
1 3

Cancer Chemother Pharmacol (2017) 79:1249–1256
DOI 10.1007/s00280-017-3329-2

ORIGINAL ARTICLE

Reversing glioma malignancy: a new look at the role 
of antidepressant drugs as adjuvant therapy for glioblastoma 
multiforme

Anna M. Bielecka‑Wajdman1 · Marta Lesiak2 · Tomasz Ludyga1 · 
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Ki67, Nestin, Sox1, and Sox2 expression) of GSCs isolated 
from a human T98G cell line. These drugs were examined 
in several models of hypoxia (1% oxygen, 2.5% oxygen, 
and a hypoxia-reoxygenation model) as compared to the 
standard laboratory conditions (20% oxygen).
Results We report that antidepressant drugs, particularly 
imipramine and amitriptyline, modulate plasticity, silence 
the GSC profile, and partially reverse the malignant phe-
notype of GBM. Moreover, we observed that, in contrast 
to temozolomide, these tricyclic antidepressants stimu-
lated viability and mitochondrial activity in normal human 
astrocytes.
Conclusion The ability of phenotype switching from GSC 
to non-GSC as stimulated by antidepressants (primarily 
imipramine and amitriptyline) sheds new light on the het-
erogeneous nature of GSC, as well as the role of antide-
pressants in adjuvant GBM therapy.

Keywords Glioma malignancy · Glioma stem cells · 
Adjuvant therapy in glioma · Antidepressant drugs in 
glioma therapy

Introduction

The discovery and isolation of cancer stem cells (CSC) were 
a critical finding in the fight against aggressive neoplasms, 
including glioblastoma multiforme (GBM)—the most inva-
sive human brain tumour. Understanding the nature of CSCs 
is key for the design of an effective anti-GBM treatment. To 
date, relevant research has not adequately addressed ques-
tions concerning CSC origins or their role in maintaining 
the phenotype of malignant tumours [1].

The CSC hypothesis postulates the existence of a dis-
tinct population of small cells within tumour masses that 

Abstract 
Purpose The role of glioma stem cells (GSCs) in cancer 
progression is currently debated; however, it is hypoth-
esised that this subpopulation is partially responsible for 
therapeutic resistance observed in glioblastoma multiforme 
(GBM). Recent studies have shown that the current treat-
ments not only fail to eliminate the GSC population but 
even promote GSCs through reprogramming of glioma 
non-stem cells to stem cells. Since the standard GBM treat-
ment often requires supplementation with adjuvant drugs 
such as antidepressants, their role in the regulation of the 
heterogeneous nature of GSCs needs evaluation.
Methods We examined the effects of imipramine, amitrip-
tyline, fluoxetine, mirtazapine, agomelatine, escitalopram, 
and temozolomide on the phenotypic signature (CD44, 
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display the following properties: self-renewal, de novo 
tumour reconstruction after xenograft transplantation, 
pluripotency, neurosphere formation, proliferation, inva-
sion, angiogenesis, and differentiation into different cell 
lineages [2–4]. According to the Brain Stem Cell Theory, 
all tumour cells have CSC potential [5]. Some divergences 
concern the identification of CSCs in primary and second-
ary gliomas and their strong phenotypic plasticity.

Studies report that, in gliomas, CD133 positive and 
CD133 negative cells can be detected, suggesting that CSC 
formation may be regulated by genetic/epigenetic factors, 
as well as metabolic, microenvironmental, and niche fac-
tors that are not yet fully understood. Due to the presence 
of glioma stem cells in various oxygen tumour microen-
vironments, regulation of the metabolic processes in these 
niches has a substantial effect on the GSC phenotype [6, 
7]. Recently, it has been shown that GSCs can effectively 
mimic endothelial cells in vascular mimicry and organise 
vessel-like structures that allow blood flow. Moreover, the 
role of CSCs in the mechanisms of radiochemoresistance 
is debated. It is believed that primary CSCs demonstrate 
high resistance to treatment from the outset; however, there 
are reports showing that the standard treatments (temozolo-
mide and radiotherapy) of GBM can promote reprogram-
ming of non-CSCs to CSCs and, in effect, increase the CSC 
fraction within the tumour [8, 9].

A more concise understanding of GSC biology is essen-
tial for the improvement GBM treatment. It has been sug-
gested that adjuvant drugs used to relieve the side effects of 
radio/chemotherapy, while improving the patient’s quality 
of life, may be responsible for the promotion of GSCs with 
malignant phenotypes [10–13].

Upwards of 90% of patients with GBM are suffering 
from depressive disorders and neurological disturbances. 
Depression is not only a consequence of the diagnosis, 
tumour size/grade, or past psychiatric history, but is often 
also a consequence of the standard treatment: surgery, 
radio/chemotherapy (temozolomide), and steroid applica-
tion [14, 15]. In this clinical situation, oncologists com-
monly prescribe antidepressant drugs.

In addition to their antidepressant effects, these drugs 
are prescribed to cancer patients to treat chronic and neu-
ropathic pain, anxiety disorders, anorexia, migraines, 
and circadian rhythm disorders [16–18]. The results of 
in vitro and in vivo studies suggest that antidepressant 
drugs, through their influence on immune system func-
tion, cytochrome P450 activity, intracellular signalling 
pathways, and mitochondrial bioenergetics, may not be 
neutral with regard to cancer progress and therapy. More-
over, it has been demonstrated that the same antidepres-
sants can either promote or inhibit tumour growth and 
modulate the cytotoxic effects of anticancer drugs and 
their accumulation in cancer cells [19–21]. Despite these 

controversial reports about the effects of antidepressants 
as applied in the treatment of cancer patients, this prob-
lem is marginalised in clinical practice.

The present study focuses on the influence of antide-
pressant drugs (imipramine, amitriptyline, fluoxetine, 
mirtazapine, agomelatine, and escitalopram (Table 1) 
or temozolomide on the phenotypic signature of the 
GSC population in several models of hypoxia using a 
human T98G cell line. As GSCs are not self-autonomous 
units but are under specific microenvironmental control 
(niche) [22], to reconstruct the oxygen conditions in the 
intratumour space, experiments were conducted in com-
plex models of hypoxia (1% oxygen, 2.5% oxygen, or a 
hypoxia-reoxygenation model). As a control, the stand-
ard laboratory conditions of 20% oxygen were used. In 
these models, the effects of antidepressants or temozolo-
mide on the quantity and expression of stem cells mark-
ers CD44, Ki67, Nestin, Sox1, and Sox2 (Table 2) in a 
human T98G GBM cell line were investigated.

Materials and methods

Cell culture

The human GBM cell line T98G (Sigma-Aldrich, St Louis, 
MO, USA), a normal human astrocytes line (NHA, Lonza, 

Table 1  Characterization of antidepressant drugs used in the study

Drug Action

Imipramine A tricyclic drug used occasionally in the treatment of 
major depression coexisting with panic disorders, 
a reference drug used in many in vitro and in vivo 
studies [23]

Amitriptyline A TCA drug used to treat various forms of depres-
sion, neuropathic pain during cancer therapy and 
migraines, the most common antidepressant drug 
supporting oncology treatment [24]

Fluoxetine A selective serotonin reuptake inhibitor (SSRI), used 
for the treatment of depressive, appetite, panic and 
obsessive–compulsive disorders [25]

Escitalopram An SSRI, effective in the treatment of anxiety and 
panic disorders; it is also used for the prevention of 
depression in head and throat cancer patients [26]

Mirtazapine An atypical drug. In addition to its antidepressant 
effects, it is known for stimulating appetite and 
increasing weight gain [27]

Agomelatine A melatonin receptor agonist, used in the treatment 
of major depression and sleep disorders. Ago-
melatine also presents anxiolytic properties and 
resynchronises the circadian rhythm [28]

Temozolomide An alkylating agent of DNA in the 06-guanine, 
N7-guanine and N3-adenine N-7 position. It is used 
for the treatment of anaplastic astrocytoma and 
GBM [29]
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Switzerland), and the human U87 astrocytoma line (Sigma-
Aldrich, St Louis, MO, USA) were utilized in these studies. 
Cellular media, gentamicin, and foetal bovine serum (FBS) 
were purchased from Gibco-BRL (USA). The following 
antidepressant drugs were used: imipramine, amitriptyline, 
fluoxetine, escitalopram, agomelatine, mirtazapine, and the 
cytostatic drug, temozolomide (Sigma-Aldrich, St Louis, 
MO, USA). Plasticware for cell culture (monolayer and 
spheres) was purchased from Nunc (USA), Falcon (Lexing-
ton, TN, USA), and Eppendorf (Germany).

Study design and experimental oxygen models

Since intratumour glioma microenvironments are unsta-
ble and characterised by areas of differing oxygena-
tion levels [33], we applied hypoxic in vitro models 
(1% oxygen, 2.5% oxygen, or a hypoxia-reoxygenation 
model) aimed to recreate the variations in oxygen levels 
observed in gliomas. The hypoxia-reoxygenation model 
(1% oxygen followed by 3% oxygen) reflects a specific 
niche in the intratumour. The standard laboratory condi-
tions (20% oxygen) were used to compare our data with 
the results of other studies. This oxygen model, however, 
creates delusive conditions for cancer cells that do not 
apply in vivo, even though this method is commonly used 
in in vitro studies.

Cell density was evaluated using the following cell 
counters before the experiments were performed: Eve 
(Life Technologies, Grand Islands, NY, USA), Scepter 
(Millipore, Germany), and the Muse flow cytometer (Mil-
lipore, Germany). Our experiments were performed at 
a cell density of 1.9 × 105 cells per 1 ml medium. Gli-
oma cells were cultured in Dulbecco’s Modified Eagle’s 
Medium (DMEM) supplemented with 10% FBS, 1% gen-
tamicin, 1 g/L d-glucose, l-glutamine, 25 mM HEPES, 
and pyruvate, which was replenished every 3 days. 
Throughout the duration of the experiments, the cultures 

were maintained in hypoxia or standard conditions as 
described above. When cells reached 90% confluence, 
the cultures were trypsinized and passaged. On the sec-
ond day following trypsinization, the cells were washed 
and fresh medium was added containing the following 
antidepressants: imipramine, amitriptyline, fluoxetine, 
mirtazapine, escitalopram or agomelatine at a concentra-
tion of 10 µM, or 1 mM temozolomide. The cultures were 
exposed to drugs for 24 h in the various oxygen condi-
tions. In the hypoxia-reoxygenation model, the cultures 
were maintained in an atmosphere containing 1% oxygen 
for 12 h and then in 3% oxygen for the remaining 12 h.

All experiments were conducted in two types of  CO2 
incubators. In the standard  CO2 incubator (NuAire, 
USA), we cultured cells in the standard laboratory con-
ditions (5%  CO2, 20% oxygen, and 97% humidity). The 
second incubator (New Brunswick Galaxy 48R, Ger-
many) was utilized for hypoxic experiments.

Mitochondrial activity and cell viability assay (MTT)

Examination of NADPH-dependent oxidoreductase to con-
vert tetrazolium dye (MTT) in T98G, U87, and NHA cell 
lines when exposed to antidepressants or temozolomide 
(described in Sect. 2.2) was carried out in 96 well plates 
according to a previously described method [34, 35].

Characterisation of the GSC phenotype isolated 
from T98G cells by flow cytometry

To determine the influence of temozolomide- or antide-
pressant-based treatment on the GSC phenotype, T98G 
cells were cultured as spheres in the varied oxygen con-
ditions. Cells were exposed to either temozolomide 
(1 mM) or one of the following antidepressant drugs: 
imipramine, amitriptyline, fluoxetine, mirtazapine, escit-
alopram, or agomelatine (10 µM). The phenotypes of cells 

Table 2  Characterization of markers used in the study

Marker Characterisation

CD44 A protein involved in many pathological and physiological processes. In cancer, CD44 is responsible for growth promotion and 
cell migration. The CD44 expression correlates not only with the degree of malignancy but also with the density of malignant 
cells in tumour-affected regions [30]

Nestin First described as a neural stem/progenitor cell marker, Nestin plays an important role in cellular processes including stemness, 
migration and cell cycle regulation. Its expression in GBM cells is correlated with self-renewal properties, the degree of malig-
nancy, poor survival and infiltration into surrounding tissues [31]

Ki67 A proliferation marker of all tumours. The expression of Ki67 is determined in G1, S, G2 and M phase cell cycles and is associ-
ated with the degree of invasion. It is also recognised as a prognostic predictor of survival and tumour recurrence. Moreover, 
approximately 20% of GBM tumours have a mutation in the Ki67 protein [32]

Sox1, Sox2 Transcriptional factors involved in regulating neural precursor cells, as well as in CNS development. Sox1 plays a role in deter-
mination and differentiation. The expression of Sox1 is detected in GBM but not in all tumour samples. Sox2 is overexpressed 
in all brain tumours (including high-grade glioma) and is believed to regulate stem cell self-renewal. Sox2 can reprogramme 
differentiated cells into pluripotent cells [33]
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were estimated using fluorescence through the use of the 
FACS Aria I flow cytometer (Becton–Dickinson, USA). 
Approximately 5 × 106 cells were recovered from the cul-
ture dish using Accutase Cell Detachment Solution (Bec-
ton–Dickinson). Single cell suspensions were washed with 
phosphate-buffered saline (PBS), centrifuged (300×g, 
10 min), resuspended in Cytofix Fixation Buffer (Becton–
Dickinson), and incubated at room temperature for 20 min 
in the dark. Cells were then washed twice in PBS, centri-
fuged (1110×g, 10 min), and permeabilised using Phos-
flow Perm Buffer III (Becton–Dickinson). The cells were 
resuspended in 1× PBS supplemented with 1% foetal calf 
serum (FCS) to a final cell density of 1 ×  106 cells/200 
µL. Fluorochrome-conjugated antibodies against CD44, 
Sox1, Sox2, Nestin, and Ki67 from the Human Neural 
Lineage Analysis kit (Becton–Dickinson) were added to 
the cell suspension, and samples were incubated at room 
temperature for 30 min in the dark. Following staining, 
excess antibody was washed off using 2 mL of 1× PBS. 
The cell suspension was centrifuged (1110×g, 5 min) and 
resuspended in 400 μL 1× PBS prior to analysis with the 
FACS Aria flow cytometer.

Results

Mitochondrial activity and cell viability of T98G, 
U87, and NHA cells exposed to temozolomide 
and antidepressant drugs

Results from the MTT assay showed that both human 
glioma lines (T98G, U87) presented similar sensitivity to 
antidepressant drugs and temozolomide in all oxygen con-
ditions. The cytotoxic effect of temozolomide, as well as 
inhibition of mitochondrial activity, was enhanced with 
increased oxygenation. Temozolomide reduced glioma cell 
viability by 75% (T98G) and 78% (U87) as compared to 
the control.

Fluoxetine, mirtazapine, escitalopram, and agomela-
tine did not significantly alter cell viability of either gli-
oma lines in all oxygen models. By contrast, imipramine 
and amitriptyline inhibited mitochondrial activity at a 
rate dependent on the oxygen content in the atmosphere 
(from 6% in hypoxia, 11% in average hypoxia, and 19% 
in hypoxia-reoxygenation to 26% (imipramine) and 39% 
(amitriptyline) in 20% oxygen). Moreover, all antidepres-
sant drugs increased the mitochondrial activity of NHA. 
The strongest pro-survival effect was observed after NHA 
exposure to imipramine or amitriptyline in the hypoxia-
reoxygenation model (18% as compared to the control) and 
in the standard laboratory conditions (26% compared to the 
control). However, temozolomide strongly reduced viable 
NHA cells in all oxygen models compared to untreated 

astrocytes (15% in hypoxia, 17% in 2.5% oxygen, and 26% 
in both the hypoxia-reoxygenation model and the standard 
laboratory conditions) (Fig. 1a–d).

Phenotypic profile of GSCs isolated from T98G cell 
cultures exposed to antidepressants and temozolomide 
in oxygen conditions

Flow cytometry analysis revealed the remarkable plasticity 
of GSCs isolated from T98G cells. Both temozolomide and 
antidepressants affected the CD44/Ki67/Nestin/Sox1/Sox2 
GSC phenotype, particularly in GSCs isolated from cultures 
maintained in a low oxygen atmosphere. The most signifi-
cant alterations were detected in CD44 and Ki67 expression.

1. Hypoxia model (1% oxygen). Ki67 expression in the 
control group [untreated was higher (22%) than in the 
drug-treated cultures]. Temozolomide increased CD44 
expression in control cultures from 50.5 to 63.5%. 
Both tricyclic antidepressant (TCA) drugs, imipramine 
and amitriptyline, significantly reduced CD44 expres-
sion to as low as 30.1% (after exposure to amitripty-
line). Decreased levels of the following markers were 
detected: Nestin 2% (after imipramine exposure) and 
7.5% (control); Sox1 0% (after imipramine exposure) 
and 12% (control); and Sox2 0.1% (after agomelatine 
exposure) and 8% (control) (Fig. 2a).

2. Average hypoxia model (2.5% oxygen). Imipramine 
and amitriptyline decreased the expression of the CD44 
marker to 29% (imipramine) and 30% (amitriptyline) as 
compared to the 38% expression in the control group. 
Ki67 levels fell to 33% (imipramine) and 32% (ami-
triptyline) as opposed to the 47% expression observed 
in the control group. Interestingly, temozolomide ele-
vated the level of the CD44 expression to 47% com-
pared to 38% in the control. All antidepressants in the 
study decreased Sox1 and Sox2 expressions in GSCs 
to nearly 0%. In the control, Sox1 expression was 1%, 
while Sox2 expression was 3%; after temozolomide 
exposure, these levels increased to 4% (Sox1) and 1% 
(Sox2) (Fig. 2b).

3. Hypoxia-reoxygenation model (1% oxygen for 12 h 
followed by 3% oxygen for 12 h). The changes induced 
by temozolomide and antidepressants in the GSC phe-
notype profile (CD44, Ki67, Sox1, and Sox2) were sim-
ilar those observed in the hypoxia model. Under these 
oxygen conditions, however, Nestin expression was sig-
nificantly increased compared to other applied oxygen 
conditions. The Nestin + cells constituted 5% (after 
amitriptyline exposure) and 32% of cells (after temozo-
lomide exposure) (Fig. 2c).

4. The standard laboratory conditions (20% oxygen). The 
expression of GSC markers was found to be markedly 
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different than GSC expression in cultures maintained 
in all tested hypoxic conditions. CD44, Sox1, and 
Sox2 were not detected in any experimental groups. 
We observed strong inhibition of Ki67 after exposure 
of GSCs to temozolomide (20% as compared to 87% 
Ki67+ cells in the control group). All antidepressants 
also decreased Ki67 expression in contrast to the con-
trol group. The strongest effects were induced by imi-
pramine and amitriptyline, while Nestin was undetecta-
ble in GSCs (expression ranged between 0 and 1% after 
exposure to temozolomide).

Statistical analyses

Statistical analysis was performed using one-way 
ANOVA followed by the post hoc Tukey test. Differences 
were considered statistically significant when p < 0.05. 
The results are presented as the standard error of the 

mean (SEM). Statistical analysis was performed using 
the GraphPad Prism 7.01 software system (GraphPad 
Software Inc., San Diego, CA).

Discussion

Based on previous studies, the ability of GBM to recur, 
despite maximal surgical resection, may be partially 
attributable to GSCs [36, 37]. As there is still minimal 
knowledge of GSC modulation in terms of plasticity and 
phenotypic interconversion (CD44, Nestin, Sox1, Sox2, 
and Ki67) induced by temozolomide and adjuvant drugs 
(imipramine, amitriptyline, fluoxetine, mirtazapine, ago-
melatine, and escitalopram), these interactions were 
addressed in the current study.

Our investigation revealed that antidepressant drugs 
are able to silence the GSCs profile to a greater extent 

Fig. 1  MTT conversion. Cell viability in: T98G, U87 glioblastoma 
cell lines, and normal human astrocytes (NHA) after exposure to 
temozolomide (1 mM), imipramine, amitriptyline, fluoxetine, mir-
tazapine, escitalopram, and agomelatine (10 µM). Cells were cultured 
in a different oxygen conditions: a 1% oxygen, b 2, 5% oxygen: an 
average oxygen concentration in intratumor environment, c hypoxia-
reoxygenation model, and d standard laboratory conditions 20% 

oxygen. Each bar represents the mean ± SEM of at least three inde-
pendent experiments. Values were analyzed by one-way ANOVA, fol-
lowed by Tukey post hoc test, *p < 0.05 vs. control-temozolomide, 
imipramine, amitriptyline, fluoxetine, escitalopram, mirtazapine, and 
agomelatine. The Bonferroni adjustment was applied for multiple 
comparisons. If the data were not normally distributed, then Kruskal–
Wallis test followed by Mann–Whitney test was performed
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than temozolomide, and the strongest effects were 
induced by imipramine and amitriptyline (tricyclic anti-
depressants). Antidepressants downregulated Sox1 and 
Sox2 expressions from the cell surface, and Nestin, Ki67, 
and CD44 expression were inhibited. This unique capac-
ity of antidepressants to reverse the GSC phenotype from 
stemness to “non-stemness” or “less stemness” suggests 
the possibility of managing GBM malignancy using anti-
depressants. However, the mechanisms through which 
antidepressants modulate the GSC phenotype are com-
plex and may be linked to microenvironmental condi-
tions. Hypoxic niches, with the exception of the activa-
tion of specific factors and cellular signalling pathways 
(HIF, WNT, Notch, Shh, and BMP), promote increased 
cellular fractions exhibiting a stem phenotype [38]. In 
addition, they also induce dysfunction in cellular immune 
responses [modulation of T-cell responses, promotion of 
proinflammatory genes (RAGE, COX2, nf-kb expression, 
and upregulation of STAT3)] [39–41]. Antidepressant 
drugs, through their influence on various components 
of the immune system (balance between pro-and anti-
inflammatory cytokines, B/NK/T cells) or reactive oxy-
gen species (melatonin), can influence cancer immunity 
and GCS plasticity [42–44].

In the present study, we confirmed the critical role of 
the hypoxic microenvironment in the promotion of the 
cellular stemness profile. Our results shown that using 
a single oxygen model, particularly the standard labora-
tory conditions, in vitro investigations may provide a 
false perspective. For instance, on the basis of the results 
obtained under 20% oxygen conditions, it could be inter-
preted that temozolomide and TCA drugs (imipramine 
and amitriptyline) induce a robust downregulation of 
GSC marker expression. Specifically, after exposure to 
these drugs, only Ki67 expression was detected in the 
GSC population (T98G). If this was the case in clinical 
practice, chemoresistance should not take place, taking 
into account the suggested role of GSCs in multidrug 
resistance.

We also found that GBM cells not unexposed to drug 
and maintained in 1% oxygen presented a wide range of 
markers—CD44, Ki67, Nestin, Sox1, and Sox2. The 
expression of these markers was altered in response to 
increased oxygen concentration and following exposure to 
temozolomide or antidepressant drugs.

These studies emphasise that antidepressants, expressly 
imipramine and amitriptyline not only supported the elimi-
nation of glioma cells (T98G, U87) but also stimulated 

Fig. 2  Phenotype profile of GSC isolated from T98G cell cultures 
exposed to antidepressants and temozolomide in several oxygen con-
ditions. Expression of CD44, Ki67, Nestin, and Sox1 and Sox2 mark-
ers in T98G cell culture after exposure to temozolomide (1 mM), 
imipramine, amitriptyline, fluoxetine, mirtazapine, escitalopram, and 
agomelatine (10 µM). Cells were cultured different oxygen condi-
tions: a 1% oxygen, b 2, 5% oxygen: an average oxygen concentra-
tion in intratumor environment, c hypoxia-reoxygenation model, and 

d standard laboratory conditions 20% oxygen. Each bar represents 
the mean ± SEM of at least three independent experiments. Values 
were analyzed by one-way ANOVA, followed by Tukey post hoc 
test, *p < 0.05 control-temozolomide, imipramine, amitriptyline, 
fluoxetine, escitalopram, mirtazapine, and agomelatine. Correlation 
between markers expressed by glioma cancer cells was tested by cal-
culating the correlation coefficient (Pearson’s test)
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viability of normal human astrocytes (by approximately 
15–23%, respectively, in all oxygen conditions). In con-
trast, temozolomide inhibited the viability of astrocytes 
by almost 30% in the hypoxia-reoxygenation model and 
the standard laboratory conditions. This lack of specific-
ity from temozolomide is a common problem observed in 
GMB patients, resulting in a number of side effect [45]. 
We anticipate that these investigational findings will aid in 
selecting the proper adjuvant drug for this patient cohort.
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