diplotypes into normal 
and poor metabolizers of busulfan. Based on this accurate 
GSTA1-genotype classification, the PPK model excellently 
predicted the initial busulfan doses and achieved the target 
AUC in 85.2% of the pediatric patients (95%CI 78.7–91.7%) 
[7]. However, this metabolic classification of busulfan was 
not appropriate for Chinese patients due to the low genetic 
frequencies of above GSTA1*B variants in the Asian popu-
lation [21].

PPK analysis has shown an advantage of quantifying the 
effects of covariates on PK variability to assess the clinical 
relevance of those effects [24]. Our results showed that 
GSTA1 genotype explained a tiny part of inter-individual 
variability from 17.8% of the basic model to 16.7% of the 
final model. The low genetic frequency of GST A1*B may 
lead to minimal influence of GSTA1 genotype and limited 

Fig. 2  The visual predictive check (VPC, n = 1000) of final model. 
The dots represent observed concentrations. The lines represent 
observed concentrations and the shadow represents the 5th and 95th 
percentiles of the simulated values

Fig. 3  GSTA1 genotype-based simulations of CL and AUC in validation group (n = 19). a The box and whisker plot of observed CL and simu-
lated CL. b The box and whisker plot of observed AUC and simulated AUC 
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variability of busulfan CL between Chinese adult patients. 
Additionally, that also might attribute to different GSTA1 
enzymatic activities in patients at different age. Recent 
studies [6, 25, 27] reported that GSTA1 genotype played a 
pivotal role in prediction of initial busulfan doses in pedi-
atric patients. Meanwhile, Abbasi et al. [28] showed that 
GSTA1 did not influence busulfan CL obviously in both 
oral and intravenous administration in adult patients. A 
higher impact of GSTA1 genotype on busulfan CL in pedi-
atric patients could be explained by age-specific GSTA1 
enzymatic  activity [29, 30]. For GSTA1, one of drug-
processing genes in liver, the highest fold increase in the 
mRNA expression was induced by the prototypical ligands 
of xenobiotic-sensing transcription factors during adoles-
cent age. Li et al. [29] highlighted that the drug-processing 
genes regulation was critical to predict drug PK and to 
decrease drug toxicity in pediatric patients. This in vitro 
study demonstrated the importance of GSTA1 genotype to 
recommend the initial busulfan dose and to avoid toxicity 
in children.

We did not find that the other factors, such as GSTP1, 
GSTM1, conditioning regimen, body surface area (BSA), 
and weight, showed a significant impact on busulfan PK. 
Pharmacogenomics data about busulfan PK in different 
populations are summarized in Table 4 [6–8, 19, 20, 25–28, 
31–45]. Of all, GSTM1 null genotype and GSTP1*G diplo-
type were commonly reported to have a significant associa-
tion with busulfan CL [20, 34]. However, Ten Brink et al. 
[39] did not find an association between the two GST geno-
types and busulfan CL. This may be related to their minor 
contribution to busulfan metabolism. For conditioning regi-
men, Yeh et al. [46] reported a greater interdose variability 
of busulfan CL in the targeted busulfan–FLU regimen com-
pared to the targeted busulfan–CY regimen (P = 0.0016). 
The impact of FLU on busulfan CL was not found in the 
study of Perkins et al. [47]. PPK analysis of Wu et al. [48] 
found that BSA significantly influenced the CL and Vd of 
busulfan in Chinese patients (P < 0.001, n = 53). The PPK 
or PK studies of busulfan in Asian patients were scanty and 
limited by small sample size and single center. A large-
scale and multicenter clinical trial was needed to develop 
the busulfan PPK model to validate the influencing factors 
on busulfan PK and to be applicable for more Asian patients.

The GSTA1 genotype-based PPK model of intravenous 
busulfan was successfully developed and externally vali-
dated in Chinese adult patients. However, the influence of 
GSTA1 genotype on busulfan CL is tiny and unlikely to 
be clinically relevant. We did not suggest the guidance of 
GSTA1 genotype on initial busulfan dose in Chinese adult 
patients undergoing HSCT.
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