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Abbreviations
MAPs	� Microtubule-associated proteins
EB	� End-binding family protein
CLIP-170	� Cytoplasmic linker protein 170
Nlp	� Ninein-like protein
TACC	� Transforming acidic coiled coil
Rb	� Retinoblastoma protein
ERK1/2	� Extracellular signal-regulated kinase 1/2
SIK2	� Salt Inducible Kinase 2
Cep70	� Centrosomal protein 70
SAC	� Spindle assembly checkpoint
APC/C	� Anaphase promoting complex/cyclosome
KIF	� Kinesin superfamily protein
BLBC	� Basal-like breast cancer

Introduction

As one of the major components of the cytoskeleton, 
microtubules are key players in cellular processes such as 
cell migration, intracellular trafficking, and DNA segre-
gation during mitosis [1, 2]. Microtubules are assembled 
from 13 laterally associating protofilaments, which in 
turn consist of α- and β-tubulin heterodimers aligned in 
a head-to-tail pattern (Fig.  1a). The alignment of α- and 
β-tubulin heterodimers leads to the polarity of the micro-
tubule, with β-tubulin exposed at one end (plus end) and 
α-tubulin exposed at the other end (minus end) [1]. In most 
mammalian cells, the minus ends of microtubules are clus-
tered at microtubule organizing centers, while the plus ends 
face the cell cortex [3]. Most microtubules in the cells are 
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in consistent transitions between growth and shrinkage by 
associating and dissociating of α/β-tubulin heterodimers at 
both ends, which is known as dynamic instability (Fig. 1b) 
[4]. The highly dynamic properties of microtubules are 
essential for many cellular activities, particularly cell divi-
sion [1]. Mounting evidence shows that dysregulation of 
microtubule dynamics contributes to the development of 
serious diseases, including cancer [5–8].

Vinca alkaloids and taxanes are two families of anti-
microtubule agents wildly used in clinical treatment of can-
cer including solid tumors and hematological malignancies 
[9]. Paclitaxel, a member of the taxane family, is a natural 
alkaloid originally isolated from the bark of a tree, Taxus 
brevifolia. The anti-tumoral activity of paclitaxel was dis-
covered in the 1970s and it was first approved by the US 
FDA in 1992 for treatment of ovarian cancer. In addition, 
paclitaxel has proven to be effective in other solid tumors, 
including breast cancer and non-small-cell lung cancer [10, 
11]. Preliminary mechanism showed that paclitaxel acts by 
stabilizing cellular microtubules and blocking chromosome 
segregation (Fig. 1c) [12]. Moreover, it is established that 
the action of paclitaxel in the microtubule network occurs 
through interaction with β-tubulin. In the following years, 
β-tubulin functional domains and the domains containing 
paclitaxel-binding sites were identified [13].

Despite the great success of paclitaxel, the variable 
response activity of patients to the drug limits its clinical 
utility. Acquired resistance to paclitaxel is one of the most 
significant reasons for its failure in chemotherapy [14]. 

Previous studies have demonstrated that paclitaxel resist-
ance is attributable to various mechanisms: elevated drug 
efflux that results from upregulation of membrane trans-
porters such as P-glycoprotein [15, 16]; alterations in the 
expression of β-tubulin isotypes [17]; and changes in apop-
totic regulatory proteins such as Bcl-2 [18–20]. In spite of 
decades of great efforts worldwide, the precise mechanisms 
underlying paclitaxel activity remain largely unknown. In 
this review, we will focus on the roles of MAPs (microtu-
bule-associated proteins) in regulation of paclitaxel activ-
ity in different types of cancers. Elucidation of these issues 
might provide significant diagnostic or prognostic value, as 
well as potential targets for cancer chemotherapy. We cat-
egorize MAPs into canonical MAPs, plus-end-binding pro-
teins, centrosomal proteins, and other proteins that might 
affect the properties and functions of microtubule, and 
detail their roles in the regulation of paclitaxel activity.

Distinct roles of MAPs in paclitaxel activity 
regulation

MAPs represent a large number of proteins that act in 
concert with the microtubule network, and regulate 
microtubule properties and functions [21–24]. Canoni-
cal MAPs are structural MAPs, such as MAP2 and tau. 
MAPs regulate microtubule behavior by binding micro-
tubules either at the microtubule ends or on the outside 
of the microtubule wall or interacting with the soluble 

Fig. 1   a A schematic illustra-
tion showing that microtubule 
dynamics are regulated by dif-
ferent types of MAPs, including 
canonical MAPs, microtubule 
plus-end-tracking proteins, cen-
trosomal proteins, microtubule 
motor proteins, etc. The action 
of paclitaxel in the microtu-
bule network occurs through 
binding to β-tubulin. b, c HeLa 
cells were stained with anti-
tubulin antibody, and then with 
fluorescein-conjugated second-
ary antibodies. b Microtubules 
are highly dynamic structures 
and undergo frequent transitions 
between growth and shrink-
age, a phenomenon known as 
dynamic instability. c Paclitaxel 
promotes microtubule assembly 
and disrupts microtubule 
dynamics
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tubulin pool (Fig. 1c) [25, 26]. MAPs participate in vari-
ous microtubule-mediated cellular activities by modu-
lating microtubule behavior such as stability, assembly 
or bundling [21, 26, 27]. Accumulating evidence shows 
that changes in the expression or post-translational mod-
ification of MAPs lead to the alteration of microtubule 
dynamics, and are associated with the development of 
serious diseases including cancer [5, 6, 28, 29]. The dys-
regulation of microtubule dynamics by MAPs may result 
in tumor resistance to chemotherapeutic agents that tar-
get microtubules, and many MAPs with aberrant expres-
sion have been shown to be correlated with susceptibil-
ity to paclitaxel [30, 31].

Tau, a microtubule-associated protein, promotes tubu-
lin polymerization and stabilizes microtubules [32]. It is 
well known that tau plays an essential role in the regula-
tion of nervous system, and is significantly involved in 
the pathogenesis of Alzheimer’s disease as well as the 
tauopathies [33]. Overphosphorylation of tau, mainly 
occurring in the axons, contributes to neurofibrillary 
degeneration and is associated with cell dysfunction and 
death. Tau binds to β-tubulin in the same site as pacli-
taxel, and consequently competes with the drug. An 
in  vitro study shows that preincubation of tubulin with 
Tau decreases paclitaxel binding and reduces paclitaxel-
induced microtubule polymerization in breast cancer cell 
line [30, 34]. In addition, high expression of Tau shows 
a significant association with poor response to paclitaxel 
chemotherapy in patients with metastatic breast can-
cer [35]. Moreover, reduction of Tau expression sensi-
tizes ovarian carcinoma to the paclitaxel treatment [36]. 
These studies show that Tau expression may act as a pre-
dictor of response to paclitaxel in cancer patients.

MAP2 overexpression has been observed in several 
types of cancers [37–41]. Similar to tau, MAP2 also 
binds to and stabilizes microtubules. However, they 
regulate paclitaxel activity of cancer cells via different 
mechanisms. Increased expression of MAP2 in breast 
cancer cell lines leads to increased paclitaxel sensitiv-
ity [42]. Gene expression analysis shows that the expres-
sion level of MAP2 is significantly higher in breast can-
cer patients achieving a pathologic complete response 
to neoadjuvant paclitaxel with radiation, indicating that 
patients with elevated MAP2 expression might show a 
better response to paclitaxel treatment. Moreover, MAP7 
domain-containing protein 3 (Mdp3), a microtubule 
binding protein, has been shown to be involved in breast 
cancer growth and metastasis [7]. Besides, Mdp3 pro-
motes microtubule assembly and stability by interacting 
with tubulin and microtubules [43]. It will be interest-
ing to investigate the role of Mdp3 in paclitaxel activity 
modulation in cancers, which might be a novel predict-
ing target in cancer chemotherapy.

Microtubule plus‑end‑binding proteins 
that promote paclitaxel sensitivity

Microtubule plus-end-binding proteins (+TIPs) localize to 
the growing plus ends of microtubules and couple micro-
tubules to cellular structures, such as chromosomes and 
cell cortex [44, 45]. Microtubule plus-end-binding proteins 
regulate microtubule dynamics and functions. Amounting 
studies have emphasized the central role of end-binding 
family proteins (EB) among the +TIPs [45–49]. Mammals 
contain three EBs (EB1-3), sharing 57–66% sequence iden-
tity, are encoded by various genes [50]. EB proteins bind 
directly to the growing microtubule plus ends via their 
N-terminal calponin homology domain, whereas their C 
terminus is important for associating with other +TIPs 
[51]. Among EB family proteins, EB1 and EB3 promote 
microtubule assembly and stabilization [52]. Interestingly, 
EB1 and EB3 sensitize microtubules to microtubule-target-
ing agents by regulation of microtubule dynamics [53–55].

It is recently reported that the expression of EB1 in 
breast tumor tissues correlates with the clinical response of 
the patients to paclitaxel-based chemotherapy [56]. Mecha-
nistic study has showed that EB1 increases paclitaxel activ-
ity to cause mitotic arrest and apoptosis in breast cancer 
cell lines. In addition, EB1 stimulates paclitaxel sensitiv-
ity by promoting paclitaxel-microtubule association, thus 
increasing the activity of paclitaxel to enhance microtubule 
assembly and stabilization. It is also proved in other studies 
that EB1 is crucial for regulating the sensitivity of breast 
cancer cells to paclitaxel, through a mechanism in which it 
modulates paclitaxel-mediated stabilization of microtubule 
polymerization and regulates the binding sites of paclitaxel 
at the growing microtubule ends [57].

Cytoplasmic linker protein 170 (CLIP-170) is another 
member of the +TIPs family that binds to microtubule 
plus ends in an EB1-dependent manner [58]. CLIP-170 is 
regarded as a mediator of paclitaxel sensitivity in breast 
cancers [31]. The expression of CLIP-170 in breast cancer 
samples correlates with the pathological response of tumors 
to paclitaxel-containing chemotherapy. Similar to EB1, 
CLIP-170 regulates paclitaxel sensitivity in breast cancer 
cells by modulating the effects of paclitaxel on microtubule 
assembly, thus affecting cell-cycle retention and apoptosis.

Centrosomal proteins that modulate paclitaxel 
resistance

Centrosomes, the microtubule organizing centers, nucle-
ate and organize microtubules in animal cells [59]. 
Centrosome is critical for cell cycle progression, by 
organizing radial microtubule array in interphase and 
establishing bipolar spindle during mitosis [3, 60, 61]. 
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Centrosomes undergo maturation and segregation dur-
ing the cell cycle, and centrosome abnormalities, such as 
supernumerary centrioles, abnormal centrosome number 
or volume, and altered expression of centrosomal pro-
teins, have been implicated in tumorigenesis [62–66]. 
Overall, centrosome aberrations are positively associ-
ated with advanced cancer grade and metastasis [67]. It is 
implied that centrosome abnormalities may have clinical 
diagnostic and/or prognostic value and centrosomes may 
also be a potential target for cancer therapy. The correla-
tion between centrosome protein expression and sensitiv-
ity to paclitaxel has attracted increasing attention in the 
field [68–70].

Ninein-like protein (Nlp), an important centrosomal 
protein involved in centrosome maturation, microtubule 
nucleation, and spindle formation, plays an essential role 
in tumorigenesis [71]. Nlp is found to be overexpressed 
in human breast, lung and ovarian carcinomas [72–74]. 
A study has investigated the correlation between Nlp and 
paclitaxel chemosensitivity, and found that overexpres-
sion of Nlp confers breast carcinoma resistance to pacli-
taxel [72]. By suppressing paclitaxel-induced microtubule 
polymerization, Nlp overexpression promotes mitotic arrest 
and suppresses apoptosis elicited by paclitaxel. Moreover, 
the expression of Nlp in breast cancer patients is highly 
correlated with their sensitivity to paclitaxel, and patients 
with high expression of Nlp are likely resistant to the treat-
ment of paclitaxel.

The mammalian transforming acidic coiled coil (TACC) 
family of centrosomal proteins consists of three members 
(TACC1-3), which act as important structural components 
of the mitotic spindle apparatus [75]. TACC proteins are 
evolutionarily conserved and modulate centrosome integ-
rity, microtubule assembly, and mitotic spindle stabil-
ity [76–79]. Mounting evidences indicate that TACCs are 
involved in the progression of some human malignancies 
[80]. The expression of TACC1 has been shown to be 
upregulated in human cancer cell lines, and it is associated 
with mammary tumorigenesis and gastric carcinoma [81, 
82]. TACC2 plays an important role in breast cancer cell 
proliferation, and its immunohistochemical status might 
be a candidate of worse prognostic factor in breast can-
cer cases [83]. Abnormal expression of TACC3 is associ-
ated with the etiology of ovarian, bladder and non-small-
cell lung cancer [84–86]. Knockdown of TACC3 leads to 
breast cancer cell arrest in G1 through cellular senescence 
by increasing nuclear p21WAF and reducing retinoblastoma 
protein (Rb) and extracellular signal-regulated kinase 1/2 
(ERK1/2) [87]. Treatment of breast cancer cells with a low 
concentration of paclitaxel promotes cellular senescence 
triggered upon TACC3 depletion, showing that blocking 
of TACC3 regulates paclitaxel sensitivity by modulating a 
premature senescence program.

Another centrosomal protein, Salt Inducible Kinase 2 
(SIK2) has been identified as cell cycle regulator of ovar-
ian cancer cells in a high-content siRNA kinome screen 
[88]. SIK2 plays a key role in the initiation of mitosis and 
regulates the localization of the centrosome linker protein, 
C-Nap1 [89, 90]. Depletion of SIK2 expression induces 
centrosome splitting in interphase, while it inhibits centro-
some separation in mitosis, thus sensitizing ovarian cancers 
to paclitaxel both in ovarian cancer cells and xenografts. 
Compared to paclitaxel-sensitive ovarian cancers, the 
expression of SIK2 is significantly higher in paclitaxel-
resistant cancers. These findings imply that SIK2 might be 
a therapeutic target in ovarian cancers. Centrosomal pro-
tein 70 (Cep70) is an important factor that mediates breast 
cancer growth and metastasis. The expression of Cep70 is 
upregulated in breast cancer tissues and cell lines, which 
is closely correlated with several clinicopathologic vari-
ables associated with breast cancer progression [8]. It has 
been shown that Cep70 participates in microtubule polym-
erization and stability, as well as mitotic spindle orientation 
[91–94]. Elucidation of the correlation of Cep70 expression 
with paclitaxel activity in breast cancer will improve the 
understanding of the role of centrosomal proteins in cancer 
chemotherapy [95].

Regulation of paclitaxel activity by other 
MAPs including spindle assembly checkpoint 
and microtubule motor proteins

Chromosome instability and aneuploidy are hallmarks of 
aggressive solid tumors [96, 97]. The spindle assembly 
checkpoint (SAC) has a crucial function in genetic integ-
rity, which ensures accurate chromosome segregation dur-
ing mitosis and prevents aneuploidy [98]. Impaired SAC 
function has been suggested as one of the causes of ane-
uploidy in human cancers [99]. SAC is a complex of pro-
teins that includes Mad1, Mad2, Bub1, BubR1, Bub3, 
and MPS1 [100]. Among all SAC components, Mad2 and 
BubR1 have a pivotal function in checkpoint signaling due 
to their crucial function in the metaphase-to-anaphase tran-
sition by delaying anaphase onset, through inhibition of the 
anaphase promoting complex/cyclosome (APC/C) [101].

Recent studies have shown that paclitaxel sensitivity is 
associated with the spindle checkpoint. It has been reported 
that Mad2 downregulation induces premature senescence 
in breast cancer cells, and these senescence cells maintain 
viability, while replicative incompetent [101]. The pacli-
taxel treatment in Mad2-depleted cells shows a significant 
further induction of senescence compared with paclitaxel 
controls, indicating that compromised Mad2 levels lead 
to paclitaxel resistance of senescent breast cancer cells. 
Besides, Mad2 and BubR1 are significantly expressed in 
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gastric cancer cells, and contribute to cellular transforma-
tion and tumorigenesis [102]. Similarly, paclitaxel treat-
ment increased cell senescence in gastric cancer cells 
interfered for Mad2 or BubR1 expression. Intriguingly, it 
is found that reduced expression of BubR1, but not Mad2, 
is associated with acquired paclitaxel resistance in ovarian 
carcinoma cells [103].

Another type of key participants during mitosis is kine-
sin superfamily protein (KIF), which plays crucial roles in 
chromosomal and spindle movements [104]. KIFs are a 
conserved class of motor proteins that transport cargoes by 
walking unidirectionally along microtubule tracks, hydro-
lyzing one molecule of ATP at each step [105]. KIFs are 
implicated in a variety of cellular functions, such as mito-
sis, signal transduction, microtubule polymer dynamics, 
and intracellular transport [106]. Previous studies suggest 
that KIFs may play a key role in the development or pro-
gression in many types of cancers [107–109]. Kinesins 
have also gained attentions as potential targets for mitotic 
drugs. It is reported that overexpression of kinesin proteins, 
including KIFC3, KIF5A, and KIF12 contributes to pacli-
taxel resistance in BLBC (basal-like breast cancer) cell 
lines and tissues [110]. Moreover, the expression level of 
KIF14 is significantly increased in cervical cancer tissues, 
which is positively correlated with high-tumor stage, lymph 
node metastasis, paclitaxel chemoresistance as well as poor 
survival [111]. These findings indicate that KIF14 might 
serve as a novel prognostic biomarker of chemoresistance 
to paclitaxel treatment in cervical cancer (Table 1).

Conclusion

In spite of the development of small-molecule pathway 
inhibitors, chemotherapy remains the treatment of pri-
mary choice for patients with cancer. Paclitaxel, a member 
of the taxane family, has gained some success in treating 
some solid tumors including breast cancer and non-small-
cell lung cancer. However, the variable response activity 
of patients and acquired resistance to paclitaxel limit its 
clinical utility. It is outlined in the review that some MAPs 
promote paclitaxel sensitivity by regulating microtubule 
dynamics. Altering the expression of these proteins might 
promote the effects of paclitaxel on microtubule dynam-
ics and contribute to a synergistic inhibition of cancer cell 
proliferation. Moreover, the expression level of several cen-
trosomal proteins is upregulated in cancer, which confers 
resistance to the treatment of paclitaxel. In summary, these 
proteins might act as potential markers to predict response 
to paclitaxel, as well as be regulated to boost paclitaxel 
sensitivity. These findings not only provide theoretical 
evidence into more rational chemotherapeutic regimens in 
clinical practice but also novel insights into precision can-
cer treatment.
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Table 1   Regulation of paclitaxel activity by MAPs

Types of MAPs Roles in paclitaxel activity regulation Types of cancer References

Canonical MAPs
 Tau High expression of tau leads to paclitaxel resistance Breast cancer

Ovarian carcinoma
[30, 34–36]

 MAP2 Elevation of MAP2 contribute to increased paclitaxel sensitivity Breast cancer [42]
Microtubule plus-end-binding protein
 EB1 EB1 is an important regulator of paclitaxel sensitivity Breast cancer [56, 57]
 CLIP-170 CLIP-170 expression correlates with pathological complete response to 

paclitaxel-based chemotherapy
Breast cancer [31]

Centrosomal protein
 Nlp High expression of Nlp is associated with paclitaxel resistance Breast cancer [72]
 TACC3 Blocking of TACC3 regulates paclitaxel sensitivity Breast cancer [87]
 SIK2 High expression of SIK2 correlates with paclitaxel resistance Ovarian cancer [88]

Mitotic spindle assembly checkpoint
 Mad2 Compromised MAD2 level induces paclitaxel resistance Breast cancer

Gastric cancer
[101, 102]

 BubR1 Reduced expression of BubR1 is associated with paclitaxel resistance Ovarian carcinoma
Gastric cancer

[102, 103]

MT motor protein (kinesin)
 KIFC3, KIF5A, KIF12 Overexpression of these kinesin proteins contributes to paclitaxel resistance Breast cancer [110]
 KIF14 The expression of KIF14 correlates with paclitaxel resistance Cervical cancer [111]
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