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Abstract
Cancer caused by fundamental defects in cell cycle regulation leads to uncontrolled growth of cells. In spite of the treatment 
with chemotherapeutic agents of varying nature, multiple resistance mechanisms are identified in cancer cells. Similarly, 
numerous variations, which decrease the metabolism of chemotherapeutics agents and thereby increasing the toxicity of 
anticancer drugs have been identified. 5-Fluorouracil (5-FU) is an anticancer drug widely used to treat many cancers in the 
human body. Its broad targeting range is based upon its capacity to act as a uracil analogue, thereby disrupting RNA and 
DNA synthesis. Dihydropyrimidine dehydrogenase (DPD) is an enzyme majorly involved in the metabolism of pyrimidines 
in the human body and has the same metabolising effect on 5-FU, a pyrimidine analogue. Multiple mutations in the DPD 
gene have been linked to 5-FU toxicity and inadequate dosages. DPD inhibitors have also been used to inhibit excessive 
degradation of 5-FU for meeting appropriate dosage requirements. This article focusses on the role of dihydropyrimidine 
dehydrogenase in the metabolism of the anticancer drug 5-FU and other associated drugs.
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Introduction

Cancer is the abnormal transformation and proliferation 
of cells triggered by underlying genetic anomalies. Onco-
genic cells grow indefinitely and invade other tissues and 
organs leading to cancer. Multiple mechanisms of oncogenic 
activation exist and multiple subtypes of cancers exist [1]. 
Anticancer drugs are a class of drugs that show effect in 
combating malignant cancers by either killing or inhibit-
ing the growth of such cells. Administration of these anti-
cancer drugs is done as single drug therapy or as a mul-
tidrug therapy/combination therapy [1, 2]. 5-Fluorouracil 
is the most commonly used anticancer drug for solid can-
cers. Functioning as a pyrimidine analogue, 5-Fluoroura-
cil acts as an antimetabolite and disrupts RNA and DNA 
synthesis, and thereby combats cancerous cells. It is acti-
vated inside the cells by multiple enzymes and degraded 

by Dihydropyrimidine dehydrogenase (DPD) through the 
pyrimidine degradation pathway. This catabolic activity 
displayed by the enzyme on 5-FU plays a crucial role in 
determining its toxicity and efficiency towards 5-FU-based 
cancer therapies.

5‑Fluorouracil

Cancer cells divide rapidly by utilising cellular metabolites. 
Antimetabolites target this characteristic and act by com-
peting with normal metabolites for the same targets and 
displacing them competitively [3]. 5-Fluorouracil (5-FU), 
one such antimetabolite being used in cancer treatment 
since 1957, is a heterocyclic aromatic pyrimidine analogue 
with a Fluorine atom at the C-5 position of Uracil [4]. Also 
known by its trade name Efudex, or Carac, 5-FU is a key 
anticancer drug used for broad-spectrum antitumor activity 
and is commonly used in the chemotherapeutic treatments 
as a sole remedy for solid tumours such as breast, colorec-
tal, lungs, and head and neck cancers [5]. It interferes with 
DNA synthesis by acting as Uracil analogue and inhibits 
the essential biosynthesis process such as DNA and RNA 
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synthesis by incorporating it into them using the same facili-
tated transport mechanisms as Uracil and gets converted into 
several active metabolites intracellularly [3, 6]. These active 
metabolites disrupt not only RNA synthesis, but also inhibit 
the action of thymidylate synthase. The half-life of 5-FU 
is around 4–5 min after an intravenous bolus infusion [7]. 
The appropriate dosage varies between cases and depend-
ing upon the regimen followed and patient’s clinical status. 
It also lowers the infection-fighting blood cells and aids in 
blood clotting. Hence, administration of any live vaccines 
while using 5-FU increases the chances of getting infected. 
Some of the antimetabolites and other anticancer drugs and 
their mechanism of actions are listed in the Table 1.

Metabolism of 5‑fluorouracil

5-Fluorouracil is metabolised by dihydropyrimidine dehy-
drogenase, which catabolises the drug 5-FU into dihydro-
fluorouracil (DHFU). DPD catabolizes more than 80% of the 
5-FU in the liver mononuclear cells [8]. The activity of DPD 
is widely distributed in a variety of organs, such as the small 
intestinal mucosa, and hence, is termed as rate-limiting 
enzyme for 5-FU. The remaining 5-FU gets converted into 
fluorouridine monophosphate (FUMP) directly by orotate 
phosphoribosyltransferase (ORPT) with phosphoribosylpy-
rophosphate (PRPP) as a cofactor, or indirectly by fluorouri-
dine (FUR) under the action of uridine phosphorylase (UP) 
and uridine kinase (UK). Furthermore, phosphorylation of 
FUMP to FUDP occurs, which subsequently phosphorylated 
into an active metabolite (FUTP), or to FdUDP by ribonucle-
otide reductase (RR). Phosphorylation or dephosphorylation 
of FdUDP leads to the formation of the active metabolites 
FdUTP and FdUMP, respectively. Another pathway, which 
involves the catalytic conversion of 5-FU to FUDR by thy-
midine phosphorylase (TP), further phosphorylates it by thy-
midine kinase (TK) to form FdUMP. The converted FdUMP 

causes gastrointestinal and myelotoxicity, respectively. 
FdUMP inhibits thymidylate synthase, leading to activation 
of DNA damage response pathways [9]. A meta-analysis of 
six randomised clinical trials performed on patients assigned 
to bolus 5-FU infusion also showed more haematological 
toxicity as compared to individuals with continuous intra-
venous infusion [3]. Moreover, tegafur and capecitabine are 
the antineoplastic drugs that are metabolised to 5-FU and are 
given orally for metastatic colorectal cancer [2].

RNA misincorporation

Disruption of normal RNA function occurs due to the misin-
corporation of the metabolite FUTP. In human colon cancer, 
a significant correlation was found between lost colonogenic 
potential and the misincorporation of 5-FU in RNA [10, 11]. 
This even leads to the toxicity to RNA at multiple levels and 
inhibition of the maturation of pre-rRNA to mature rRNA 
[12]. It is also found disrupting the post-transcriptional mod-
ification of tRNAs and the activation of the snRNA/protein 
complexes, which stops the splicing of the pre-mRNA. Even 
at the low concentration of 5-FU, polyadenylation of mRNA 
is inhibited [13, 14]. The in vitro studies indicate that by 
misincorporation of 5-FU, the RNA processing is disrupted, 
thereby affecting the cellular metabolism and viability.

Thymidylate Synthases are involved in the conversion of 
deoxythymidine monophosphate (dTMP) from deoxyuridine 
monophosphate (dUMP) by acting as a catalyst using 5, 10 
methylene-tetrahydrofolate (5, 10-CH2-THF) as the methyl 
donor. This reaction provides the sole de novo source of 
thymidylate for DNA replication and repair mechanism. TS 
functions as the site for both CH2THF and nucleotide bind-
ing. FdUMP, the metabolite of 5-FU binds to the nucleo-
tide binding site of the TS, thereby forms a stable ternary 
complex with the enzyme, and inhibits dTMP synthesis. 
Depletion of deoxythymidine triphosphate occurs due to 

Table 1  Tabular representation of the various types of anticancer drugs, their mechanism of action along with the examples

Type of anticancer drug Mechanism of action Examples

Antimetabolites Disrupting the essential biosynthesis pathways by incor-
porating the structural analogues

5-Fluorouracil and mercaptopurine

DNA-alkylating agents Alkylating both the major as well as minor groves of the 
DNA

Dacarbazine, procarbazine, and temozolomide

DNA cross-linking agents Inhibits tumour growth by creating a cross-link between 
the inter- or intra-strands of the DNA

Platinum complexes (cisplatin, carboplatin, oxalipl-
atin) and nitrogenous mustards (cyclophosphamide, 
ifosfamide)

DNA-intercalating agents By directly binding to the bases of the DNA Anthracyclines (doxorubicin, epirubicin, mitoxantrone, 
and actinomycin-D)

Topoisomerase inhibitors Inhibit topoisomerase activity As irinotecan and etoposide compounds
Antitubulin Interferes with the dynamics of the microtubules thereby 

blocking cell division followed by the cell death
Taxanes and vinca alkaloids
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subsequent depletion of dTMP, and this leads to the devia-
tion in the levels of other deoxynucleotides via the various 
mechanisms [15, 16]. This imbalance disrupts the DNA 
synthesis and repair, and hence, results in lethal DNA dam-
age. Also, the accumulation of dUMP due the TS inhibition 
leads to increasing the level of deoxyuridine triphosphate 
(dUTP), which causes the misincorporation of both dUTP 
and FdUTP into the DNA, and hence, leading to DNA strand 
breaks and cell death [17, 18].

5‑Fluorouracil catabolism in the body

The breakdown of 5-fluorouracil requires DPD enzyme, 
abundantly present in liver and intestinal mucosa. DPD 
catabolises 5-FU to 5, 6-dihydro-5-fluorouracil  (FUH2), 
also known as Dihydrofluorouracil, which then gets con-
verted into α-fluoro-β-ureido propionic acid and α-fluoro- 
β-alanine (FBAL), also known as fluoro-ureidopropionate, 
and fluoro-alanine, respectively as shown in Fig. 1. Upon an 
investigation of the kinetics of 5-FU and its metabolites in 
cancer patients by radiolabelled 5-FU, it was identified that 
more than 60% of the administered drug was excreted out 
as FBAL in urine within 24 h of administration [7]. Moreo-
ver, several patients with the deficiency of DPD have shown 
symptoms of being at high risk for severe toxicity including 
diarrhoea and neurotoxicity [3].

Modifications of 5‑FU

The overall response rate for this drug as a single agent is 
quite low. Important modulation strategies, which have, 
hence, been developed to increase its anticancer activity, 
also help in overcoming its current resistance. Hence, the 
strategies, such as decreasing 5-FU degradation, increasing 
5-FU activation, increasing the TS inhibition by FdUMP, 
and using multidrug therapies, make it the ideal drug for 

the treatment. For optimal binding of FdUMP to Thymi-
dylate synthase (TS), it is necessary to have a high level 
of intercellular reduced folate CH2THF. In both in vitro 
[19, 20] as well as in vivo [21] conditions, Leucovorin (LV) 
has expanded the intercellular concentration of CH2THF 
in many cell lines identified to have 5-FU toxicity. LV is 
anabolised to CH2THF after entering the cell through the 
reduced folate carrier, and is further polyglutamated by 
folylpolyglutamate synthetase [22, 23]. This enhances the 
ternary complex stabilised with TS and FdUMP. It helps in 
enhancing the Thymidylate synthase inhibition by increas-
ing the 5, 10-methylene tetrahydrofolate pool. Seemingly, 
the degradation of the drug by the DPD enzyme is major in 
tumours as compared to the anabolic or activating pathways. 
Therefore, by inhibiting the activity of the DPD enzyme, 
more drugs can be made to enter the anabolic pathway which 
may show a satisfactory result. Therefore, the inhibition of 
DPD activity increases the antitumor potential of the drug 
which is very vital for the patients whose tumours are resist-
ant due to an increase in the intratumoral DPD activity. Sev-
eral DPD inhibitors have been introduced clinically.

Inhibitors of DPD

The availability of 5-FU is reduced as it gets degraded into 
DHFU by DPD. To inhibit this degradation by DPD, a 
combination of uracil with the 5-FU prodrug ftorafur, in a 
combination of 4:1 is used, i.e., UFT (Uracil/Ftorafur) [24]. 
The Eniluracil and 5-chlorodihyropyrimidine, which can be 
used in inhibiting the degradation of 5-FU by DPD, improve 
the tumour response rate from 13 to 94% in a rat model 
[25]. Capecitabine, an oral fluoropyrimidine, which remains 
unchanged even after absorption through the GI walls, is 
available to 5′-deoxy-5-fluorouridine (5′DFUR) in the liver 
by the action of carboxylesterase and cytidine deaminase. 
5-DFUR is then converted into 5-FU majorly by thymidine 
phosphorylase or by uridine phosphorylase as shown in 
Fig. 2 [26, 27]. Capecitabine has a much higher response 
rate to colorectal cancer than 5-FU/LV, i.e., 24.8% vs 15.5%, 
and hence, is preferred more [28].

Methotrexate (MTX) is another drug identified to be con-
verting dihydrofolate (DHF) into tetrahydrofolate (THF) and 
acting as an antifolate inhibitor of DHFR by inhibiting both 
purine and thymidine biosynthesis by synergising with 5-FU 
when administered before 5-FU [29]. The combination of 
both 5-FU with MTX is more effective in the treatment of 
colorectal cancer in comparison to bolus single-agent 5-FU 
[30].

Interferons have shown a negative regulatory effect on 
the growth of both the normal and malignant cells in the 
in vitro as well as the in vivo environment, and have found 
to produce much higher cytotoxicity in various cell lines. 

Fig. 1  Degradation pathways of the pyrimidine bases uracil and thy-
mine catalysed by DPD
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Studies reported that the response rate of the combination 
of both 5-FU with IFN-α is 42–54% in Phase II clinical tri-
als 57–58; moreover, IFN-α and 5-FU/LV can be given as 
adjuvant therapy to the patients who have been suffering 
from the colon cancer [31].

S-1 is a combination of the three drugs (Fig. 3) con-
sisting of the prodrug Tegafur, along with 5-chloro-2, 

4-dihydroxypyridine (CDHP)—a DPD inhibitor, and 
potassium oxonate, in a molar ratio of 1:0.4:1 [32, 33]. 
S-1 helps in continuous release of 5-FU, with more potent 
DPD modulation in this combination. Potassium oxonate 
decreases the potential for typical 5-FU gastrointestinal 
toxicity, particularly diarrhoea, which is seen in most fluo-
ropyrimidine drugs [34]. CDHP is known to competitively 
inhibit DPD about 200 times more effectively than uracil 
as identified in the in vitro studies. The chemical structures 
of few DPD inhibitors are shown in the Fig. 4. Oxonate 
(oxo) is an inhibitor of Orotate phosphoribosyltransferase 
(OPRT) and is distributed majorly in the GI mucosa. After 
oral administration, oxo selectively improves the gastroin-
testinal toxicity of the drug by decreasing the production 
of FdUMP in the GI mucosa. Hence, TS-1 acts as the most 
promising anticancer drug for advanced or metastatic gas-
tric carcinoma [35].

Fig. 2  Metabolic pathways 
of capecitabine and 5-fluoro-
uracil. 5-Fluorodeoxyuridine 
(FdUrd), 5–10 methylene-tet-
rahydrofolate (5–10 CH2FH4), 
5-methyltetrahydrofolate 
(5-CH3FH4), methionine 
synthase (MS), dihydrofolate 
reductase (DHFR), 5-for-
myltetrahydrofolate (folinic 
acid) (5-CHOFH4), and 5–10 
methenyltetrahydrofolate (5–10 
CH = FH4)

Fig. 3  Composition of S-1 drug

Fig. 4  Chemical structure of 
DPD inhibitors
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Side effects of 5‑FU

5-FU has a narrow therapeutic index; 10–26% of patients 
treated with fluoropyrimidine-based drugs develop an 
early-onset severe life-threatening fluoropyrimidine tox-
icity [36, 37]. Some of the side effects caused by 5-fluo-
rouracil, when administered intravenously, are inflamma-
tion of the mouth, loss of appetite, and low blood cell 
count. In severe cases, it can also lead to hair loss and 
inflammation of the skin (see Fig. 5). Irritation at the 
site of the application is common when administered as 
a cream [38, 39].

Dihydropyrimidine dehydrogenase

DPD is an enzyme encoded by the gene DPYD [40]. This 
enzyme functions by metabolising the two endogenous 
nitrogen-containing pyrimidines: Thymine and Uracil, 
and hence, is also known as dihydrothymine dehydro-
genase or uracil reductase [41]. In addition to metabo-
lising naturally occurring pyrimidines, it is also known 
for metabolising the anticancer drug 5-fluorouracil [39]. 
More than 80% of the metabolism of the administered 
anticancer drug 5-FU is performed by DPD. The DPD is 
a rate-controlling enzyme of endogenous pyrimidine and 
fluoropyrimidine catabolism. Its activity shows a wide 
range of individual variation [42–44] which is known to 
have resulted in a broad range of enzymatic deficiencies 
from partial loss of enzymatic activity, which is seen in 
3–5% of the population, to complete loss of the same, 
seen in 0.2% of the population, which can consequently 
lead to severe polyvisceral 5-FU-induced toxicity [45, 
46].

Mechanism of action of DPD on 5‑FU

The administered 5-FU get catabolised into an inactive phar-
macological molecule, 5-fluoro-5, 6-dihydrouracil (5-FUH2), 
which further gets converted into fluoro-beta-ureidopropion-
ate (FUPA) and subsequently to fluoro-beta-alanine (FBAL) 
by dihydropyrimidinase (DPYS) and beta-ureidopropionase 
(UPB1) enzymes, respectively. This anabolic conversion of 
the 5-FU into a metabolically active nucleotide form is an 
essential step in the action of 5-FU. However, DPD reduces 
the availability of 5-FU. Hence, an increased expression of 
DPD in tumours usually results in the resistance against 
nitrogen heterocycle containing anticancer agents such as 
5-FU [47]. The absence of these enzymes, or any single 
nucleotide mutations in the gene may show an absolute defi-
ciency in its enzymatic level. DPD polymorphisms, hence, 
shall result in deficient phenotypes depending upon the 
mutation and linking them to its polymorphic activity with 
a total frequency of 3–5%. Insufficient production of this 
enzyme further leads to the over-accumulation followed by 
the toxicity of the drug (5-FU). An extensive variety of clini-
cal manifestation and abnormal metabolism of 5-FU is the 
primary defect found in most of the population.

Function and characterisation 
of dihydropyrimidine dehydrogenase

Human DPYD gene encodes sequence for an enzyme dihy-
dropyrimidine dehydrogenase, the first rate-limiting enzyme 
in a three-step metabolic pathway for the degradation of 
pyrimidine bases [48]. For the synthesis of β-alanine in 
mammals, this pathway is the major route [49]. Deficiency 
of the DPD enzyme in the pediatric patients leads to an asso-
ciation with congenital thymine-uraciluria, which is a com-
plex hereditary disease, that shows multiple symptoms such 

Fig. 5  Various side effects of 5-FU
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as epilepsy, slow development, and microcephaly [50, 51]. 
DPYD gene has been mapped on a 1p22 chromosome and 
has been found to contain 4400 nucleotides with 23 coding 
exons which span 950 Kbs. The activity of this enzyme is 
controlled both at transcription as well as translation level 
by the transcription factor SP1, SP3, and by microRNA-27a 
(miR-27a) and microRNA-27b, respectively [52]. Naguib 
and his colleagues, who studied on DPD activity in humans, 
and in tumour xenografts, concluded that the activity of 
these enzymes was high in human liver; however, it is highly 
variable in tumour patients. Moreover, DPD is known to 
show a circadian pattern both in human as well as in animals 
[39, 53]. PMNC-DPD activity is also recognised to display 
circadian variations and to be involved in differences in 
blood 5-FU concentrations through an intravenous infusion 
[54]. A few studies have revealed that DPD shows a vari-
able expression during tumour which justifies the variance in 
pharmacological responses of tumour towards 5-FU. Those 
patients having increased expression of DPD have shown 
resistance to the 5-FU drug even when the level of thymi-
dylate synthase expression was too low [55]. Several studies 
have proved that there is a positive correlation among the 
levels of tumoral DPD and resistance against the anticancer 
agents, while alcohol and smoking have found to decrease 
5-FU potential [56].

Polymorphisms of DPYD

Recent studies have indicated that DPD deficiency leads to the 
genetic aberration in the DPYD comprising of exon skipping 
and deletion, and missense mutations give the DPD a defi-
cient phenotype [35]. 5-FU-treated patients have been found 
to be having SNP-associated DPD variants which come under 
grade 3 and grade 4 toxicities. More than 50 polymorphisms 
in DPYD have been recognised. Studies have identified mul-
tiple novel variations of DPD enzyme in Korean population 
influencing the effects of 5-FU. Among the novel genetic 
variants − 832 G > A, − 474 C > T, − 131 C > A, and − 106 
G > A are the major SNP mutations. Additionally, it has been 
found that DPD enzyme activity in the Korean population 
is found to be slightly higher than those of the Japanese and 
white population [57]. Similar studies have identified a com-
mon relevant polymorphism in the DPYD gene which are 
DPYD*5A (1627A > G, I543 V) and DPYD*9A along with 
DPYD*2A (IVS14p 1G > A) in the Chinese population. All 
of these mutants reduce the enzymatic activity of the DPYD 
enzyme followed by the increased toxicity of 5-FU [58]. More-
over, among Dutch patients, it has been reported that sequence 
analysis of the coding exon of DPD has three novel mutations 
and four rare variants including three missense mutations (c 
851G > T, c 1280 T > C, c 2843 T > C), and one intrinsic muta-
tion c2766 +  87 G > A. There are three main DPYD genetic 

variations, which have been consistently associated with the 
toxicity of the 5-FU: 2*A rs3918290 G > A, which lead to 
the skipping of entire exon 14; *13rs5588602 T > G which 
changes an Ile56Ser amino acid to a flavin-binding domain of 
the enzyme; and the rs67376798 A > T which causes a change 
in a Asp949 Val amino acid to an iron–sulphur motif [59, 60]. 
DPYD IVS14 + 1G > A mutation causes a 165-bp deletion 
in the mRNA, and thus is formed the DPYD*2A allele fol-
lowed by the newly truncated protein product, which is formed 
because this mutation has deficient catalytic activity. Several 
analyses related to the DPD polymorphism have showed that 
IVS14 + 1G > A polymorphism is the most frequent among the 
cancer patients which leads to severe 5-FU toxicity especially 
in the Caucasian people [61, 62]; DPYD*13 (rs55886062, 
1679T > G), DPYD*9A (rs1801265, 85T > C), DPYD*2A 
(rs3918290, IVS14 + 1G > A), and 2846A > T (rs67376798, 
D949 V). DPYD 85T > C polymorphism causes the conver-
sion of Cys29Arg with the formation of the DPYD*9A allele 
(Fig. 6). Patients with DPYD*2A homozygous mutation have 
shown a complete deficiency of the activity of this enzyme, 
while in heterozygous case, there are a 50% absences of the 
enzymatic activity which leads to the life-threatening condition 
due to 5-FU accumulation in the body [40], whereas DPYD 
85T > C polymorphism was 29.4% as a heterozygote mutation 
and 7.1% as a homozygous mutation [63, 64].

Recent research done on population analysis of DPD cata-
lytic activity has indicated that at least 3–4% of the healthy 
population could be partially deficient to the DPD enzyme 
activity. In the absence of the drug treatment, these indi-
vidual do not show any symptoms, but they could develop a 
high risk of toxicity if exposed to 5-FU during chemotherapy 
[65]. Research has shown that 3% of the Caucasian popula-
tion carries DPYD*2A polymorphism in the exon region, 
while the Japanese population did not have this variation. 
However, the mutation in allele DPYD*5 (rs1801159) in 
13 exon region was reported to be in 14% of Caucasian, 
and 15% and 12% in Egyptian and Tunisians, respectively. 
Among them all, the Japanese population has found to be 
having the highest frequency of DPYD*5 (rs1801159), i.e., 
35% followed by Taiwanese, 21% and African-American, 
22.7% [66]. Substitution at 1679T > G in the DPYD gene 
results in the DPYD*13 allele with the change I560S. Simi-
larly, DPYD 2846A > T mutation causes D949 V change. 
Both of these polymorphisms have been reported to be asso-
ciated with low enzyme activity. However, these have been 
observed to be rare [67, 68].

Clinical manifestation due to the deficiencies

DPD deficiency is a disorder inherited in an autosomal 
recessive manner. It shows a broad range of phenotypic 
variability, which ranges from no symptoms to intellectual 
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disabilities, motor retardation, and convulsions. Addition-
ally, homozygous and heterozygous individuals carrying 
mutations in this gene can develop severe 5-FU toxicity. The 
lack of genotype–phenotype correlations and a possibility 
of other factors playing yet undetected roles in the mani-
festation of the neurological abnormalities shall make the 
management and education of asymptomatic DPD-deficient 
individuals more challenging [69, 70]. Deficiencies in the 
DPD enzyme may lead to the toxicities of grade 3 or be even 
more significant due to the 5-FU toxicity. Since the symptom 
for the toxicity has appeared after the administration of the 
drug, intensive care and medical interventions are required 
[71]. Some clinical manifestations that have occurred due 
to the toxicity of 5-FU are fever, mucositis, stomatitis, nau-
sea, vomiting and diarrhoea. In severe cases, it may lead 
to neurological abnormalities such as cerebellar ataxia and 
changes in cognitive functions. Several cases have been 
recorded in which patients have gone to coma, leukopenia, 
neutropenia, and possibly thrombocytopenia and anaemia 
[5]. IVS14 + 1G > A, the DPYD* 2A allele is considered as 
the most frequent SNP. A G–A mutation in the GT splice 
donor site during DPD pre-mRNA splicing leads to exon 14 
being skipped which is immediately upstream of the mutated 
splice donor site [72, 73]. Another mutation, 2846A > T, 
causing D949V change, is located on exon 22 and is known 
to interfere directly with cofactor binding or electron trans-
port [70, 74]. 1156 G > T, causing E386T change is located 
on exon 11, resulting in a premature termination codon lead-
ing to the formation of a truncated protein, a non-functional 
enzyme [75]. 2657G > A change, also known as DPYD* 9B 
allele, is known to cause R886H change leading to a mis-
sense mutation on exon 21. This reduces DPD function to 
25% of the normal [76]. A 1590T > C change on the DPYD 
gene promoter, located in the IFNc-binding site, potentially 
results in lowered DPYD expression [72].

Managing the deficiencies and toxicity

The dosage of 5-FU can be reduced or increased in the fol-
lowing sessions according to the enzymatic status of the 
DPD observed during the first treatment, and depending on 
the tolerance level of the patient [77]. If the patient is sus-
pected with the toxicity of 5-FU occurred due to the DPD 
deficiency, then administration of the drug should be stopped 
immediately followed by the utilisation of haemodialysis and 
haemoperfusion to rapidly remove any remaining traces of 
the drug from the body [71, 78]. Additionally, tumours have 
also been noted to express variable levels of DPD activity. 
This may explain the various tumour responses observed in 
5-FU. Tumours with relatively low levels of DPD indicate 
a sensitivity to 5-FU, while tumours with relatively high 
levels of DPD indicate resistance towards 5-FU. Both the 
conditions should be considered while devising proper dos-
age administration. Other alternatives are unblocking the 
thymidylate synthesis, with the help of the administration 
of thymidine or uridine, which competitively binds to the 
drug target. Additionally, to boost the WBC count, colony-
stimulating growth factor can be administered in the patients 
with toxicity. Mainly, an aggressive, holistic, and supportive 
care is the only way to treat it [71].

Conclusions

Cancer, a disease caused by abnormal proliferation of cells 
is combated by anticancer drugs, a class of drugs that shows 
effect in combating these cells by either killing or inhibit-
ing their growth. 5-Fluorouracil, a chemotherapeutic anti-
metabolite, is the most commonly used anticancer drug for 
many types of cancers. This Uracil analogue interferes with 
the essential biosynthetic processes such as DNA and RNA 

Fig. 6  Schematic representation of the DPD gene structure and polymorphism
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synthesis and leads to their inhibition. The enzyme DPD 
catabolises more than 80% of the drug in the liver mono-
nuclear cells into F-ß-alanine. DPD deficiencies are caused 
by the mutations in the DPYD gene, such as exon skipping 
and deletions, and missense mutations give a DPD-deficient 
phenotype. The major DPYD genetic variations that have 
been consistently associated with 5-FU toxicity are the 
DYPD 2*A allele (IVS14 + 1G > A mutation in intron 14 
coupled with exon 14 deletion) consisting of a G > A varia-
tion (rs3918290), the DPYD*13 allele in exon 13 consisting 
of 167T > G variation (rs5588602), and in exon 22 consist-
ing of 2846A > T variation (rs67376798). Protein products 
formed due to these mutations have extremely low catalytic 
activity. At least 3–4% of the healthy population is partially 
deficient to the DPD enzyme activity which stays undetected 
in the absence of the 5-FU administration. However, they 
stay at high risk of developing toxicity towards 5-FU during 
chemotherapy. Such deficiencies may lead to grade 3 or even 
higher level toxicity often leading to the death of the patient 
in homozygous mutants. Multiple studies have identified that 
high intratumoral activity of DPD markedly decreases the 
cytotoxic effect of 5-FU. Major modulators to decrease its 
catabolic activity have also been implemented. Such drugs 
are used in combination with 5-FU to act as a substrate for 
DPD, instead of targeting 5-FU.
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