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expressions via binding to the 3′-UTR (3′-untranslated 
region) of target messenger RNA (mRNA) [1]. A single 
3′-UTR of mRNA may interact with numerous miRNAs; 
contemporarily, one miRNA is likely to target multiple 
mRNAs. Thus, miRNAs with their targets constitute an 
important and complex network in bioinformation [1]. 
Recent years, miRNAs have been demonstrated momentous 
effects in tumor progression. Intriguingly, miRNAs involve 
in occurrence of drug resistance in many cancers, elucidat-
ing a new orientation of adjuvant therapy for cancer.

Lung cancer is one of the leading causes of cancer death 
whether in economically developed or developing countries, 
both in male and in female [2]. Non-small cell lung cancer 
(NSCLC) accounts for around about 85 % in lung cancers. 
Adjuvant therapy plays an important role in the treatment 
of NSCLC, especially in advanced stage. For patients with 
anaplastic lymphoma kinase (ALK) or epidermal growth 
factor receptor (EGFR) mutations, targeted medicine is first 
recommended whether surgery or not. Since targeted treat-
ments extend the median survival time of patients, drug 
resistance tremendously limits its efficacy.

Therefore, this review aims to decipher miRNAs’ func-
tions in drug resistance in NSCLC to improve targeted 
therapeutics.

EGFR‑TKIs resistance

EGFR-TKIs (tyrosine kinase inhibitors) are recommended 
in advanced NSCLC patients with EGFR mutations. EGFR 
mutations occur around 10–16 % in NSCLC patients in 
Spanish population [3]. Deletions of exon 19 (Del19) and 
the exon 21 L858R point mutation cover 85–90 % in EGFR 
mutations [3]. Gefitinib, erlotinib and afatinib are first-
line medicine for patients with EGFR mutations. But the 

Abstract 
Purpose Non-small cell lung cancer (NSCLC), account-
ing for the most of lung cancers, is usually diagnosed 
in advanced stage. Targeted treatments boost advanced 
NSCLC patients with certain mutations, but early drug 
resistance blocks the advantages of target medicine. Micro-
RNAs (miRNAs) are regarded as a cluster of small noncod-
ing and posttranscriptionally negative regulating RNAs. 
We want to explore the role of miRNAs in resistance to tar-
geted treatments of NSCLC to improve the prognosis.
Methods We reviewed recent studies about miRNAs and 
targeted treatment resistance in NSCLC and classified 
resistance into two types: EGFR-TKIs resistance and ALK-
TKIs resistance.
Results and conclusion Recent studies indicate that miR-
NAs involve in drug resistance possession in positive and 
negative manners. Inhibiting expression of certain miRNAs 
that promote drug resistance and increasing expression of 
miRNAs that reverse drug resistance may illuminate novel 
prospect of adjuvant targeted treatments in NSCLC.
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Introduction

MicroRNAs (miRNAs) are small noncoding single-stranded 
RNAs (~22 nt), which posttranscriptionally regulate gene 
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dilemma of secondary drug resistance tremendously weak-
ens its utility. Interesting, expressions profiles of miRNAs 
are dissimilar between EGFR-TKIs-sensitive and EGFR-
TKIs-resistant cell lines or tissues. And further investiga-
tions confirm the significance of discrepant expression.

Gefitinib resistance

Although epithelial-to-mesenchymal transition (EMT) 
is discovered as a mechanism related to metastasis [4, 5], 
EMT has recently been found as dispensable for metasta-
sis but contributes to drug resistance in several carcinomas 
such as pancreatic cancer [6], lung cancer [7]. EMT, as the 
name suggests, signifies reversion of epithelial phenotype 
and acquisition of mesenchymal characteristics, accom-
panied with a biological progression consisting of revers-
ible events [8]. Experiments have shown that transforming 
growth factor-β1 (TGF-β1) could induce EMT phenotype 
in vitro and in vivo [9]. In NSCLC, miR-134 and miR-
487b, induced by TGF-β1, attribute TGF-β1 to induce EMT 
through inhibiting MAGI2 which mediates PTEN instability 
by phosphorylating PTEN [10]. Similarly, another miRNA 
induced by TGF-β1 via activating smad, miR-23a, facili-
tates EMT through inhibiting E-cadherin [11]. In addition, 
miR-134, miR-487b and miR-23a promote gefitinib resist-
ance [10, 11]. MiR-147, regulating cell invasion and prolif-
eration, could reverse TGF-β1-induced EMT and gefitinib 
resistance, and repress Akt phosphorylation, while the rela-
tionship between biological functions remains unknown 

[12]. MiR-103 and miR-203, inhibited by MET (the recep-
tor tyrosine kinase for hepatocyte growth factors), block 
EMT via obstructing PKC-ε, DICER, SRC, inhibit AKT 
phosphorylation and reverse gefitinib resistance [13]. In 
conclusion, as shown in Fig. 1, there is a positive correla-
tion between EMT and gefitinib resistance with biological 
behaviors of miRNAs, which needs further investigations.

The PI3K/AKT/mTOR signal pathway, involving in cell 
proliferation, survival, differentiation, adhesion, invasion 
and motility, is an important transduction pathway [14]. 
Furthermore, activation of PI3K/AKT/mTOR pathway is 
frequently discovered in NSCLC, related to poor prognosis 
[15, 16]. As an oncogenic miRNA, miR-21 promotes cell 
proliferation and suppresses apoptosis in solid tumors like 
tongue squamous cell carcinomas, pancreatic cancer, breast 
cancer and lung cancer [17,-22]. In NSCLC, miR-21 could 
generate gefitinib resistance via activating ALK and ERK 
and suppressing PTEN [13, 21, 22]. MiR-34a could reverse 
gefitinib resistance via inhibiting MET phosphorylation 
which contributes to PI3K/AKT activation [23]. As Fig. 2 
shows, miR-21 and miR-34a have opposite roles in gefi-
tinib resistance via the same AKT pathway [13, 21–23].

Around 30 % NSCLC patients with EGFR muta-
tions exhibit de novo resistance to EGFR-TKIs treatment. 
Recent studies have shown that Met activation may partici-
pate in this phenomenon [24–26]. MiR-30b and miR-30c, 
increased by EGFR and MET, promote gefitinib resistance 
via inhibiting BIM [13]. Similar to MiR-30b and MiR-30c, 
MiR-221 and MiR-222, also increased by EGFR and MET, 

Fig. 1  miRNAs involved in 
EMT and gefitinib resistance in 
NSCLC
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promote gefitinib resistance via inhibiting APAF-1 [13]. 
On the other hand, miR-200a reverses gefitinib resistance 
through inactivating EGFR and c-MET [27]. As shown in 
Fig. 3, MET and EGFR participate in gefitinib resistance 
via miR-200a, miR-30b, miR-30c, miR-221 and miR-222 
[13, 27].

MiR-7 and miR-138-5p reverse gefitinib resistance 
in NSCLC in vitro, while the mechanism needs further 
researches [28, 29].

miRNAs related to EGFR-TKIs resistance mentioned 
before are summarized in Table 1.

ALK‑TKIs resistance

Approximately 4 % of NSCLC patients are discovered ana-
plastic lymphoma kinase (ALK) rearrangements, which is 
also called ALK mutations [30]. Crizotinib, as an oral small-
molecule tyrosine kinase inhibitor to ALK, is recommend 
in advanced NSCLC patients with ALK mutations [3]. To 
a certain extent, crizotinib is superior to traditional chemo-
therapy in ALK-positive NSCLC according to researches 
[31]. Unfortunately, similar to gefitinib, acquired resist-
ance could be later developed in ALK-positive patients. 
Several resistant mechanisms, such as C1156Y, L1196M, 
G1269A, G1202R, S1206Y and 1152 threonine insertion, 

are reported [32–34]. Several microRNAs are found involv-
ing in ALK-positive tumor cells progression. MiR-16, 
miR-29a and miR-135b play a role in promoting ALK-
positive anaplastic large cell lymphoma (ALCL) tumor 
cells, while miR-101 decreases the proliferation of ALK-
positive ALCL cells [35–38]. Nevertheless, the relationship 

Fig. 2  miRNAs involved in 
PI3 K/AKT/mTOR signal 
pathway and gefitinib resistance 
in NSCLC

Fig. 3  miRNAs involved in 
MET, EGFR and gefitinib 
resistance in NSCLC

Table 1  miRNAs involved in response/resistance to EGFR targeted 
therapies of NSCLC

a −: Promote gefitinib resistance. +: reverse gefitinib resistance

MicroRNAs −/+a Targets/pathways References

miR-134 and miR-
487b

− MAGI2, TGFβ-EMT [10]

miR-23a − E-cadherin, TGFβ-
EMT

[11

miR-147 + CDH1, ZEB1, Slug [12]

miR-103 and miR-203 + PKC-ε, DICER, SRC, 
pAKT

[13]

miR-21 − PTEN, PI3K/AKT [13, 21, 22]

miR-34a + PI3K/AKT, pMET [23]

miR-30b and miR-30c − BIM [13]

miR-221 and MiR-222 − BPAF-1 [13]

miR-200a + EGFR, c-MET [27]

miR-7 + unknown [28]

miR-138-5p + unknown [29]
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between crizotinib resistance and microRNAs in NSCLC 
is not reported before. Though miR-150 enhances antineo-
plastic effects of crizotinib in crizotinib-resistant osteosar-
coma cells [39], does it function in NSCLC needs further 
investigation.

In conclusion, ALK rearrangements are found in many 
tumors, such as ALCL, NSCLC and inflammatory myofi-
broblastic tumor (IMT). To date, the investigation of micro-
RNAs and crizotinib resistance in NSCLC seems vacant. 
There are needs to decipher the roles of microRNAs in 
crizotinib resistance to improve targeted treatment of ALK-
positive NSCLC patients.

Discussion

The complex relationships between deregulation of micro-
RNAs and progression of NSCLC illustrate brave poten-
tials of targeting or utilizing miRNAs to perfect the molec-
ular target therapy. But targeted therapy faces the difficulty 
of secondary resistance which usually occurs early. What 
is more, microRNAs, as novel biomarkers, are associated 
with driver mutations, and miRNAs are better reserved in 
formalin-fixed paraffin-embedded (FFPE) than mRNAs, 
which is in favor of clinical applications [40].

As previously mentioned, EMT contributes to drug resist-
ance, rather than metastasis [7]. MicroRNAs (miR-23, mir-
103, miR-134, miR-147, miR-203 and miR-478b) show pos-
itive correlations between functions on gefitinib resistance 
and capabilities on EMT phenotype [10, 11, 13]. Whether 
these microRNAs regulate gefitinib resistance via or par-
tially via targeting EMT mechanism remains unknown. For 
another, the PI3K/AKT/mTOR signal pathway could be the 
targets of certain microRNAs to impact gefitinib resistance, 
such as miR-21 and miR-34a [13, 21–23]. Intriguingly, miR-
21 plays an oncogenic role in many solid tumors not only 
in NSCLC, but also in tongue cancer, pancreatic cancer and 
breast cancer [17–22]. It indicates that miR-21 may be a 
comprehensive and vital therapy orientation. Not surprising, 
EGFR and MET involve in gefitinib acquired resistance via 
miR-30b, miR-30c, miR-103, miR-200a, miR-203, miR-221 
and MiR-222 [13, 27].

Disappointing, few studies have addressed ALK-TKIs 
resistance in ALK-positive cancers, especially about cor-
relation between microRNAs and ALK-TKIs resistance. 
Only one microRNA, miR-150, partly reverses crizotinib 
resistance in drug-resistant osteosarcoma cells [39]. Further 
microRNAs investigations may provide a promising future 
for ALK-TKIs secondary resistant NSCLC patients.

In summary, inhibiting those microRNAs that induce 
target medicine resistance and indulging those microRNAs 
that reverse the resistance could restore utilization of target 
medicine in patients, that is to say, to prolong patients’ lives 

even to cure them. Therefore, besides exploring microR-
NAs, how to establish a stable and harmless microRNAs 
expression system is equally important.
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