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Abstract
Purpose  To explore the levels of thioguanine incorporated into DNA (DNA-TG), and erythrocyte levels of 6-thioguanine 
nucleotides (Ery-TGN) and methylated metabolites (Ery-MeMP) during 6-mercaptopurine (6MP)/Methotrexate (MTX) 
therapy of childhood acute lymphoblastic leukemia (ALL) and the relation to inosine triphosphatase (ITPA) and thiopurine 
methyltransferase (TPMT) gene variants.
Methods  Blood samples were drawn during 6MP/MTX maintenance therapy from 132 children treated for ALL at Rig-
shospitalet, Copenhagen. The samples were analysed for thiopurine metabolites and compared to TPMT (rs1800460 and 
rs1142345) and ITPA (rs1127354) genotypes.
Results  Median DNA-TG (mDNA-TG) levels were higher in TPMT and ITPA low-activity patients as compared to wildtype 
patients (TPMTLA 549 vs. 364 fmol/µg DNA, p = 0.007, ITPALA 465 vs. 387 fmol/µg DNA, p = 0.04). mDNA-TG levels 
were positively correlated to median Ery-TGN (mEry-TGN)(rs = 0.37, p = 0.001), but plateaued at higher mEry-TGN lev-
els. DNA-TG indices (mDNA-TG/mEry-TGN) were 42% higher in TPMTWT patients as compared to TPMTLA patients but 
no difference in DNA-TG indices was observed between ITPAWT and ITPALA patients (median 1.7 vs. 1.6 fmol/µg DNA/ 
nmol/mmol Hb, p = 0.81). DNA-TG indices increased with median Ery-MeMP (mEry-MeMP) levels (rs = 0.25, p = 0.001).
Conclusions  TPMT and ITPA genotypes significantly influence the metabolism of 6MP. DNA-TG may prove to be a more 
relevant pharmacokinetic parameter for monitoring 6MP treatment intensity than cytosolic metabolites. Prospective trials 
are needed to evaluate the usefulness of DNA-TGN for individual dose adjustments in childhood ALL maintenance therapy.

Keywords  Acute lymphoblastic leukemia · Thiopurines · Pharmacology · Thiopurine methyltransferase · Inosine 
triphosphatase

Introduction

Genetic variation is of particular importance in drugs with 
a narrow therapeutic index, such as thiopurines, which are 
the most essential drugs in the maintenance treatment of 
childhood acute lymphoblastic leukemia (ALL). To date, 

there is only one widely accepted clinical guideline for dose 
modification based on gene status which is thiopurine dosing 
based on thiopurine methyltransferase (TPMT) (rs1800460 
and rs1142345) genotype. Other gene variants such as nudix 
hydrolase 15 (NUDT15) (rs1168553232 and rs186364861) 
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[1–7] and inosine triphosphatase (ITPA) (rs1127354) have 
been associated with 6-MP treatment-related toxicity [8–12].

6MP is a pro-drug and its cytotoxicity depends on con-
version to 6-thioguanine nucleotides (TGN) which can be 
incorporated into DNA (DNA-TG). DNA-TG may mismatch 
during DNA replication, which activates the mismatch repair 
system. Continuous DNA-TG mismatching will eventually 
lead to apoptosis or mutations in the DNA copy strand [13]. 
TPMT methylates 6MP and thereby reduces the amount of 
drug available for TGN formation [14, 15]. However, the 
methylated metabolite methyl-thioinosine monophosphate 
(Me-TIMP) is a potent inhibitor of the purine de novo syn-
thesis, resulting in a lower level of endogenous purines for 

incorporation into DNA, and a relatively higher level of thio-
gunanine nucleotides (TGN), which in the end enhances the 
incorporation of TGN into DNA [16, 17].

ITPA catalyzes the hydrolysis of thioinosine triphosphate 
(TITP) to thioinosine monophosphate (TIMP). Through this 
loop, TITP is reconverted to TIMP, which can then increase 
TGN levels. NUDT15 is hypothesized to dephosphorylate 
the thiopurine active metabolite TGTP to TGMP, thus pre-
venting the incorporation into DNA and reducing the desired 
cytotoxic effect of 6MP (Fig. 1).

SNPs in the TPMT gene result in approximately 90% 
of Caucasians being homozygous for high TPMT activity 
(TPMTWT), 10% carry one low-activity allele (TPMTLA), 

Fig. 1   Simplified scheme of the metabolism of 6MP and the enzymes 
involved. 6MP 6-mercaptopurine, HPGRT​ hypoxanthine–guanine 
phosphoribosyltransferase, TIMP Thioinosine monophosphate, 
IMPDH inosine monophosphate dehydrogenase, GMPS guanosine 
monophosphate synthase, TGMP thioguanosine monophosphate, 
TGDP thioguanosine diphosphate, TGTP thioguanosine triphos-

phate, ITPA inosine triphosphate pyrophosphatase, TPMT thiopurine 
methyltransferase, MeMP methylmercaptopurine, XO xanthine oxi-
dase, TIDP thioinosine diphosphate, TITP thioinosine triphosphate, 
NUDT15 Nudix hydrolase 15. Deoxy forms ignored. Illustration 
made in Illustator
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and 1 in 300 carries two low-activity alleles and are TPMT-
deficient (TPMTDE) [7]. The frequency of ITPALA alleles 
is 5–7% in Caucasians and confers a reduction in enzyme 
activity by approximately 75 and 100% among heterozygous 
and homozygous individuals, respectively [18, 19]. ITPA 
and NUDT15 genetic variations are both most common in 
the Asian population and have both proved to significantly 
affect thiopurine toxicity [3, 7, 11, 20–22;7;11;20–22].

In a single-institution study, we explored the effect of 
TPMT and ITPA genotypes on the levels of the end point 
metabolite DNA-TG and its relation to levels of Ery-TGN 
and Ery-MeMP in 132 children with ALL undergoing 6MP/
MTX maintenance treatment.

Patients and methods

Childhood ALL patients diagnosed at the University Hos-
pital, Rigshospitalet, before December 31st, 2011 and 
treated according to the ALL2000 or ALL2008 protocols 
were eligible for this study. Infants and patients allocated 
to the high-risk treatment (HR) were excluded, as their 
treatment deviate substantially from standard risk (SR) 
and intermediate risk (IR) patients [23, 24]. Baseline 

parameters of the 132 patients who met the inclusion 
criteria and for which blood samples were available are 
shown in Table 1. Children diagnosed with ALL in the 
Nordic and Baltic countries are treated according to the 
common Nordic Society of Pediatric Hematology and 
Oncology (NOPHO) protocols, which are updated approxi-
mately every eighth year. In the NOPHO ALL2000 proto-
col, maintenance therapy was initiated at week 17 for SR 
patients and week 30 for IR patients; and in the ALL2008 
protocol, at week 20 and 22, respectively. Regardless of 
risk group, the initial dose of oral 6MP was 75; 50 and 
1–10 mg/m2/24 h for TPMTWT, TPMTLA and TPMTDE 
patients. No dose adjustments according to ITPA variants 
were done. The starting dose of oral MTX was 20 mg/m2/
week. 6MP and MTX doses were subsequently adjusted by 
a target white blood cell count (WBC) of 1.5–3.5 × 109/l 
for patients treated according to the NOPHO ALL2000 
protocol and 1.5–3.0 × 109/l for patients treated accord-
ing to the NOPHO ALL2008 protocol. During the first 
year of maintenance therapy, treatment intensifications 
were given at 4-week intervals, with alternating high-dose 
MTX (5 g/m2/24 h with Leucovurin rescue) or Vincristine 
(2.0 mg/m2)/Dexamethasone (6 mg/m2/day for five days), 
until five high-dose MTX infusions had been given. The 

Table 1   Descriptive statistics

Data distribution on gender, risk group and genotype
WT wild type patients, LA low-activity patients
P values were calculated performing Chi-square test and show no significant difference between WT and 
LA patient bases on gender, risk group and genotype. Percentage on vertical total in brackets. ITPA geno-
type was not obtained in 17 patients. No TPMT-deficient patients were found in this cohort

TPMTWT TPMTLA Total
p value

ITPAWT ITPALA Total
p value

Gender < 0.12 < 0.18
 Female
n. 60 (45)

51 (43) 9 (64) 60 (45) 51 (48) 2 (22) 53 (46)

 Male
n. 72 (55)

67 (57) 5 (36) 72 (55) 55 (52) 7 (78) 62 (54)

 Total
n. 132

118 14 132 106 9 115

Risk group < 0.3 < 0.58
 SR
n. 70 (53)

64 (54) 6 (43) 70 (53) 56 (53) 5 (56) 61 (53)

 IR
n. 62 (47)

54 (46) 8 (57) 62 (47) 50 (47) 4 (44) 54 (47)

 Total
n. 132

118 14 132 106 9 115

TPMT genotype < 0.69
 TPMTWT

n. 118 (89)
93 (88) 8 (89) 101 (88)

 TPMTLA

n. 14 (11)
13 (12) 1 (11) 14 (12)

 Total
n. 132

106 9 115
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second maintenance therapy phase (oral 6MP/MTX only, 
except for age-adjusted, intrathecal MTX at 8-week inter-
val for IR patients) was initiated at week 56/70 (SR/IR, 
ALL 2000), or at week 58/66 (IR/IR, ALL2008). Treat-
ment was discontinued 130 weeks after diagnosis in both 
protocols.

From January 2001 to January 2012, blood samples 
were collected from all patients treated at the Department 
of Pediatrics and Adolescent Medicine, The University 
Hospital Rigshospitalet, Copenhagen after approval by 
the Ethical Committee of Copenhagen (no. H-2-2010-
002) and informed consent by the parents, according to 
the Declaration of Helsinki. For DNA-TGN analysis, 2.095 
blood samples collected during maintenance therapy were 
available with a median of 23 samples per patient. Five 
patients had only one sample taken. Determination of Ery-
TGN and Ery-MeMP concentrations had been performed 
in 2,636 samples, and 2,743 samples, respectively. All 
children diagnosed with ALL and treated according to the 
ALL2000 and ALL2008 protocols are routinely genotyped 
for TPMT polymorphisms (rs1800460 and rs1142345). As 
a part of this study, all patients were genotyped for ITPA 
polymorphisms (rs1127354) with TaqMan technology. 
ITPA genotypes were verified by independent analyses by 
a collaborating research group at Linköping University 
[25].

DNA‑TG quantification

DNA-TG was quantified by derivatizing approximately 2 
µg of whole blood DNA with chloroacetaldehyde in a phos-
phate buffer at 100 °C for 3 hours to produce etheno(ε)-TG 
and ε-guanine. The samples were cleaned on a strong cat-
ion exchanger (Strata-X-C, 30 mg, Phenomenex) and dried 
under flowing N2 (40 °C). After resuspension in 200 µl 0.1% 
formic acid (FA)/95% acetonitrile ε-TG and ε-guanine were 
quantified by hydrophilic interaction liquid chromatogra-
phy (HILIC) on an aquity tandem mass spectrometry, as 
described by Jacobsen et al. [26].

Statistics

Data analyses were performed using SPSS version 22. 
Where indicated, arithmetic means (prefix m) of DNA-TG, 
Ery-MeMP and Ery-TGN were calculated for each patient 
based on all the samples available during maintenance ther-
apy. DNA-TG indices were calculated as mDNA-TG/mEry-
TGN. Correlation of continuous variables was assessed by 
Spearman’s rank correlation coefficient (rs). 6MP metabolite 
levels across genotypes were compared with Mann–Whitney 
U tests. Distribution of gender, risk group and genotype were 

assessed by Chi-square test. P values < 0.05 were regarded 
statistically significant.

Results

Patients’ baseline parameters are presented in Table 1. DNA 
for ITPA genotyping was not available for 17 patients, but 
ITPA allele frequencies for the remaining 115 patients were 
in Hardy–Weinberg equilibrium (p = 0.89). Furthermore, 
distributions of patients with TPMT WT, LA and DE geno-
types were in line with reported frequencies among Cauca-
sians [27] and as expected the G460A and A719G variants 
were in strong disequilibrium. None of the included patients 
carried low-activity alleles for both ITPA and TPMT.

TPMTLA patients had significantly higher levels of 
mEry-TGN (median 491 vs. 232 nmol/mmol Hb, p = 0.001) 
(Fig. 2b; Table 2) and mDNA-TG (median 549 vs. 364 fmol/
µg DNA, p = 0.007) (Fig. 2a; Table 2), but significantly 
lower levels of mEry-MeMP (median 6193 vs. 17,499 nmol/
mmol Hb, p = 0.001) (Fig. 2c; Table 2) and DNA-TG indi-
ces (median 1.2 vs. 1.7 (fmol TG/µg DNA)/(nmol TG/
mmol Hb), p = 0.007) (Fig. 2d; Table 2), when compared to 
TPMTWT patients.

We found significantly higher levels of mDNA-TG 
(median 465 vs. 387 fmol/µg DNA, p = 0.04) in ITPALA 
as compared to ITPAWT patients (Fig. 2.a, Table 2). How-
ever, ITPALA patients did not differ significantly from 
ITPAWT patients with respect to mEry-TGN (median 305 
vs. 260 nmol/ mmol Hb, p = 0.086) (Fig. 2b; Table 2), mEry-
MeMP (median 20,866 vs. 15,902 nmol/mmol Hb, p = 0.12) 
(Fig. 2c; Table 2), and DNA-TG indices (median 1.7 vs. 1.6 
fmol/µg DNA/ nmol/mmol Hb, p = 0.81) (Fig. 2c; Table 2).

Gender, age, and number of samples available per patient 
were not significantly associated with metabolite levels. 
SR patients had higher levels of mEry-MeMP (17,759 vs. 
14,286 nmol/mmol Hb, p = 0.021) and DNA-TG indices 
(1.8 vs. 1.5, p = 0.041), when compared to IR patients. Risk 
group was not significantly associated with mDNA-TG 
(p = 0.138) or mEry-TGN levels (p = 0.69) (Table 2).

Levels of mDNA-TG were positively correlated with 
mEry-TGN (rs = 0.37, p = 0.001) (Fig. 3). In addition, mEry-
MeMP levels were positively correlated to DNA-TG indices 
(rs = 0.33, p = 0.001) (Fig. 4).

Discussion

It is well established that TPMTLA patients experience 
higher Ery-TGN levels and lower relapse rates as compared 
to TPMTWT patients, and some groups treat with reduced 
initial 6-MP doses to prevent unnecessary toxicity [28–31]. 
However, 6MP dose adjustments are guided by white blood 
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cell count (WBC) aiming for WBC of 1.5 −3.0 × 109 L [32] 
to reach equitoxic treatment [33–35], and it remains uncer-
tain if patients benefit from this upfront dose reduction.

Findings indicate room for improvement to better tai-
lor treatment with 6MP. DNA-TG is the principal cyto-
toxic metabolite, and we find significantly higher levels in 
TPMTLA patients as compared to TPMTWT patients. Contra-
dictory to our findings, Ebbesen et al. found similar median 
levels of mDNA-TG in TPMTLA and TPMTWT patients, 
but non-significantly more TPMTLA patients had very high 
DNA-TG levels. The diverse findings may reflect the higher 
number of samples in the current study. In addition, our 
center extensively focusses on maintenance treatment, and 
the treatment intensity may overall have been higher than in 
the cohort of Ebbesen et al. [36].

The trend of DNA-TG levels to reach a plateau at high 
Ery-TGN levels indicates that with increasing Ery-TGN 
levels, proportionally less will be incorporated into DNA. 
This finding is in accordance with a previous study by 
Hedeland et  al. [16]. This limit of incorporation may 

explain why TPMTLA patients have and tolerate higher 
levels of Ery-TGN without unacceptable myelosuppres-
sion, not least since they also have lower levels of methyl-
ated 6MP metabolites and thus less inhibition of purine 
de novo synthesis.

To achieve a more adequate understanding of the 6MP 
metabolism, we explored the impact of the enzyme ITPA, 
as recent studies have indicated that a SNP in the gene-
encoding ITPA is associated with adverse drug reactions in 
thiopurine treatment [37, 38]. Moreover, ITPALA has been 
associated with high levels of methylated 6MP metabolites 
[10, 39], higher risk of fever and neutropenia [10, 20, 40], 
hepatotoxicity [12, 20, 41], and possibly an increased risk 
of relapse [9, 42].

We found significantly higher levels of mDNA-TG, but 
only moderate, non-significant higher mEry-MeMP lev-
els in ITPALA patients as compared to ITPAWT patients. 
Methylated thiopurine metabolites has previously been 
shown to be significantly correlated to the incorporation 
of TGN into DNA [43]. ITPALA patients may reconvert 
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less TITP to TIMP resulting in higher levels of MeTITP. 
We speculate that these will add to the pools of methylated 
metabolites, inhibiting the purine de novo synthesis and 
leading to lower levels of endogenous purines to compete 
with TGN to be incorporated into DNA, as also suggested 
by Stocco et al. [8, 10]. Still, the difference in mDNA-TG 
levels observed for the ITPA genotype in this study is not 
explained by neither mEry-TGN levels nor mEry-MeMP 
levels alone. We speculate that the explanation could be 

found in the trends of ITPALA patients having higher levels 
of mEry-TGN and mEry-MeMP metabolites; on their own 
the trends are too small to reach statistical significance, but 
their joint effect may result in the higher levels of mDNA-
TG observed in ITPALA patients.

As outlined above, this present study supports that poly-
morphisms in the genes encoding the enzymes TPMT and 
ITPA significantly modifies the metabolism of 6MP during 

Table 2   Results

Overview of median values of total and genotype, risk group and gender divided DNA-TG, Ery-TGN, 
MeMP and DNA-TG-index. Corresponding 25 and 75 percentiles in brackets. DNA-TG indices were calcu-
lated as mDNA-TG/mEry-TGN. p values from Mann–Whitney U test

mDNA-TG, fmol/µg DNA mEry-TGN, 
nmol/mmol hb

mEry-MeMP, nmol/mmol hb DNA-TG index

Total 384 (272–458) 261 (178–305) 16,232 (9787–22,233) 1.7 (1.1–2.1)
TPMTWT 364 (268–445) 232 (174–263) 17,499 (12,796–22,903) 1.7 (1.1–2.1)
TPMTLA 549 (317–716) 491 (346–653) 6193 (1396–10,366) 1.2 (0.7–1.5)
p value < 0.007 < 0.001 < 0.001 < 0.007
ITPAWT 387

(287–448)
260 (175–304) 15,902 (8583–22,159) 1.7 (1.1–2.1)

ITPALA 465 (419–558) 305 (225–366) 20,866 (14,389–23,291) 1.6 (1.2–1.9)
p value < 0.04 < 0.086 < 0.12 < 0.81
SR 393 (317–461) 254 (176–302) 17,759 (13,433–23,639) 1.8 (1.2–2.2)
IR 371 (255–450) 269 (185–318) 14,286 (7,358–20,517) 1.5 (1.1–1.8)
p value < 0.14 < 0.69 < 0.021 < 0.041
Male 395 (312–461) 254 (192–263) 17,418 (12,426–21,818) 1.7 (1.2–2.1)
Female 369 (260–442) 268 (173–328) 14,823 (7024–22,469) 1.6 (1.0–2.0)
p value < 0.23 < 0.91 < 0.24 < 0.22
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maintenance treatment of childhood ALL resulting in higher 
levels of mDNA-TG in both TPMTLA and ITPALA patients.

A shortcoming of this study is that free cytosol 6TGN 
and methylated metabolite levels are measured in erythro-
cytes as a surrogate for nucleated cells, including lympho-
blasts. This may not accurately reflect the metabolic status 
of the latter target population, as clinical studies have shown 
major differences between Ery-TGN and leukocyte cyto-
sol 6TGN levels in the same blood samples [44;45]. This 
study is also limited by the fact that individual treatment 
doses and hematological parameters were not collected. The 
TPMTLA patients are treated with reduced doses as com-
pared to TPMTWT patients to reach equitoxic treatment; but 
our results indicate that this may not be achieved.

In conclusion, our findings support that measurements 
of DNA-TG may prove to be a more relevant parameter for 
monitoring 6MP treatment intensity, since it combines the 
effects of TGN and MeMP levels.
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