
Vol.:(0123456789)1 3

Cancer Chemotherapy and Pharmacology (2018) 82:171–183 
https://doi.org/10.1007/s00280-018-3586-8

REVIEW ARTICLE

Extracellular vesicles and ctDNA in lung cancer: biomarker sources 
and therapeutic applications

Chengliang Huang1,2 · Sitong Liu1 · Xiang Tong1 · Hong Fan1 

Received: 18 December 2017 / Accepted: 20 April 2018 / Published online: 8 June 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Lung cancer is the leading cause of cancer death in the world. Recently, targeted therapy and anti-programmed cell death 
receptor 1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) immunotherapy have made great progress in treatment 
of lung cancer. However, responses to these therapies are variable, influenced by genetic alterations, high microsatellite insta-
bility and mismatch repair deficiency. Liquid biopsy of extracellular vesicles and circulating tumor DNA (ctDNA) emerges 
as a new promising non-invasive means that enables not only biomarker determination, but also continuous monitoring of 
cancer treatment. Notably, tumor extracellular vesicles play important roles in tumor formation and progression, and also 
serve as natural carriers for anti-tumor drugs and short-interfering RNA. In this review, we summarize the latest progress 
in understanding the relationships of extracellular vesicles and ctDNA in cancer biology, diagnosis and drug delivery. In 
particular, the application of extracellular vesicles and ctDNA in anti-PD-1/PD-L1 immunotherapy is discussed.
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Introduction

Lung cancer is one of the most prevalent cancers and the 
leading cause of cancer-related death worldwide [1, 2]. More 
than half of lung cancer patients have an advanced form of 
the disease at the time of diagnosis [2]. Delayed detection 
and a lack of reliable biomarkers and new drugs are major 
causes of the high mortality of lung cancer [3]. Despite the 
high death rate, a large number of patients with non-small 
cell lung cancer (NSCLC) can benefit from targeted thera-
pies for gene alterations such as EGFR, ALK and ROS1 
[4]. Recently, anti-programmed cell death receptor 1 (PD-1) 
and anti-programmed cell death ligand 1 (PD-L1) immuno-
therapy, which may be more efficient for cancer patients who 
have high PD-L1 expressions, high microsatellite instability 

(MSI-H) or mismatch repair deficiency (dMMR) [5, 6], has 
made great progress as a form of NSCLC treatment. The 
detection of genetic alterations, PD-L1 expression, MSI and 
dMMR status in patients with lung cancer, especially for 
NSCLC, is critical for subsequent therapy. However, it is 
always difficult and sometimes impossible to obtain tumor 
tissues from patients. Further, for patients suffering from a 
relapse after receiving chemotherapy or targeted therapy, the 
original somatic mutation may change, but a repeated biopsy 
is very difficult to obtain [7].

Extracellular vesicles (also called exosomes) were 
described as microvesicles with 5′-nucleotidase activity, 
released from neoplastic cells and other cells [8]. These 
vesicles usually display diameters of 40–120 nm, and are 
produced from multivesicular bodies (MVBs). Several 
mechanisms have been suggested to mediate the uptake of 
exosomes, including an exosome fusion with the cellular 
membrane of the recipient cell, juxtacrine signaling through 
receptor–ligand interactions and endocytosis by phagocyto-
sis [9] (Fig. 1). They usually contain the cytosolic milieu, 
including proteins, lipids, RNA, and DNA, appearing as 
‘mini-mes’ of the parent cell [10]. The composition of 
extracellular vesicles, including many kinds of important 
biomacromolecules as well as their relative stability makes 
them ideal candidates for clinical diagnosis [11].
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Circulating tumor DNA (ctDNA) is tumor-derived frag-
mented DNA found in the bloodstreams of cancer patients. 
The mechanisms of ctDNA release include apoptosis and 
necrosis from dying cells, as well as cell lysis of viable 
tumor cells [12, 13]. Cell-free DNA (cfDNA), is a broader 
category, which describes any DNA that is freely circulating 
in the bloodstream. It is commonly accepted that ctDNA is 
a subcategory of cfDNA, distinguished by that fact that it 
is released from tumor cells [13]. It has been demonstrated 
that analysis of ctDNA enables non-invasive monitoring of 
tumor evolution over time in clinical practice [14].

In this review, the latest progress in exosome and ctDNA 
cancer biology, diagnosis and drug delivery is summarized. 
The application of exosome and ctDNA analysis for choice 
of anti-PD-1/PD-L1 immunotherapy is also discussed.

Extracellular vesicles in lung cancer

Role of extracellular vesicles in lung cancer

Cancer cells usually secrete factors into their microenvi-
ronment to promote their own growth and protect against 
attacks by the immune system [15]. Exosomes, released 

from tumor cells, represent certain important characteris-
tics of tumors, and also are reported to play roles in tumor 
promotion (Fig. 2) [16–18]. In the initial phase of cancer, 
exosomes from malignant cells have the potential to induce 
transformation of normal cells, playing a role in tumorigen-
esis. For example, Abd et al. found [19] that exosomes from 
prostate cancer (PC) cells subvert adipose-derived stem cells 
to undergo neoplastic transformation. The underlying mech-
anisms include the downregulation of LATS2 and PDCD4, 
and association with trafficking by PC cell-derived exosomes 
of oncogenic factors, including H-ras and K-ras transcripts, 
onco-miRNAs, as well as the Ras superfamily of GTPases. 
Melo et al. [20] reported that exosomes derived from cells 
and sera of patients with breast cancer, which contained 
pre-miRNAs, RISC complex and Dicer, could cause tumo-
rigenesis in epithelial cells. In this way, cancer extracellular 
vesicles mediate efficient and rapid silencing of mRNAs to 
reprogram the target cell transcriptome.

The exosomes also play important roles in proliferation 
of lung cancer cells. Using a mast cell line HMC-1 consti-
tutively expressing the active form of the KIT receptor, and 
a NSCLC cell line A549, Xiao et al. [21] found that mast 
cell exosomes promoted the proliferation of lung adenocarci-
noma cells. The exosomes accomplished this by transferring 

Fig. 1   Biogenesis and genetic information foundation of tumor 
extracellular vesicles and ctDNA. Exosomes are produced from 
endosomes. The membrane of the endosomes bulges inward to form 
exosomes. During this process, proteins, nucleic acids and lipids are 
packed into exosomes. The causes for ctDNA release include apop-
tosis, necrosis from dying tumor cells, and active release from viable 

tumor cells through secretion. Occurrence of gene mutations and 
the statuses of microsatellite instability (MSI), mismatch repair defi-
ciency (dMMR) and methylation can be detected in order to monitor 
progress of cancer as well as provide guidance for targeted therapy or 
immunotherapy
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KIT to tumor cells, which initiated receptor–ligand interac-
tions in recipient cells.

Studies show that extracellular vesicles participate in 
angiogenesis, which is a key requirement for tumor growth. 
Inhibition of angiogenesis using monoclonal antibod-
ies blocking VEGF–VEGFR binding or small molecule 
tyrosine kinase inhibitors (TKIs) that inhibit the down-
stream VEGFR-mediated signaling is an important targeted 
therapy in NSCLC. Zhuang et al. [22] showed that tumor-
secreted exosomes participated in intercellular communi-
cation and promoted angiogenesis as well as migration in 
A549 cells. Mechanistic studies revealed that the exosomal 
miR-9 secreted by tumor cells activated the JAK-STAT path-
way. Moreover, hypoxic multiple myeloma cells produce 
exosomes containing miR-135b, which directly inhibited 
HIF-1 and thus enhances tumor angiogenesis [23].

Cai et al. [24] reported that activated T cell extracellular 
vesicles promoted tumor invasion by increasing the expres-
sion of MMP9 in lung cancer and melanoma, revealing a 
new mechanism of tumor immune escape that is mediated 
by exosomes. It has been found [25] that exosomal integrins 
are key tumor factors that regulate organotropic metasta-
sis. Tumor-derived exosomes taken up by organ-specific 
cells prepare the pre-metastatic niche, and treatment with 
exosomes from lung-tropic models redirects the metastasis 
of bone-tropic tumor cells. Rahman et al. [26] observed that 
exosomes derived from highly metastatic lung cancer cells 
and serum of patients with distant metastasis in lung cancer 
induced vimentin expression and epithelial-to-mesenchymal 

transition (EMT) in human bronchial epithelial cells 
(HBECs).

Fabbri et al. [27] showed that tumor-secreted exosomal 
miR-21 and miR-29a bound as ligands to receptors of the 
toll-like receptor (TLR) family, murine TLR7 and human 
TLR8, in immune cells, triggering a TLR-mediated prometa-
static inflammatory response and ultimately leading to tumor 
growth and metastasis. Zhou et al. [28] demonstrated that 
miR-105, which is characteristically expressed and secreted 
by metastatic breast cancer cells through exosomes, is a 
potent regulator of migration through targeting the tight 
junction protein ZO-1. Exosome-mediated transfer of can-
cer-secreted miR-105 efficiently destroyed the integrity of 
tight junctions against metastasis. Moreover, miR-105 could 
be detected in the circulation at the premetastatic stage, and 
its levels in blood and tumor tissue were associated with 
ZO-1 expression and metastatic progression in early-stage 
breast cancer. As paracrine agonists of TLRs, secreted miR-
NAs were found to be key regulators of the tumor microen-
vironment. This mechanism of action by exosomal miRNAs 
is implicated in tumor–immune system interactions, which 
are important for tumor growth and spread.

Exosomes are also important mediators of drug resist-
ance in lung cancer. Feng and his colleagues found that 
lung cancer cells A549 increased their exosome secretion 
after cisplatin treatment, and these exosomes could reduce 
sensitivity of receptor cells to cisplatin [29]. Further study 
showed that cisplatin resistance develops in an exosomal 
miR-100-5p-dependent manner with mTOR as its potential 

Fig. 2   Roles of tumor extracel-
lular vesicles in cancer. Extra-
cellular vesicles play important 
roles in tumor cell proliferation, 
mediating drug resistance, 
evading immune destruction, 
promoting inflammation, acti-
vating invasion and metastasis, 
inducing angiogenesis, resisting 
death and deregulating cellular 
energetics. Most hallmarks 
of cancer, with the exception 
of genome instability, can be 
promoted by tumor extracellular 
vesicles [16–18]
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target both in vitro and in vivo [30]. Incorporation of pacli-
taxel into exosomes increases antineoplastic activity by more 
than 50 times in multiple drug-resistant tumor cells, includ-
ing lung cancer cells [31]. An increasing number of reports 
reveal that long non-coding RNAs (lncRNAs) are critical 
regulators of diverse biological processes [32, 33]. A recent 
study conducted by Le et al. [34] revealed that lncARSR can 
be incorporated into exosomes and transmitted to sensitive 
cells, thus disseminating sunitinib resistance. After being 
transferred into sensitive cells, lncARSR promoted sunitinib 
resistance via competitively binding miR-34/miR-449 to 
facilitate AXL and c-MET expression in renal cancer cells.

Extracellular vesicles as biomarkers in lung 
cancer

As previously mentioned, extracellular vesicles contain pro-
teins, nucleic acids and lipids from tumor cells and provide 
an indication of many characteristics of tumors. They are 
ideal biomarkers, facilitating early diagnosis of lung cancer. 
The components of exosomes that could serve as biomark-
ers have been identified and characterized in several recent 
studies (Table 1).

Wang et al. [35] investigated differentially expressed exo-
somal miRNAs in pleural effusions of lung adenocarcinoma, 
tuberculous, and other benign lesions by using deep sequenc-
ing and quantitative polymerase chain reaction. As a result, 
they identified nine miRNAs which were preferentially repre-
sented in exosomes derived from the pleural effusions of lung 
adenocarcinoma in this study. Jakobsen et al. [36] profiled the 
exosome proteins from the plasma isolated from 109 NSCLC 

patients with advanced stage (IIIA–IV) disease and 110 
matched control subjects. Using the random forests method 
and extracellular vesicle arrays containing 37 antibodies tar-
geting lung cancer-related proteins, the authors established a 
combined 30-marker model which classifies patients with a 
75.3% rate of accuracy. A similar strategy was adopted by 
Sandfeld-Paulsen et al. [37]. By analyzing proteins attached 
to the exosomal membrane, they found that nine exosomal 
proteins show potential as prognostic markers in NSCLC. 
Among them, NY-ESO-1 was a strong prognostic biomarker in 
NSCLC [hazard rate (HR) 1.78 95% (1.78–2.44); p = 0.0001] 
after Bonferroni correction.

Besides the exosomal proteins, the exosomal RNA such as 
miRNA has been extensively investigated in recent years [38, 
39]. miRNAs are ~ 22 nt noncoding RNAs that play impor-
tant roles in regulating gene expression mainly at the post-
transcriptional level [40, 41]. Because of their low molecu-
lar weights, miRNAs are much more stable than other RNA 
such us mRNA and lncRNAs in the circulating system, which 
makes them ideal biomarkers for cancer diagnosis [42, 43].

Rabinowits et al. [44] conducted a study that enrolled 
27 lung adenocarcinoma patients and nine controls to study 
the expression of circulating exosome miRNAs. They found 
the mean miRNA concentrations from lung adenocarcinoma 
were much higher than those of the control group (158.6 vs. 
68.1 ng/mL, p < 0.001). This significant difference in total 
exosomal miRNA levels between lung cancer patients and 
controls indicated that circulating exosomal miRNA might 
be useful as a screening test for lung adenocarcinoma. How-
ever, a correlation between exosomal miRNA levels and dis-
ease stage was not observed, which may be due to limited 
sample size.

Using 30 plasma samples for wide-range miRNAs analy-
sis, Cazzoli et al. [45] identified four miRNAs as biomark-
ers to distinguish lung adenocarcinoma and carcinoma 
patients from healthy former smokers. They also identified 
six miRNAs that segregated lung adenocarcinoma and lung 
granuloma patients. Furthermore, exosomal miRNA profil-
ing in culture media of normal lung cells Beas-2b and lung 
cancer H1299 and in subcutaneous primary and recurrent 
lung cancer xenografts in nude mouse models [46] showed 
that a total of 77 miRNAs were observed to be significantly 
modulated in the H1299 cells, and two miRNAs, miR-21 and 
miR-155, were significantly upregulated in recurrent tumors 
compared to primary tumors.

Extracellular vesicles as tumor therapeutic 
cargos

As natural membrane-based vesicles, the lipid bilayer 
membrane of exosomes forms a natural protective shel-
ter and a sustained release capsule for various anti-cancer 

Table 1   Lung cancer biomarkers in extracellular vesicles

Exosomal miRNAs Exosomal proteins

Pleural effusion [35] Plasma sample [45, 46] Plasma sample [36]

miR-205-5p miR-378a CD14 CD146
miR-483-5p miR-379 EpCAM CD206
miR-375 miR-139-5p EGFR CEA
miR-200c-3p miR-200b-5p HB-EGF TNF RII
miR-429 miR-151a-5p Hsp90 MUC1
miR-200b-3p miR-30a-3p Tspan8 PLAP
miR-200a-3p miR-200b-5p SPA CD151
miR-203a-3p miR-629 TNF RI SFTPD
miR-141-3p miR-100 CD142 CD13

miR-154-3p NY-ESO-1 HER2
P53 HER3
MUC16 CD171
TSG101 TAG72
PD-L1 C-MET
AREG
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drugs [47]. Unlike liposomes and other synthetic drug nan-
oparticle carriers, exosomes contain membrane-anchored 
proteins that may enhance endocytosis, and thus have 
higher efficiency for delivering their internal contents [48, 
49]. Moreover, as the natural products of cells, exosomes 
are biocompatible and biodegradable, and thus have low 
toxicity and immunogenicity [50]. These characteristics 
of exosomes make them ideal tumor therapeutic cargos.

Using bovine milk as a scalable source of exosomes, 
Munagala et al. [51] reported that withaferin A shows 
enhanced anti-cancer and anti-inflammatory effects by 
exosomal delivery compared to free withaferin A in lung 
cancer cell lines and lung tumor xenografts in vivo. In 
another study [52], celastrol, a plant-derived triterpenoid 
inhibitor of Hsp90 and NF-κB pathways, displayed ther-
apeutic importance in various cancers. A stronger anti-
tumor effect of exosome-loaded celastrol compared to free 
drug was observed in human lung cancer cell xenograft 
model. Paclitaxel is one of most wildly used chemotherapy 
drugs in various cancers including lung cancer. Batrakova 
and her colleagues demonstrated [31] that incorporation of 
paclitaxel into exosomes increases antineoplastic activity 
by more than 50 times in multiple drug resistance cells. 
Similar results were obtained in a model of murine Lewis 
lung carcinoma pulmonary metastases.

siRNAs and miRNAs are powerful tools that can down-
regulate interesting oncogenes and inhibit tumor growth 
and metastasis. In lung adenocarcinoma cancer mice 
model, Xue et al. [53] reported that the small RNA com-
bination of miR-34a and K-ras siRNA improves therapeu-
tic responses over those observed with either small RNA 
alone. Furthermore, small RNA combination plus cispl-
atin-based chemotherapy prolongs survival in this model 
compared with chemotherapy alone. However, delivery 
of siRNA and miRNAs remain significant challenges and 
thus hamper their applications. Poor stability and short 
half-life in biological systems are big problems in miRNAs 
and siRNA delivery. As natural carriers of DNA and RNA, 
exosomes can protect nucleic acids from various DNases 
and RNases as well as carry them to target cells. Stud-
ies have shown that exosomes do not result in unwanted 
accumulation of therapeutic cargo in the liver, which is 
a negative side effect usually observed with nanoparticle 
therapeutic delivery systems. At the same time, exosomes 
can completely bypass the liver [54]. Surface proteins pre-
sent on exosomes provide them with the intrinsic ability 
to enter into target tissues. In contrast, artificial carriers 
lack surface proteins, and because of this they are unable 
to fuse with target cells [55]. For these reasons, exosomes 
are ideal carriers for delivering siRNA and miRNA to 
tumors for cancer therapy. An increasing number of stud-
ies are being conducted to test the usefulness of exosomes 

as therapeutic vehicles to successfully deliver miRNAs 
and siRNAs.

Alvarez-Erviti et al. [56] conducted a study of delivery of 
siRNA to the mouse brain by systemic injection of targeted 
exosomes. Shtam et al. [57] reported that using exosomes 
to deliver siRNA targeting RAD51 significantly suppresses 
the proliferation of cells and causes cell death in vitro. Very 
recently, it was found [58] that exosomes derived from nor-
mal fibroblast-like mesenchymal cells carrying siRNA tar-
geting mutated K-rasG12D, a common mutation in NSCLC 
and pancreatic cancer, could facilitate therapeutic targeting 
of oncogenic K-RAS in pancreatic cancer. Compared to 
liposomes, the siRNA-loaded exosomes target oncogenic 
K-RAS with an enhanced efficacy that is dependent on 
CD47, and is facilitated by micropinocytosis. Treatment 
with siRNA-loaded exosomes suppresses cancer in multi-
ple mouse models of pancreatic cancer, and significantly 
increases overall survival. This study not only suggests that 
exosomes exhibit a superior ability to deliver RNAi and sup-
press tumor growth compared to liposomes, but also offers 
insight into the therapeutic potential of exosomes in specific 
targeting of mutated oncogenes, which may minimize the 
toxicity of siRNAs.

Let-7 is a well-known tumor-suppressing miRNA that 
can inhibit expression of several oncogenic targets includ-
ing K-ras [59]. SNPs in the let-7 complementary sites in the 
3′UTR of K-ras results in increased levels of K-ras and poor 
prognosis for patients with lung and breast cancer [60, 61]. 
Shimbo et al. reported that EGFR-specific binding peptide 
GE11 could guide Let-7a-containing exosomes to EGFR-
positive cancer cells, which dramatically inhibits EGFR-
positive human breast cancer cell growth in a xenograft 
mouse model [55]. The mutation of K-ras is an important 
cause for resistance to EGFR-TKI [62], a preferred choice of 
EGFR-mutant NSCLC patients. The let-7-loaded exosomes 
may provide a novel therapy that may specifically benefit 
these patients. Moreover, as mentioned above, exosomes that 
contain mutated Kras-specific siRNA may help reduce TKI-
resistance caused by the mutation of K-ras.

Brain metastasis is an important cause of poor progno-
sis in lung cancer. Approximately 7.4% of NSCLC patients 
have brain metastases at presentation, and 30–50% develop 
brain metastases during the course of their disease [63]. For 
these patients, it is challenging to find a means of delivering 
drug across the blood–brain barrier (BBB). Because most 
antineoplastic agents have difficulty crossing the BBB and 
reaching sufficient concentrations, these drugs usually fail 
to benefit these patients [64]. Many nanoparticles-based 
approaches have been introduced to boost intracerebral 
drug concentration. However, other problems, such as 
nano-toxicity and rapid drug clearance by the mononuclear 
phagocyte system (MPS), have been reported [65]. Because 
exosomes are intracellular membrane-based vesicles from 
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the body’s own cells, they can be tailored to cross the BBB, 
thus improving intracerebral drug concentrations by decreas-
ing MPS drug clearance [50]. Using zebrafish as an ani-
mal mode, Yang et al. [66] delivered anticancer drugs by 
exosomes derived from brain endothelial cells, showing the 
potential of exosomes for brain delivery across the BBB and 
explaining their transport mechanisms.

Extracellular vesicles as tumor therapeutic 
agents

Besides functioning as tumor therapeutic cargo, due to 
preserving the molecular composition that bestows them 
with potent immunostimulatory properties, exosomes from 
immune cells exhibit anti-tumor activity on their own. 
For example, dendritic cell (DC)-derived exosomes (Dex) 
maintain the key functions of DCs in their ability to present 
tumor-associated antigens (TAAs) and to activate TAA-
specific immune responses. The outer membrane of these 
exosomes contains various antigen presentation (MHC class 
I, class II, CD1), adhesion (ICAMs), costimulatory (CD86, 
CD40), and docking (integrin) molecules, which facilitate 
the in vivo functionality of DC-derived exosomes [67, 68]. 
Hence, over the last decade, Dex have been developed as 
clinical cell-free cancer vaccines [69, 70]. Dex-based phase I 
and II clinical trials have been conducted in advanced malig-
nancies, showing the feasibility and safety of the approach, 
as well as the propensity of these nanovesicles to mediate T 
and NK cell-based immune responses in patients [71].

In 2005, a phase I clinical trial using TAA-loaded DC-
derived exosomes was conducted in NSCLC patients [72]. 
Recently, the phase II clinical trial using DC-derived 
exosomes for maintenance immunotherapy after first-line 
chemotherapy in NSCLC was reported by Besse et al. [73] 
(NCT01159288). An important innovation in phase II clini-
cal trial is the use of exosomes derived from TLR4L- or 
IFN-γ-maturated DCs, following discoveries that such Dex 
induce greater T cell stimulation compared to DC-derived 
exosomes from immature DCs. Seven patients (32%) expe-
rienced stabilization of their disease for over 4 months. One 
patient had a grade-3 hepatotoxicity. The phase II trial con-
firmed the capacity of Dex to boost the NK cell arm of anti-
tumor immunity in patients with advanced NSCLC.

Taken together, these results show that as natural prod-
ucts of cells, exosomal carriers provide advantages of both 
cell-based drug delivery and nanotechnology for efficient 
drug transport capable of overcoming various biological bar-
riers [74]. However, several limitations need to be further 
addressed. One of the major difficulties is the efficient load-
ing of extracellular vesicles with a therapeutic agent without 
significant changes in the structure and content of exosomal 
membranes. Another challenge is identifying and removing 

those tumor-supporting components from extracellular vesi-
cles, which is critical for exosome-mediated cancer therapy 
[47].

ctDNA as biomarkers in lung cancer

As mentioned above, detection of ctDNA in plasma or serum 
as biomarker can prevent the need for tumor tissue biopsies, 
which is advantageous for numerous diagnostic applications. 
Such a liquid biopsy facilitates repeated blood sampling and 
thus allows for monitoring of the changes during the natu-
ral course of the disease or during cancer treatment [75]. 
There are several problems that remain to be solved before 
its application. The major challenge is the sensitivity and 
specificity of ctDNA detection, exacerbated by its low abun-
dance in blood compared to cfDNA from normal cells [76].

Many attempts have been made to address these issues. 
Aaron et al. [77] developed a method called CAPP-Seq for 
NSCLC with a design covering multiple classes of somatic 
alterations that identified mutations in > 95% of tumors. 
They detected ctDNA in 100% of patients with stage II–IV 
NSCLC and in 50% of patients with stage I, with 96% spec-
ificity for mutant allele fractions down to ~ 0.02%. Very 
recently, Abbosh et al. [78] used a tumor-specific phyloge-
netic approach to profile the ctDNA of the first 100 TRAC-
ERx [Tracking NSCLC Evolution Through Therapy (Rx)] 
study participants. They identified independent predictors 
of ctDNA release and analyzed the tumor-volume detection 
limit. The results show that phylogenetic ctDNA profiling 
tracks the subclonal nature of lung cancer relapse and metas-
tasis, providing a new approach for ctDNA-driven thera-
peutic studies. More importantly, it was found that ctDNA 
detection could indicate NSCLC relapse at an earlier stage 
than could be indicated by CT imaging, with a median inter-
val of 70 days (range 10–346 days). In another TRACERx 
study, Jamal-Hanjani et al. [79] reported that intratumor 
heterogeneity, which is mediated through chromosome 
instability is associated with an increased risk of recurrence 
or death. This supports the potential value of chromosome 
instability as a prognostic predictor.

A large portion of NSCLC patients have drug-responsive 
gene alterations such as EGFR, ALK and ROS1, and as a 
result, can benefit from targeted therapies. Histological or 
cytological samples are routinely analyzed for EGFR muta-
tion. However, tumor samples are not always obtainable or 
of satisfactory quality in advanced NSCLC patients [75]. 
Further, most NSCLC patients with drug-responsive EGFR 
mutations develop resistance to first generation EGFR-TKI 
(e.g., gefitinib, erlotinib, afatinib) after about 10 months of 
EGFR-TKI therapy. It is preferable to obtain a biopsy in 
order to detect new mutations and characterize the mecha-
nism of resistance. While mutation analysis can allow for 
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targeting of drug-resistant NSCLC, obtaining sufficient tis-
sue for mutation analysis in patients with advanced disease 
is challenging, as invasive interventions may be ineffective 
and unsafe. Furthermore, mutations from the biopsy of a 
single tumor lesion may not reflect the patient’s complete 
disease burden, especially in heterogeneous cancers [80, 81]. 
Still, the benefit of genetic analysis is evident in the fact that 
EGFR T790M mutation is present in nearly 60% of patients 
whose disease progresses after initial response to sensitizing 
EGFR-TKI therapy [82, 83], and osimertinib (AZD9291) is 
a highly selective, irreversible TKI, that inhibits both EGFR-
sensitizing mutations and T790M [84]. Despite the chal-
lenges of genetic analysis, in clinical trials, all the selected 
patients were tested for T790M mutation [85].

ctDNA offers new opportunities to perform mutation 
analysis in patients for whom a tumor biopsy is unavailable. 
Several studies have demonstrated that mutations, includ-
ing the EGFR T790M mutation, detected in plasma ctDNA 
is highly concordant with those detected in tumor tissue in 
patients [86–88]. This indicates that ctDNA analysis as a 
liquid biopsy is a feasible and minimally invasive alterna-
tive to tissue biopsy. In addition, ctDNA has been used in 
molecular assessment for diagnosis, serial (real-time) moni-
toring of resistance mutations [89], and clinical management 
of patients [90].

The immunotherapeutic significance 
of extracellular vesicles and ctDNA

Early immunotherapy methods which employed inter-
leukin-2, vaccines, and interferons for NSCLC treatment 
were not successful [91]. Because smoking- and pollution-
associated lung cancers express the highest density of mis-
sense mutated genes of any cancer type, suppression of the 
antigen-presenting machinery may be the cause of immune 
resistance in these patients [92].

More recently, rapid progress has been made in 
the use of immune checkpoint inhibitors as a novel 

immunotherapy approach [93]. Immune checkpoints are 
proteins on the surface of immune cells, mostly found on 
the cytotoxic T cells. When bound to a specific ligand from 
tumor cells, they can transmit inhibitory signals to sup-
press the cellular adaptive immune response [92]. Many 
studies suggest that the predominant mechanism by which 
NSCLC evades detection and elimination by the immune 
system is exploitation of one such inhibitory pathway 
through the expression of PD-L1 (B7-H1) [94]. PD-L1 
binds to its receptor, PD-1, on surveilling lymphocytes and 
initiates a signaling cascade which leads to lymphocyte 
exhaustion, a state of impaired function [95].

Currently, two anti-PD-1 agents, nivolumab and pem-
brolizumab and one anti-PD-L1 agent, atezolizumab 
are in advanced stages of development for treatment of 
advanced or metastatic NSCLC (Table 2). In the Check-
Mate-057 trial, 582 patients were randomly assigned either 
to nivolumab group or to docetaxel group, nivolumab 
treatment demonstrated a survival benefit vs. docetaxel 
in refractory squamous NSCLC, reporting 41% reduction 
in risk of death, and better safety profile than standard-
of-care chemotherapy [96]. In a study examining patients 
with previously treated advanced NSCLC and having a 
minimum of 1% of tumor cells with PD-L1 expression, a 
total of 1,034 patients received either pembrolizumab at 
2 or 10 mg/kg, or docetaxel at 75 mg/m2 every 3 weeks. 
With pembrolizumab treatment, median overall sur-
vival (OS) for patients was 10.4 months at the dosage of 
2 mg/kg and 12.7 months at the dosage of 10 mg/kg vs. 
8.5 months with docetaxel intervention. OS was improved 
with both pembrolizumab doses, compared with docetaxel. 
In patients with at least 50% of tumor cells expressing 
PD-L1, OS was 14.9 months with pembrolizumab at 2 mg/
kg and 17.3 months with pembrolizumab at 10 mg/kg vs. 
8.2 months with docetaxel [4]. Based on these results, the 
FDA approved both nivolumab and pembrolizumab as 
single agents for the second-line therapy of patients with 
advanced NSCLC. Nivolumab treatment does not require 

Table 2   Three kinds of immune 
checkpoint inhibitors in non-
small cell lung cancer

mOS the median overall survival, OS% the rate of overall survival at 6 months, N nivolumab, pembroli-
zumab or atezolizumab

Nivolumab Pembrolizumab Atezolizumab

Therapeutic target PD-1 receptor PD-1 receptor PD-L1 receptor
Status of treatment Second-line therapy First-line therapy

Second-line therapy
Second-line therapy

Name of trials CheckMate-017
CheckMate-057

Keynote-024
Keynote-010

OAK

Study size (patients) 272
582

305
1034

850

mOS or OS% (N vs. docetaxel) 9.2 vs. 6.0 months
12.2 vs. 9.4 months

80.2 vs. 72.4%
12.7 vs. 8.5 months

15.6 vs. 11.2 months
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testing for PD-L1 expression, while PD-L1 overexpression 
is necessary for pembrolizumab treatment [97].

A deficiency in MMR causes genomes to be unstable 
and produces high numbers of somatic mutations in can-
cer cells. As proof-of-concept study, several tests have 
shown that cancers with MMR deficiency are sensitive to 
an immune checkpoint blockade with anti-PD-1 antibodies 
[6, 98, 99]. Recently, Le et al. [6] conducted a study in which 
86 patients with MMR deficiency were enrolled across 12 
different tumor types to evaluate efficacy of the PD-1 block-
ade. Objective radiographic responses were observed in 53% 
of patients and complete responses (CR) were achieved in 
21% of patients. Functional analysis in responding patients 
demonstrated rapid in vivo expansion of neoantigen-specific 
T cell clones that were reactive to mutant neopeptides found 
in tumors. These studies revealed that a large proportion of 
mutant neoantigens in MMR-deficient cancers made them 
sensitive to an immune checkpoint blockade, regardless of 
the cancers’ tissue of origin. Recently, the FDA approved the 
first cancer treatment, pembrolizumab, for any solid tumor 
with MSI-H or dMMR.

Recently, Rizvi et al. [100] reported that a higher non-
synonymous mutation burden in tumors is associated with 
improved objective response, durable clinical benefit, and 
progression-free survival after treatment with pembroli-
zumab. Because smoking- and pollution-associated lung 
cancers possess the highest density of missense mutations 
in expressed genes of any cancer type (roughly 12 muta-
tions per megabase of expressed exonic sequence [92]), 
lung cancer patients are expected to benefit most from PD-1 
inhibitors.

A large portion of patients still cannot benefit from these 
immunotherapies, and will suffer from disease progres-
sion. Notably, both pembrolizumab and nivolumab are very 
expensive, so the cost-effectiveness should be considered 
when choosing treatment strategies. The molecular deter-
minants that define this subset of tumors is still unclear, 
although several markers, including PD-L1 expression, RNA 
expression signatures, mutational burden and lymphocytic 
infiltrates, have been evaluated in specific tumor types [94, 
100, 101]. The use of pembrolizumab requires the detection 
of PD-L1 expression or MSI/dMMR status, which is usu-
ally determined through protein analysis and tumor tissue 
DNA analysis, respectively. This is challenging, due to the 
difficulty of obtaining biopsy tissues. Biopsies may cause 
significant discomfort to patients, and can sometimes be dif-
ficult or impossible to obtain due to location of the tumor.

Liquid biopsy of exosomes or ctDNA may serve as new 
ways of detecting the PD-L1 expression or MSI/dMMR 
status. Recently, microsatellite frameshift mutations in 
exosomal and cellular DNA and exosomal protein profiles 
were examined by PCR-based DNA fragment analysis and 
mass spectrometry, respectively [102]. It was found that the 

coding MSI phenotype of DNA mismatch repair-deficient 
CRC cells was maintained in their exosomal DNA. This 
groundbreaking study showed that exosomes and other liq-
uid biopsies may serve as important biomarkers for immu-
notherapy. Several studies are ongoing, building upon these 
findings. For example, researchers detect the expression of 
PD-L1 in circulating tumor cells and white blood cells from 
patients with advanced NSCLC [103]. Taken together, these 
results indicate that monitoring the mutation burden is very 
important for evaluating the response to PD-1-antibody-
based immunotherapy. For those patients whose tumor tis-
sues are unavailable, the exosome or ctDNA analysis can 
provide valuable information about mutation burden.

Conclusions and perspectives

Both ctDNA and tumor extracellular vesicles are natural 
products that bear many characteristics of the tumors from 
which they originate. They preserve many valuable pieces 
of molecular information and serve as promising biomark-
ers. However, there are still several problems remaining to 
be solved before their further application. The first chal-
lenge is improvement of sensitivity and specificity. There are 
three major methods to detect mutation via high-throughput 
sequencing, quantitative PCR (qPCR) and digital PCR. The 
latter two can only detect one site per reaction. Due to the 
low abundance of ctDNA and tumor extracellular vesicles in 
blood, the mutation ratio is sometimes even lower than the 
sequencing error rate. Some novel sequencing methods such 
as Duplex Sequencing [104] and o2n-seq [105] have been 
developed to improve sequencing sensitivity.

Another challenge is the inconsistent results obtained 
when using ctDNA or exosomal DNA as biomarkers. The 
inconsistency can probably be explained by low sensitiv-
ity, lack of uniformity in technical approaches, variations 
in sample type preference (serum vs. plasma), differing 
storage conditions, detection of candidate mutations and 
insufficiently sensitive detection techniques. A possible 
solution is to establish standardization of all experimental 
steps, including storage, purification, detection and analysis. 
Cross-validation and external validation should also be con-
ducted during the experiments.

The tumor-specific mutations are widely used as mark-
ers to distinguish normal cell DNA from ctDNA. However, 
the information is limited. Recently, Sun et al. [106] and 
Lehmann-Werman et al. [107] reported that the methylation 
information of circulating DNA could be used to identify 
tissue-specific DNA.

With the development of analytical technologies and clin-
ical trials of new targeted drugs, more and more patients will 
benefit from the use of ctDNA and extracellular vesicles as 
biomarkers.
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