
Vol.:(0123456789)1 3

Cancer Chemotherapy and Pharmacology (2019) 84:501–511 
https://doi.org/10.1007/s00280-019-03830-5

ORIGINAL ARTICLE

Application of time‑dependent modeling for the exposure–efficacy 
analysis of ceritinib in untreated ALK‑rearranged advanced NSCLC 
patients

Yvonne Y. Lau1 · Wen Gu1 · Yu‑Yun Ho1 · Ying Hong1 · Xinrui Zhang1 · Patrick Urban2

Received: 11 October 2018 / Accepted: 2 April 2019 / Published online: 24 April 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Purpose  Ceritinib 750 mg/day was approved for the treatment of patients with untreated anaplastic lymphoma kinase (ALK)-
rearranged non-small cell lung cancer (NSCLC) based on ASCEND-4 study. The objective of this article is to introduce the 
use of time-dependent modeling approach in the updated exposure–efficacy analysis of ceritinib for the first-line indication.
Methods  Exposure–efficacy analyses, including data from 156 patients, were first conducted using time-independent logistic 
regression model for response of complete or partial response and Cox regression model for progression-free survival (PFS). 
The exposure measure used was average Ctrough, which is defined as the geometric mean of all evaluable Ctrough for each 
patient. To further investigate the impact of exposure measure on exposure–efficacy analyses, a time-dependent modeling 
approach was used, where exposure at different time intervals was associated with the corresponding response endpoints in 
a longitudinal manner.
Results  With exposure measure being average Ctrough, it was observed that higher exposure was associated with reduced 
efficacy in terms of response (odds ratio = 0.77) and PFS [hazard ratio (HR) = 1.12]. These time-independent models do 
not account for the impact of time-varying concentration due to dose modifications. Subsequently, a new time-dependent 
modeling approach was used, where exposure and efficacy were associated longitudinally in the analyses. The results showed 
that the odds ratio of response became 1.07, and the HR of PFS became 1.04, indicating no apparent reverse relationship 
between exposure and efficacy across the exposure range studied.
Conclusion  The drug effect on efficacy in clinical trials could be better characterized using time-dependent exposure–
response models.

Keywords  Ceritinib · Exposure–efficacy analysis · Time-dependent analysis · Anaplastic lymphoma kinase · Non-small cell 
lung cancer

Introduction

Anaplastic lymphoma kinase (ALK) rearrangements serve 
as a key oncogenic driver and occur in 3–7% of patients 
with non-small cell lung cancer (NSCLC) [1, 2]. In the US, 
ceritinib (LDK378, Zykadia®; Novartis Pharmaceuticals 

Corporation, East Hanover, NJ, USA), a selective oral ALK 
inhibitor, was initially approved as a second-line treatment 
at a dose of 750 mg once a day for treatment of patients with 
ALK-rearranged metastatic NSCLC who have progressed 
on or are intolerant to crizotinib, based on the results from 
ASCEND-1, a phase 1, dose escalation and expansion first-
in-human study [3]. In April 2017, it was approved for the 
treatment of previously untreated patients with ALK-rear-
ranged metastatic NSCLC [4]. To support this most recent 
indication, an open-label, randomized global phase 3 study, 
ASCEND-4 (NCT01828099), was conducted to assess the 
efficacy and safety of ceritinib at 750 mg/day against plati-
num-based chemotherapy as a first-line therapy in untreated 
advanced ALK-rearranged NSCLC patients. The median 
progression-free survival (PFS) and objective response rate 
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with first-line ceritinib were 16.6 months [95% confidence 
interval (CI) 12.6, 27.2] and 72.5% (95% CI 65.5, 78.7), 
respectively, compared with 8.1 months (95% CI 5.8, 11.1) 
and 26.7% (95% CI 20.5, 33.7), respectively, with chemo-
therapy, indicating a statistically significant and clinically 
meaningful improvement in PFS versus chemotherapy in 
patients with advanced ALK-rearranged NSCLC [5].

To date, exposure–response (E–R) analyses have been 
well recognized and frequently utilized in support of regula-
tory approval [6]. The quantitative relationship between drug 
exposure and response with regard to efficacy and safety is 
critical in justifying or confirming a dosing regimen in the 
context of the overall risk/benefit balance. For such analyses, 
one of the commonly used drug exposure measures is the 
average trough plasma concentration (average Ctrough), which 
is defined as the geometric mean of all evaluable Ctrough val-
ues observed for each patient, assuming log-normal distribu-
tion of plasma concentrations. From a practical considera-
tion, average Ctrough is the preferred exposure measure as it 
is more feasible to be obtained. Since trough concentrations 
are usually collected at multiple time points throughout the 
treatment duration in a clinical trial, each patient is likely to 
have more than one Ctrough values contributing to the calcula-
tion of average Ctrough.

In support of the initial regulatory submission of second-
line indication of ceritinib [7, 8], the E–R analysis approach 
utilizing the average Ctrough as exposure measure was previ-
ously applied to assess the relationship between ceritinib’s 
exposure and response (efficacy and safety) using data from 
ASCEND-1, which was primarily driven by data from the 
750 mg dose group collected in the expansion phase. Since 
average Ctrough was well correlated with AUC​tau at steady 
state, it could serve as a surrogate for total exposure for the 
E–R analysis (data on file). The analyses showed no apparent 
relationship between average Ctrough and efficacy endpoints, 
including best overall response (BOR) and PFS. This find-
ing is not uncommon in oncology given that the dose range 
studied in pivotal trials is generally limited, which does 
not permit an adequate characterization of the full expo-
sure–efficacy curve. However, based on the efficacy data of 
ASCEND-1, the objective response rate of 54.6% (95% CI 
47, 62) and the median duration of response of 7.4 months 
(95% CI 5.4, 10.1) suggested that the proposed dose of 
750 mg daily did provide meaningful therapeutic benefit to 
ALK-rearranged NSCLC patients over existing treatments. 
In addition, treatment with ceritinib at 750 mg daily was 
generally well tolerated over a prolonged period of time with 
a low rate of discontinuation (10%) due to adverse events 
(AEs). Therefore, the proposed dose of 750 mg daily was 
acceptable as the recommended dose of ceritinib given the 
positive risk/benefit profile [9].

For the submission of ceritinib’s first-line indication 
in which ceritinib was administered at the recommended 

second-line dose of 750 mg daily, E–R analyses using aver-
age Ctrough were also performed. The exposure–efficacy 
analysis results using data from ASCEND-4 showed a 
decreasing trend, with lower systemic exposure having bet-
ter efficacy performance. Further data exploration indicated 
that this could potentially be due to the limitation of using 
the average Ctrough as the drug exposure measure.

It should be acknowledged that in many cases, dose 
reduction and/or interruption can lead to fluctuations in PK 
concentration over time. It is not uncommon to observe the 
proportion of patients who stayed on the planned starting 
dose continuously declined over time due to dose adjust-
ments as the trial progressed [10, 11]. Consequently, aver-
aging all Ctrough during the treatment course as a single 
measure for the E–R analysis (i.e., time-independent E–R 
analysis) could mask the concentration changes over time 
and potentially lead to a bias in the estimation of the E–R 
relationship.

E–R analysis ignoring time dependency may lead to 
biased results. Such bias typically exists whenever an anal-
ysis that is timed from enrollment or randomization, such 
as PFS, is compared across groups defined by a classifying 
event occurring some time post enrollment/randomization 
[12–14]. For instance, it is well recognized that comparing 
survival by response category yields invalid inferences about 
treatment effect, since the length of survival will influence 
the chance of a patient being classified into one group or 
the other. Similarly, E–R analysis that ignores the impact 
of the length of survival or duration of follow-up on the 
exposure may also lead to false conclusions. In this article, 
we argue that a more appropriate E–R analysis approach is 
to take into consideration the entire concentration–time pro-
file, i.e., to associate the exposure at different time intervals 
with the corresponding efficacy endpoints in a longitudinal 
fashion. In the subsequent sections, we refer to it as the time-
dependent E–R analysis.

The objective of this article is to introduce the use of 
time-dependent modeling approach in the updated expo-
sure–efficacy analysis of ceritinib for the first-line indication. 
A comparison with the conventional time-independent expo-
sure–efficacy analysis was also made. The application of the 
time-dependent approach in E–R analysis could potentially 
address the aforementioned limitation of time-independent 
E–R analysis approach using average exposure measure.

Methods

Study design

Data from ASCEND-4 were used in the exposure–efficacy 
analyses for the submission of first-line indication of ceri-
tinib. The study design and methodology of ASCEND-4 
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have been reported previously [5]. Briefly, adult untreated 
patients with stage IIIB/IV ALK-rearranged non-squamous 
NSCLC were randomized in a 1:1 ratio to receive 750-mg 
oral ceritinib daily or platinum-based chemotherapy every 
3 weeks for 4 cycles followed by maintenance pemetrexed. 
The patient characteristics at baseline can be found in Soria 
JC et al. [5]. The treatment period began on day 1 of cycle 
1. Each treatment cycle was 21 days. The study consisted 
of predose trough PK sampling in all patients who received 
ceritinib treatment on cycle 1 day 1, cycle 1 day 15, cycle 
2 day 1, cycle 3 day 1, cycle 4 day 1, cycle 5 day 1, and cycle 
6 day 1. Plasma concentrations of ceritinib were measured 
using a validated liquid chromatography/tandem mass spec-
trometry assay described previously, with a lower limit of 
quantification of 1.00 ng/mL [15].

Tumor response was assessed locally and by a Blinded 
Independent Review Committee (BIRC) based on Response 
Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria 
[16]. Imaging procedures included CT/MRI of chest and 
abdomen, whole-body bone scan, and photography. The 
assessment was performed at baseline and post-baseline at 
cycle 3 day 1 and then every two cycles until month 33. 
After that, it was only conducted every three cycles if clini-
cally indicated or positive at baseline.

Exposure–efficacy analyses of ceritinib were con-
ducted based on data from patients in the ceritinib arm in 
ASCEND-4 to explore the relationship between systemic 
exposure and efficacy endpoints by BIRC, including tumor 
response and PFS, in ALK-rearranged metastatic NSCLC 
treatment-naïve (including ALK inhibitor) patients.

Statistical analysis

Time‑independent E–R models

Logistic regression model for  best overall response ver‑
sus  exposure  Modeling analysis was first conducted to 
describe the exposure–efficacy relationship using a time-
independent approach. A logistic regression model was 
applied to model a patient’s probability of having BOR of 
confirmed complete response (CR) or partial response (PR) 
versus the observed average Ctrough (Eq. 1):

where xi is the average of individual Ctrough during the 
treatment course for patient i, Z

i
 is the covariate vec-

tor {Zi1,Zi2,… ,Zik}
� with k corresponding to the number 

of covariates in the final model, π(xi, Zi) is the probabil-
ity of having BOR of confirmed CR or PR, and �0 , �1 , and 
� = {�1, �2,… , �k}

� are the intercept, slope for exposure, and 
slope vector for covariates, respectively.

(1)ln
�(xi,Zi

)

1 − �(xi,Zi
)
= �0 + �1xi + Z

�
i
�,

Backward model selection was applied. Only covariates 
with a p value < 0.05 were retained in the final model. The 
initial covariates considered were baseline values of age, 
gender, race, weight, World Health Organization (WHO) 
status, brain metastases, and stage of disease at study entry.

Cox regression model for  PFS versus  exposure  A Cox 
regression model was used to estimate the relationship 
between PFS and ceritinib exposure in terms of the average 
Ctrough (Eq. 2):

where hi is the hazard of patient i, h0 is the baseline hazard, 
xi is the corresponding average Ctrough for patient i, and Zi is 
the covariate vector {Zi1, Zi2,… , Zin}

� with n corresponding 
to the number of covariates in the final model.

Backward model selection was used for the Cox regres-
sion model with the same set of initial covariates as the 
logistic regression model.

Time‑dependent E–R models

The idea of time-dependent E–R analysis is to associate 
exposure with the corresponding response over time in a 
longitudinal fashion. Before conducting such an analysis, 
the ceritinib plasma concentration–time profile along with 
dosing history was first examined in patients in ASCEND-4. 
This step was conducted to investigate whether there were 
any noticeable changes in ceritinib concentration during 
treatment that could potentially confound the exposure–effi-
cacy analyses.

Model-based exposure–efficacy analyses were then con-
ducted. A repeated-measures logistic regression model was 
used to explore the relationship between exposure and over-
all response, and a time-dependent Cox regression model 
was used to characterize the relationship between exposure 
and the primary endpoint, PFS by BIRC.

Repeated‑measures logistic regression model for  overall 
response versus exposure  For the repeated-measures logis-
tic regression model, the purpose is to model the probability 
of having an overall response of CR or PR based on the cor-
responding PK exposure. The “corresponding PK exposure” 
was obtained by averaging the population PK (PopPK)-
predicted PK concentrations two cycles prior to each tumor 
evaluation (i.e., Cavg,2-cycle). This PopPK-predicted Cavg,2-cycle 
is further described in the later section.

The choice of two cycles for the calculation of Cavg was 
based on the fact that tumor evaluation was performed every 
two cycles and the assumption that systemic exposure in the 
past two cycles is predictive of the anti-tumor response of 
ceritinib.

(2)hi = h0 × exp[�0 + �1xi + Z
�
i
�],
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Equation 3 shows the repeated-measures logistic regres-
sion analysis for overall response of CR or PR versus the 
ceritinib average concentration:

where xij is the jth average 2-cycle PK concentration 
(Cavg,2-cycle) for patient i, Zi is the covariate vector, and �0 , 
�1 , and � are the intercept, slope for exposure, and slope 
vector for covariates, respectively, in the model for the log 
of the odds ratio.

Equation 4 shows the probability of overall response 
being CR or PR:

A patient could have multiple tumor assessments over 
time according to the trial visiting schedule. As observed 
from the model, each tumor assessment is associated with 
a corresponding x, namely, the average concentration two 
cycles prior to the response, Cavg,2-cycle.

Time‑dependent Cox regression model for PFS versus expo‑
sure  A time-dependent Cox regression model was used to 
describe PFS versus ceritinib average concentration (Eq. 5):

where hi(t) is the hazard of patient i at time t, h0(t) is the 
baseline hazard at time t, xi(t) is the average concentration 
of patient i at time t, and Zi is the covariate vector. Note 
that here t represents every two cycles. The calculation of 
Cavg,2-cycle is the same as that for the repeated-measures 
logistic regression model.

PFS is the time from randomization to disease progres-
sion or death. When applying the time-dependent Cox 
regression model, the time for PFS was segmented into 
2-cycle intervals. For each interval, the censoring indicator 
was set to 0 if a patient died or progressed in that interval 
(event observed) and was set to 1 if otherwise (event not 
observed).

Population PK analysis  The PopPK-predicted ceritinib 
Cavg,2-cycle, calculated as accumulated AUC of the two cycles 
prior to the tumor assessment divided by the length of the 
two cycles in days, was used to drive the time-dependent 
E–R analysis as described above.

The PopPK model of ceritinib was previously described 
by Hong et al. [17]. Briefly, the analysis was performed 
using first-order conditional estimation with interaction, 
as implemented in NONMEM software (version VII, level 
2.0; Icon Development Solutions, Ellicott City, Maryland) 
compiled with Intel Fortran Compiler (version 14.0.1.106) 

(3)ln
�(xij,Zi

)

1 − �(xij,Zi
)
= �0 + �1xij + Z

�
i
�,

(4)
�(xij,Zi

) = exp
[

�0 + �1xij + Z
�
i
�
]

∕
{

1 + exp
[

�0 + �1xij + Z
�
i
�
]}

(5)hi(t) = h0(t) × exp[�0 + �1xi(t) + Z
�
i
�],

in a MODESIM high-performance computing environment. 
The final PopPK model was evaluated using a nonparamet-
ric bootstrap technique, and the prediction-corrected visual 
predictive check. Ceritinib concentration–time profile was 
described by a 1-compartment model with delayed first-
order absorption and time-dependent elimination. The 
final model includes the effect of body weight, albumin 
and alanine aminotransferase on the apparent clearance at 
steady-state.

Results

Time‑independent E–R analysis

In ASCEND-4, among the 189 patients randomly assigned 
to receive ceritinib, 156 patients were included in the PK 
analysis set (PAS). The exposure–efficacy analysis was 
based on patients in the PAS. The PAS included patients 
with an evaluable Ctrough, defined as patients with samples 
taken between 18 and 30 h after the last dose intake, and 
before the next dose intake. Although a decreasing num-
ber of Ctrough over time was observed, more than half of the 
patients in the PAS provided an evaluable Ctrough at each 
study visit (142 on cycle 1 day 1, 122 on cycle 1 day 15, 116 
on cycle 2 day 1, 96 on cycle 3 day 1, 92 on cycle 4 day 1, 
88 on cycle 5 day 1, and 82 on cycle 6 day 1).

Although high and clinically meaningful response rates 
were observed across all average Ctrough ranges (Fig. 1a) 
within the exposure achieved following a planned starting 
dose of 750 mg daily in ASCEND-4, there was a downward 
trend between PK and tumor response. With a 200 ng/mL 
(approximately the increase in average Ctrough based on an 
incremental change of 150 mg, the only dose strength of 
ceritinib) increase in ceritinib average Ctrough, there was a 
23% decrease in the odds of having a BOR of confirmed CR/
PR (odds ratio = 0.77; 95% CI 0.62, 0.94) (Table 1). Based 
on the backward model selection, baseline brain metastasis 
and gender were statistically significant covariates (p < 0.05) 
and were retained in the final model (Table 1). The estimated 
odds ratio for female versus male was 2.26 (95% CI 1.02, 
5.01). However, efficacy subgroup analyses previously con-
ducted for ASCEND-4 did not reveal any trend with regard 
to gender, suggesting that gender is unlikely to play a clini-
cally meaningful role in the interpretation of efficacy results. 
The estimated odds ratio for brain metastasis absence ver-
sus presence was 3.39 (95% CI 1.50, 7.64), indicating that 
patients without brain metastasis at baseline had a higher 
chance of responding and vice versa. 

The Kaplan–Meier plot by average Ctrough quartiles 
revealed no strong trend for increase in PFS with increasing 
systemic exposure (Fig. 1b). The estimated median PFS was 
similar for the lower three quartiles, while it was shorter in 
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the highest quartile. The results from Cox regression model 
showed a 12% increase in the risk of progression/death 
with a 200 ng/mL increase in average Ctrough; however, the 
95% CI included 1, indicating that it was not statistically 

significant [Table 2, hazard ratio (HR) = 1.12; 95% CI 0.98, 
1.28]. Body weight, gender, and brain metastasis at baseline 
were retained in the final Cox model based on backward 
model selection. Results also favored the absence of brain 

Logistic regression
0

10

20

30

40

50

60

70

80

90

100
a

b

0 200 400 600 800
Average Ctrough (ng/mL)

P
ro

po
rti

on
 o

f p
at

ie
nt

s 
w

ith
 tu

m
or

 re
sp

on
se

 
(c

on
fir

m
ed

 C
R

/P
R

) (
%

)

1000 1,200 1,400 1,600 1,800 2,000

95% CI

No. of patients still at risk
0 3 6 9 12 15 18 21 24 27 30 33 36

39 34 29 28 21 16 13 6 5 1 0 0 0

39 30 30 28 27 20 11 8 4 2 1 1 0

39 34 31 26 24 16 10 5 3 1 0 0 0

39 24 18 15 14 11 4 2 2 0 0 0 0≥Q3

Q2-<Q3

Q1-<Q2

<Q1

Time (Months)

0 3 6 9 12 15 18 21 24 27 30 33 36

Time (Months)

0

20

40

60

80

100

<Q1 (n/N = 21/39)
Q1-<Q2 (n/N = 16/39)
Q2-<Q3 (n/N = 15/39)
≥Q3 (n/N = 25/39)

Censoring Times

P
ro

ba
bi

lit
y 

(%
) o

f e
ve

nt
-fr

ee

Kaplan-Meier medians (95% CI) (Months)
<Q1: 18.0 (11.0;27.7)
Q1-<Q2 : 27.2 (15.2;NE)
Q2-<Q3 : 26.3 (12.1;NE)
≥Q3: 8.1 (2.9;15.4)

Fig. 1   a Time-independent logistic regression model of tumor 
response (CR/PR) versus average Ctrough of ceritinib. The solid line 
represents the fitted curve and the shaded area represents the 95% CI. 
The predicted curve and 95% CI are generated as follows: numeric 
covariates at the median and categorical covariates at the highest fre-

quency level. CI confidence interval, CR complete response, Ctrough 
average trough plasma concentration, PR partial response. b Kaplan–
Meier plot of PFS by quartile of average Ctrough of ceritinib. PFS pro-
gression-free survival, Q quartile, NE not estimable
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metastases at baseline, with a 60% reduction in the risk of 
progression/death (HR = 0.40; 95% CI 0.25, 0.66). Simi-
larly, the estimated risk of progression/death also appeared 
to be lower in females (HR = 0.57; 95% CI 0.35, 0.93). Body 
weight produced no meaningful impact on HR, although the 
coefficient met the model selection criteria.

Results from both models indicated that a higher expo-
sure was associated with reduced efficacy, namely lower 
overall response rate (ORR) of confirmed CR or PR and 
shorter PFS. To investigate the influence of any probable 
risk factors on the trend observed for the exposure–efficacy 
relationship, patient demographics and disease characteris-
tics at baseline were reviewed. Patient demographics (such 
as age, gender, weight, and race), baseline WHO perfor-
mance status, baseline brain metastasis status, and stage of 
disease at study entry were summarized for each average 
Ctrough quartile and appeared to be balanced across quar-
tiles, except for body weight, gender, and baseline brain 
metastasis (Table 3). The median body weight in the first 
quartile was slightly higher than that in the other quartiles. 
Smaller proportions of females were included in the lower 
quartiles compared with that in the higher quartiles. These 
slight imbalances in demographics are unlikely to explain 
the exposure–efficacy trend observed, due to their lack of 
clinically meaningful impact on ceritinib PK [17]. It was 

first suspected that the lower response rate associated with 
higher exposure (Fig. 1a) was caused by more patients 
with brain metastasis at baseline, i.e., 35.9% at the high-
est exposure quartile (Table 3). However, similar number 
of patients with brain metastasis was also observed at the 
lower exposure range (38.5% at the lowest exposure quartile, 
Table 3). Hence, baseline brain metastasis could not explain 
the lower response seen at higher exposure. In addition, no 
other imbalance was observed for patient demographics or 
disease characteristics at baseline (Table 3).

Time‑dependent E–R analysis

As depicted in Fig. 2, in a representative patient, ceritinib 
concentration was not constant over time due to dose modi-
fications during the treatment period. This finding sup-
ports using a time-dependent modeling approach for expo-
sure–efficacy analyses.

Figure 3 shows the predicted probability of having an 
overall response of CR/PR based on the repeated-measures 
logistic regression model, along with the 95% CI. With a 
200 ng/mL increase in ceritinib concentration, there was an 
estimated 7% increase in the odds of having a confirmed 
CR/PR (odds ratio = 1.07; 95% CI 0.98, 1.17) (Table 1). 
Based on these results, there was no obvious trend between 

Table 1   Summary of time-independent and repeated-measures logistic regression model of response (CR/PR) versus PK of ceritinib

Logistic regression model was determined by the backward model selection method; in the repeated-measures logistic regression model, the PK 
concentration is the PopPK-model-predicted average concentration of ceritinib for the twi cycles (Cavg,2-cycle) prior to each tumor assessment. 
In both models, the odds ratio is for a 200 ng/mL increase in ceritinib concentration. For this model, male, and the presence of baseline brain 
metastasis, are the reference categories for gender, and baseline brain metastasis status, respectively
CI confidence interval, CR complete response, Ctrough average trough plasma concentration, PR partial response, PK pharmacokinetics, PopPK 
population pharmacokinetics

Time-independent logistic regression model of best overall 
response versus average Ctrough

Estimate Std. error Odds ratio

Parameter Estimate 95% CI

Intercept 1.16 0.604 (− 0.02, 2.34)
Average Ctrough (ng/mL) − 0.27 0.105 0.77 (0.62, 0.94)
Gender
 Female vs. male 0.81 0.407 2.26 (1.02, 5.01)

Brain metastases at baseline
 Absence vs. presence 1.22 0.415 3.39 (1.50, 7.64)

Repeated-measures logistic regression model of overall 
response versus time-varying PK concentration

Estimate Std. Error Odds Ratio

Parameter Estimate 95% CI

Intercept −1.04 0.776 (−2.56, 0.48)
PK concentration (ng/mL) 0.07 0.045 1.07 (0.98, 1.17)
Weight (kg) 0.02 0.010 1.02 (1.00, 1.04)
Gender
 Female vs. male 0.31 0.311 1.36 (0.74, 2.50)

Brain metastases at baseline
 Absence vs. presence 0.69 0.294 1.99 (1.12, 3.54)
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Table 2   Summary of time-independent and time-dependent Cox regression model of PFS versus PK of ceritinib

Cox regression model was determined by the backward model selection method; in the time-dependent Cox regression model, the PK concentra-
tion is the PopPK-model-predicted average 2-cycle trough concentration of ceritinib. In both models, HR is for a 200 ng/mL increase in ceritinib 
concentration. For this model, male, and the presence of baseline brain metastasis, are the reference categories for gender, and baseline brain 
metastasis status, respectively
CI confidence interval, Ctrough average trough plasma concentration, HR hazard ratio, PFS progression-free survival, PK pharmacokinetics, 
PopPK population pharmacokinetics

Time-independent Cox regression model of PFS versus 
average Ctrough

Estimate Std. Error HR

Parameter Estimate 95% CI

Average Ctrough (ng/mL) 0.12 0.067 1.12 (0.98, 1.28)
Weight (kg) −0.02 0.009 0.98 (0.96, 1.00)
Gender
 Female vs. male −0.57 0.251 0.57 (0.35, 0.93)

Brain metastases at baseline
 Absence vs. presence −0.91 0.246 0.40 (0.25, 0.66)

Time-dependent Cox regression model of PFS versus 
time-varying PK concentration

Estimate Std. Error HR

Parameter Estimate 95% CI

PK concentration (ng/mL) 0.04 0.062 1.04 (0.92, 1.17)
Weight (kg) −0.02 0.008 0.98 (0.96, 0.99)
Gender
 Female vs. male −0.51 0.236 0.60 (0.38, 0.95)

Brain metastases at baseline
 Absence vs. presence −0.67 0.228 0.51 (0.33, 0.80)

Table 3   Patient demographics, by quartile of average Ctrough of ceritinib

Ctrough average trough plasma concentration, Q quartile, WHO World Health Organization

Characteristic < Q1 (119– < 683 ng/mL)
N = 39

Q1– < Q2 
(683– < 936 ng/
mL)
N = 39

Q2– < Q3 
(936– < 1210 ng/
mL)
N = 39

≥Q3 (1210– < 1825 ng/mL)
N = 39

All patients
N = 156

Median age (range), years 53 (26–76) 53 (29–79) 54 (22–77) 58 (26–81) 55 (22–81)
Sex, n (%)
 Female 16 (41.0) 21 (53.8) 24 (61.5) 24 (61.5) 85 (54.5)
 Male 23 (59.0) 18 (46.2) 15 (38.5) 15 (38.5) 71 (45.5)

Race, n (%)
 Asian 12 (30.8) 16 (41.0) 23 (59.0) 16 (41.0) 67 (42.9)
 Caucasian 26 (66.7) 20 (51.3) 15 (38.5) 21 (53.8) 82 (52.6)
 Other 2 (2.60) 3 (7.10) 1 (2.60) 2 (5.20) 7 (4.50)

Median weight (range), kg 74.0 (46.0–104) 63.8 (41.1–106) 64.0 (40.9–97.0) 60.0 (36.0–91.0) 65.0 (36.0–106)
WHO performance status, n (%)
 0 12 (30.8) 10 (25.6) 16 (41.0) 17 (43.6) 55 (35.3)
 1 22 (56.4) 28 (71.8) 21 (53.8) 18 (46.2) 89 (57.1)
 2 5 (12.8) 1 (2.60) 2 (5.10) 4 (10.3) 12 (7.70)

Stage at the time of study entry, n (%)
 Stage IIIb 0 2 (5.10) 3 (7.70) 3 (7.70) 8 (5.10)
 Stage IV 39 (100) 37 (94.9) 36 (92.3) 36 (92.3) 148 (94.9)

Brain metastases, n (%) 15 (38.5) 11 (28.2) 6 (15.4) 14 (35.9) 46 (29.5)
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systemic exposure and overall tumor response. The down-
ward trend observed using the time-independent modeling 
approach was no longer observed.

According to the time-dependent Cox regression model, 
an estimated 4% increase in the risk of disease progression 
or death was obtained with a 200 ng/mL increase in ceritinib 
concentration (HR = 1.04; 95% CI 0.92, 1.17) (Table 2). The 
negligible estimated increase in the risk indicated that there 
was no clear relationship between systemic exposure and 
PFS.

Discussion

Frequently, E–R analyses performed in oncology were 
conducted using time-independent models such as logistic 
regression and Cox regression models. This type of models 
uses a summary-level exposure measure without account-
ing for the time-varying exposure due to dose modifica-
tions. However, dose reduction and interruption driven by 

AEs are quite common in oncology clinical trials. Dynamic 
adjustments in dose can lead to changes in systemic expo-
sure throughout the treatment duration, causing bias in the 
results generated from time-independent exposure–efficacy 
analyses. Patients generally have a higher drug concentration 
in the earlier cycles compared to that in the later cycles. The 
longer the treatment duration, the higher chance there is for 
dose reduction and dose interruption. Potentially, patients 
who benefit from the treatment stay longer in the trial, and 
may, therefore, appear to have a lower PK concentration. 
On the other hand, patients who progress early would dis-
continue from the trial early with less opportunity for dose 
reduction or interruption. These patients would appear to 
have a higher PK, causing a spurious reverse relationship 
between PK and response.

To be consistent with the E–R modeling approach used 
in the initial second-line submission with ASCEND-1, the 
time-independent logistic regression model was first applied 
to the exposure–efficacy data from ASCEND-4, the pivotal 
phase 3 study supporting the first-line therapy of ceritinib 
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Fig. 2   Ceritinib Ctrough and dosing history over time in a representative patient. Ctrough, average trough plasma concentration
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given at a dose of 750 mg/day in untreated advanced ALK-
rearranged NSCLC patients. The results showed that a lower 
response rate was observed at the higher average Ctrough con-
centration range compared to the lower concentration range 
(Fig. 1a). Similarly, the estimated median PFS was shorter 
in the highest quartile compared to the others (Fig. 1b), with 
a 12% increase in the risk of disease progression with a PK 
increment of 200 ng/mL, though not statistically signifi-
cant (HR = 1.12; 95% CI 0.98, 1.28) (Table 2). It should be 
noted that the exposure measure of ceritinib utilized in the 
exposure–efficacy analyses was the average Ctrough during 
the entire course of ceritinib treatment, i.e., one exposure 
value per patient. In addition, this summary-level exposure 
measure implicitly assumes equal impact of trough concen-
tration on the response regardless of how far it is from the 
time when efficacy was assessed. The time-varying ceritinib 
concentrations caused by dose modifications were not appro-
priately accounted for in the model. Therefore, the impact 
of time-varying ceritinib concentration as a result of dose 
modifications on the response was not estimated, and the 
underlying true E–R relationship was not appropriately 
described.

A more relevant modeling approach, namely, the 
repeated-measures logistic regression model, was subse-
quently fitted to the overall response against ceritinib expo-
sure over time in to overcome the limitation of the time-inde-
pendent model. The exposure measure used was the average 
PK concentration within a specific window prior to each 
tumor response assessment. In ASCEND-4, a time interval 
of two cycles was used, as tumor assessment was performed 

every two cycles. The repeated-measures logistic regression 
model estimates a patient’s probability of having an overall 
response of confirmed CR/PR using the PopPK-predicted 
average ceritinib concentration over the 2-cycle period prior 
to each tumor assessment as a time-dependent covariate (i.e., 
Cavg,2-cycle). Similarly, for PK versus PFS, a time-dependent 
Cox regression model was used. The PopPK-predicted ceri-
tinib Cavg,2-cycle was also used as a time-dependent covari-
ate in the Cox model. With the time-dependent modeling 
approach, the trend between PK as assessed by Cavg,2-cycle 
and tumor response showed a slightly positive trend (Fig. 3). 
The odds ratio of having a confirmed CR/PR changed from 
0.77 (95% CI 0.62, 0.94) to 1.07 (95% CI 0.98, 1.17) with an 
increment of 200 ng/mL in ceritinib concentration (Table 1). 
As for the relationship between PK and PFS, an estimated 
4% increase in the risk for disease progression (HR = 1.04; 
95% CI 0.92, 1.17) was obtained with a PK increment of 
200 ng/mL, indicating no apparent relationship between PK 
and PFS (Table 2).

There are other solutions to mitigate the confounding fac-
tor in the context of E–R analysis. One good example is the 
tumor growth inhibition (TGI) model in which longitudinal 
tumor size is used as a pharmacodynamics (PD) biomarker 
[18, 19]. Another example is landmark analysis as proposed 
by Anderson et al. [12, 13].

The TGI model explicitly incorporates drug exposure 
over time to drive the drug effect on tumor size. However, 
one limitation of using tumor size as response measure is 
that new lesions and non-target lesions are not taken into 
account for evaluating anti-tumor response. Our proposed 
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time-dependent E–R modeling approach adopts the same 
concept as the TGI model with respect to utilizing lon-
gitudinal PK and response data to estimate drug effect. 
The only difference is that our model directly analyzes 
the clinical RECIST endpoints which are the primary end-
points in oncology clinical studies and are important for 
regulatory submission and approval. It is acknowledged 
that using the RECIST-defined odds ratio of CR/PR or sta-
ble disease (SD), quantitative anti-tumor activity informa-
tion is dichotomized (1 or 0); therefore, some information 
may be lost. For future work, TGI modeling approach may 
also be applied to ceritinib E–R analysis, so that results 
from both approaches can be compared to help us better 
understand the relationship between systemic exposure, 
PD biomarker, and efficacy.

For landmark analysis, in the context of exposure–PFS 
characterization, it can be performed by selecting a fixed 
timepoint, so that the analysis would not be impacted by 
patients who progressed or died earlier than this timepoint, 
and therefore likely to have higher exposure. Conditional 
on the patient still at risk for progression at the landmark 
timepoint, the analysis excluded patients who progressed 
or died prior to the landmark timepoint. The average Ctrough 
was re-derived using trough concentrations up to the land-
mark timepoint. Based on the conditional HR estimate from 
an exploratory landmark analysis at week 6 post randomi-
zation (data on file), a timepoint close to the median time 
to response of 6.1 weeks [5], there is no strong relation-
ship between exposure and efficacy in terms of PFS. Even 
though these results do not contradict with that from the 
time-dependent Cox analysis, the conditional nature of the 
landmark analysis limits the generalization of the results to 
the overall effect of ceritinib exposure on PFS as established 
by the time-dependent modeling approach. Another recog-
nized limitation of the landmark analysis is the arbitrary 
selection of the landmark timepoint and the exclusion of 
events prior to the landmark timepoint, leading to inclusion 
of only a subset of population for the analysis.

In conclusion, the time-dependent exposure–efficacy 
analysis of ceritinib illustrate that the dynamic E–R rela-
tionship in clinical trials with long duration could be better 
analyzed using time-dependent models. Using time-varying 
PK and the paired response outcome at each assessment 
interval, richer information at each time interval can be fully 
utilized for better characterization of drug effect on efficacy 
outcome.
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