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Introduction

Cancer is a leading cause of morbidity and mortality world-
wide, with approximately 14 million new cases diagnosed 
and 8.2 million cancer related deaths occurring in 2012 
alone [1]. In most cases, the first-line anti-neoplastic treat-
ment option is systemic chemotherapy administration, 
in which cells undergoing rapid, abnormal division (such 
as cancer cells) are successfully targeted for the chemi-
cal induction of autologous cell death pathways second-
ary to DNA damage [2], thereby reducing the size of, or 
completely abolishing, tumours [3]. However, due to their 
non-specific mode of action, chemotherapeutic drugs elicit 
significant side effects by also targeting healthy cells that 
maintain high proliferative potential throughout the lifes-
pan. These include cells of the integumentary, immune, 
nervous, and gastrointestinal systems, which induce the 
notorious side effects associated with chemotherapy treat-
ment including nausea, vomiting, hair and weight loss, and 
fatigue [4–6].

Much less characterised, however, is the effect of chem-
otherapeutic agents on the muscular system—in particular 
the skeletal musculature, which relies on mitotic activity to 
maintain “skeletal muscle turnover” and mass throughout 
the lifespan. Skeletal muscle also has a theoretically high 
propensity for DNA-mediated toxicity due to its dense 
nucleation compared to other cells [7]. While skeletal mus-
cle wasting and dysfunction due to cancerous cells and the 
inflammatory cytokines they release (commonly termed 
cancer cachexia) is well documented [4], little is known 
about the effect chemotherapeutic agents have on the skel-
etal musculature. Emerging research indicates that long-
term effects persist in skeletal muscle for many years after 
chemotherapy treatment and that they are independent of 
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those induced by cancer cachexia [8–10]. These adverse 
effects include skeletal muscle atrophy, dysfunction, insu-
lin resistance, weakness, and fatigue, which, in addition 
to a multitude of side effects in other organ systems, leads 
to poor tolerance and treatment discontinuation and limits 
therapeutic efficacy [5]. Skeletal muscle-specific co-mor-
bidities correlate with a range of negative clinical outcomes 
in cancer patients—these include reduced participation in 
activities of daily living, quality of life, and a higher risk of 
morbidity and mortality [11].

Mitochondria are increasingly emerging as key play-
ers in the pathogenesis of a variety of diseases. Due to the 
highly metabolic nature of the skeletal muscle, mitochon-
drial density is also high [12], and mitochondrial dysfunc-
tion and toxicity can therefore manifest as skeletal muscle-
specific symptomatology which include fatigue, muscle 
wasting, impaired regenerative capacity, pain, exercise 
intolerance, and sometimes, mild-to-severe neurological 
symptoms. Indeed, these symptoms have been well docu-
mented in chemotherapy-treated cancer patients [5, 13–15] 
suggesting that anti-cancer chemotherapy may be non-
specifically targeting the skeletal musculature, and perhaps 
even more specifically, the mitochondria to induce a variety 
of persistent adverse side effects.

Here, we review the current literature describing the 
clinical manifestations and molecular origins of chemo-
therapy-induced myopathy with a focus on the mitochon-
dria as the target organelle via which chemotherapeutic 
agents establish toxicity. We explore the likely mechanisms 
through which myopathy is induced, using the anthracy-
cline doxorubicin, and the platinum-based alkylating agent 
oxaliplatin as examples. Finally, we recommend directions 
for future research and outline the potential significance of 
these proposed directions with respect to the development 
of suitable musculoskeletal protective treatment regimes.

Potential mechanisms of chemotherapy‑induced 
mitochondrial myopathy

Chemotherapy drugs target rapidly dividing mitotic cells to 
arrest specific phases of the cell cycle, with the exact mode 
of action varying between drugs and the chemical classes 
from which they derive (as summarised in Table 1)—for 
this reason, specific agents are used to target specific neo-
plasms. The anthracycline family, for example, has been 
used for over 50 years to treat a number of different can-
cers including leukaemia, prostate, ovarian, lung and breast 
[16, 17], with doxorubicin hydrochloride (Adriamycin®)—
an anthracycline with limited therapeutic tolerability and 
efficacy due to its highly toxic effects on the heart—used 
primarily to treat solid tumours [18, 19]. A number of 
mechanisms of action have been proposed to explain the 

neoplastic cytotoxic and cytostatic nature of doxorubicin, 
which include: (1) DNA intercalation thus inhibiting pro-
tein biosynthesis and affecting transcription processes [20, 
21]; (2) free radical formation resulting in cellular dam-
age and apoptosis signalling and/or necrosis [22, 23]; (3) 
inhibition of topoisomerase II [24], an important nuclear 
DNA transcription enzyme; and (4) intrinsic mitochondrial 
apoptotic signalling [25]. As doxorubicin targets DNA as 
its primary cytotoxic action, it has also been hypothesised 
that the circular and covalently closed nature of mtDNA 
allows easier intercalation of chemotherapies, and thus 
an increased rate of transcriptional error occurs leading to 
mitochondrial dysfunction [25].

Mitochondrial function, and perhaps even more so, 
mitochondrial dysfunction, is physiologically complex 
and is modulated by a variety of regulators including the 
mitochondrial (mtDNA) and nuclear (nDNA) DNA, reac-
tive oxygen species (ROS), nuclear and cellular signalling 
molecules and ATP production amongst others [26, 27]. 
In the first instance, chemotherapy-induced mitochon-
drial dysfunction has been associated with elevated levels 
of mitochondrial ROS (mtROS). It is well established that 
doxorubicin treatment causes increased ROS production as 
a by-product of its metabolism via a redox cycling process 
unique to the anthracycline class of chemotherapeutics [28–
32]. Doxorubicin, which has a high affinity for the inner 
mitochondrial membrane (IMM) [33], accumulates on the 
matrix side and undergoes a single-electron reduction pro-
cess at complex I (NADH oxidase) of the electron transport 
chain (ETC) removing electrons vital to ATP production. 
This process forms the free radical semiquinone species 
that reduces molecular oxygen to produce the highly reac-
tive superoxide (O−

2
) molecule and subsequently the less 

reactive hydrogen peroxide (H2O2) molecule [17, 28, 32, 
34, 35]. O−

2
 and H2O2 collectively constitute the mtROS, 

which directly increase the state of cellular oxidative stress 
if not buffered effectively by endogenous antioxidants [33, 
34, 36, 37]. Thus, doxorubicin acts via a two-hit mode of 
action on the mitochondria acting as a powerful reducer 
when stable, depleting ATP production and available ATP 
stores, and as an efficient oxidiser in its semiquinone state, 
producing excess mtROS.

In addition to decreasing electron flow through the ETC 
and thus decreasing ATP production, the single-strand DNA 
breaks induced by doxorubicin (and indeed other chemo-
therapies that directly damage DNA) induces the activation 
of enzymes that repair such damage albeit to the detriment 
of ATP stores. Poly-ADP-ribose polymerases (PARPs) are 
highly conserved proteins that respond to DNA damage by 
stimulating repair through the use of energy co-factors, in 
particular, the use of NAD+ (a key mitochondrial substrate) 
by PARP-1 [38]. Within minutes of PARP-1 activation, the 
NAD+ pool depletes by up to 20 % with the cell required 
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to replenish this loss through ATP consumption, further 
exacerbating inner mitochondrial membrane potential 
(ΔΨ) depletion and energy homeostasis perturbation [39, 
40]. Additionally, the depleted NAD+ pool impacts upon 
other metabolic pathways including glycolysis and the tri-
carboxylic acid cycle, of which various steps are depend-
ent upon NAD+ availability [41, 42] which culminates in 
decreased substrate delivery to, and ATP synthesis at, the 
ETC (refer to Fig. 1). Considering that skeletal muscle is a 
highly metabolic organ, such reductions in the capacity to 
generate ATP would be undesirable and ultimately lead to 
functional perturbations. While skeletal muscle could tol-
erate acute PARP activity, the chronic activation of PARP 
following repeated systemic exposure would be detrimental 
and energetically expensive to skeletal muscle [41–43].

Although PARP is classified as a nuclear protein, the 
discovery of a truncated mitochondrial PARP-1 suggests 
that PARP-1 has a direct effect on mitochondrial respira-
tion potentially through the PARylation of mitochondrial 
proteins [43, 44]. In addition, PARP activation leads to 
reduced SIRT1 activity, mitochondrial biogenesis, and 

glucose clearance, and shifts skeletal muscle from the 
oxidative fibre type [38, 45]. Together, these metabolic 
changes would promote further metabolic dysfunction 
in chemotherapy-treated skeletal muscle. As deletion of 
PARP-1/2 in mice demonstrably reverses metabolic sup-
pression by promoting mitochondrial biogenesis, improv-
ing the oxidation of fats and enhancing appetite [38, 45, 
46], the pharmacological inhibition of PARPs may assist in 
maintaining the NAD+ pool and preventing metabolic com-
promise during chemotherapy.

As previously mentioned, an increase in chemotherapy-
induced mtROS production is strongly linked to mitochon-
drial dysfunction and damage. However, mtROS are also 
thought to function as signalling molecules that activate 
several proteolytic pathways within skeletal muscle, includ-
ing caspase-3 and calpain [33, 47–49]. These pathways in-
turn catalyse the release of myofilament proteins, allowing 
activation of the ubiquitin–proteasome system and result-
ing in skeletal muscle degradation [49–51]. Activation of 
the ATP-dependent ubiquitin–proteasome system is respon-
sible for the muscular degradation seen in homeostatic 

Table 1  Mode of action and reported side effects of chemotherapy agents from various drug classes

stceffeediSnoitcAfoedoMtnemtaertnommoCsgurdnommoCtnegafossalC

Alkylating 
agents 

• Nitrogen mustards (including 
mechlorethamine, chlorambucil, 
cyclophosphoamide, ifosfamide, 
melphalan) 

• Nitroureas (including streptozocin, 
carmustine, lomustine) 

• Alkyl sulfonates (busulfan) 
• Triazines (including dacarbazine & 

temozolomide) 
• Ethylenimines (including thiotepa and 

altretamine) 
• Platinum-based (oxaliplatin, cisplatin, 

carboplatin)  

• Leukemia 
• Lymphoma 
• Multiple Myeloma 
• Sarcoma 
• Cancers of the 

breast, ovary, lung 
and colorectum 

Interfere with DNA base pairing, causing 
strand breaks and preventing replication: 
• DNA lesion formation 
• Arrest of DNA synthesis 
• Inhibition of RNA synthesis 

• Anemia 
• Impaired 

spermatogenesis 
• Nausea and 

vomiting 
• General weakness 

Anti-tumour 
antibiotics 

• Anthracylcines (including daunorubicin, 
doxorubicin, epirubicin, idarubicin) 

• Actinomycin-D 
• Bleomyciin 
• Mitomycin-C 
• Mitoxantrone 

• Wide variety of 
cancers 

Interfere with enzymes involved in DNA 
replication, preventing replication:  
• Works at all phases of the cell cycle 

• Cardiac 
dysfunction & 
toxicity 

• Nausea and 
vomiting 

• Muscle weakness  
• Hair loss 

Antimetabolites 

• 5-fluorouracil 
• 6-marcaptopurine 
• Capecitabine 
• Cytarabine 
• Floxuridine 
• Fludarabine 
• Gemcitibine 
• Hydroxyurea 
• Methotrexate 
• Pemetrexed 

• Leukemias 
• Cancers of the 

breast, ovary and 
GI tract 

Block the formation and use of nucleic 
acids required for DNA replication: 
• Substitute for nucleic acids of DNA 

and RNA 
• Interfere with DNA and RNA growth 
• Damage occurs during S phase  

• Hair loss 
• General weakness 
• Nausea and 

diarrhoea 

Topoisomerase 
Inhibitors 

• Topoisomerase I inhibitors (including 
topotecan & irinotecan) 

• Topoisomerase II inhibitors (including 
etoposide, teniposide, mitoxantrone) 

• Leukemias 
• Cancer of the lung, 

overy & GI tract  

Interfere with Topoisomerase I and II: 
• Block DNA separation 
• Block DNA replication 

• Nausea and 
vomiting 

• Hair loss 
• General weakness 

Mitotic 
Inhibitors 

• Taxanes (including paclitaxel & 
docetaxel) 

• Epothiolones (ixabepilone) 
• Vinca alkaloids (vinblastine, vincristine, 

vinorelbine) 
• Estramustine 

• Leukemia 
• Lymphoma 
• Myeloma 
• Sarcoma 
• Cancers of the 

breast & lung

Interefere with mitosis in the M stage of 
the cell cycle 

• Peripheral and 
central neuropathy 
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regulation of skeletal muscle mass and is amplified in 
many chronic diseases including cancer cachexia and dia-
betes [52–54]. Thus, doxorubicin-induced skeletal muscle 
atrophy is strongly associated with mitochondrial dysfunc-
tion. This dysfunction is a direct result of increased ROS 
production via drug metabolism as well as that due to non-
specific electron leak from the mitochondrial respiratory 
chain which is likely induced by mtDNA and respiratory 
chain protein damage. These negative effects have been the 
basis of several investigations into chemotherapy-induced 
myopathies. Adachi et al. [55] have demonstrated strong 
evidence that the prevalence of mtDNA deletions increases 
with doxorubicin dosage, and exponentially more so with 
long-term exposure. In cardiomyocytes, mtDNA deletions 
could be prevented with co-therapy of the antioxidant and 
electron carrier coenzyme Q10 [55], suggesting that the 
aetiology of mtDNA mutation is via doxorubicin-induced 
mtROS rather than the doxorubicin semiquinone itself.

Long-term doxorubicin treatment induces significant 
reductions in skeletal muscle mass, strength, and endur-
ance in cancer survivors (for detailed review, refer to [10]). 
Scheede-Bergdahl et al. [10] postulated that the molecular 
basis of these effects was due to the progressive amplifi-
cation and proliferation of mtDNA mutations. Gouspillou 
et al. [56] have also demonstrated a reduction in muscle 
mass and function—thought to be due to an increase in 
mtROS and a reduction in mitochondrial respiration—in 
female C57BL/6 mice when treated with four cycles of 
doxorubicin (with one cycle equivalent to two 10 mg/kg 
doses on days one and five with 3 weeks recovery). How-
ever, no evidence of mtDNA damage post-doxorubicin 
therapy (as detected by long range PCR) was found [10].

Another effective class of chemotherapeutics are the 
platinum-derived alkylating agents, of which oxaliplatin 
is used predominantly for the treatment of colorectal can-
cer. Oxaliplatin exerts its antibiotic effects by forming 
platinum–DNA adducts which efficiently block DNA rep-
lication forcing cell cycle arrest and ultimately apoptosis in 
mitotic cells [57–59]. Both doxorubicin and oxaliplatin—
although differing in their precise modes of action—have 
been shown to negatively affect mitochondrial function 
[22] and to induce deleterious effects on skeletal muscle 
that clinically manifest as muscle weakness [5, 17, 60] 
(refer to Fig. 2). Gourdier et al. [61] demonstrated that 
oxaliplatin treatment induces mitochondrial and energy 
homeostasis dysregulation in colorectal cancer cells, poten-
tially through the direct mutation of mtDNA or via muta-
tion of the nuclear-encoded mitochondrial proteins (refer 
to Fig. 1). While this effect is of obvious benefit to the 
induction of cell death pathways in neoplastic cells, sup-
pression of mitochondrial function and the disruption of 
energy homeostasis would have detrimental consequences 
to somatic cells, especially in highly metabolic tissues 

such as the skeletal muscle. Our group has recently dem-
onstrated that oxaliplatin treatment increases mtROS pro-
duction, and reduces mitochondrial and cell viability in an 
in vitro C2C12 myotube culture model [22]. Oxaliplatin 
seems to exert immediate but reversible inhibition of key 
respiratory enzymes, as shown by induction of a metabolic 
shift towards an anaerobic glycolytic phenotype following 
acute administration [22]. We speculate that this phenotype 
shift occurs to buffer the acute suppression of respiratory 
function that occurs during the transport of oxaliplatin into 
skeletal muscle, and more specifically, the mitochondria. 
We speculate that oxaliplatin, specifically the platinum 
component, is competitively substituted for copper (Cu2+) 
at receptor sites on the copper transporter 1 (CT1), limit-
ing the availability of the transporter to Cu2+ and thereby 
reducing the mitochondrial Cu2+ pool, which is essential 
for normal complex IV function and oxidative phospho-
rylation. A study by Lutsenko et al. [62] suggests that the 
mitochondrial Cu2+ transporter, COX17, transports Cu2+ 
into the mitochondria and, with the assistance of Sco pro-
teins, incorporates the Cu2+ molecule into complex IV. 
Thus in addition to, or instead of, reducing the mitochon-
drial Cu2+ pool, it is possible that the entire oxaliplatin 
molecule is incorporated into complex IV with the poten-
tial to induce malfunction of electron flow and acceptance 
by molecular oxygen. An acute effect of oxaliplatin admin-
istration thus seems to be inhibition of the mitochondrial 
respiratory chain.

The chronic effects of oxaliplatin treatment, however, 
seem intrinsically related to mtDNA damage and mutation 
resulting in gene polymorphisms as per the single-stranded 
breaks induced in nuclear DNA, rather than due to com-
pounding effects of acute respiratory chain inhibition. As 
mtDNA encodes for the matrix-residing components of 
the respiratory chain complexes which are responsible for 
proton pumping and initial electron transfer, a natural con-
sequence of such damage would be reduced mitochondrial 
function and increased mtROS production leading to skel-
etal muscle atrophy, damage and wasting (refer to Fig. 1). 
A recent study by Wisnovsky et al. [63] highlighted the 
capacity for oxaliplatin to induce single-stranded breaks in 
the mtDNA. The group isolated the nuclear DNA damaging 
component of oxaliplatin and conjugated it with the N ter-
minus of a mitochondrial-penetrating peptide (mPP). When 
delivered to ovarian cancer lines, the oxaliplatin-mPP mol-
ecule localised solely within the mitochondria and induced 
mtDNA mutation followed by mitochondrial death and 
the induction of cellular apoptosis. Although Wisnovsky 
et al.’s data [63] show that oxaliplatin is capable of causing 
mtDNA damage, the group failed to establish that oxalipl-
atin was able to independently penetrate the mitochondria 
in its natural form. Studies currently being undertaken by 
our laboratory have shown interesting results in this area. 
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Our preliminary data shows that oxaliplatin-induced plati-
num–DNA adducts are present within neuronal mitochon-
drial fractions in addition to the nuclear fraction, both in a 
cell culture model and following systemic oxaliplatin treat-
ment of BalbC mice [64]. We are currently investigating 
whether the same is true for skeletal muscle.

While we are yet to determine the precise mechanisms 
of oxaliplatin toxicity in skeletal muscle, our data sug-
gests that in addition to the anthracyclines, chemotherapeu-
tic agents from other drug classes that do not necessarily 
induce mtROS formation as a consequence of drug metabo-
lism (i.e. the alkylating platinum-based chemotherapies) 

are also detrimental to mitochondrial function and myofiber 
survivability. The molecular mechanisms underlying doxo-
rubicin toxicity in skeletal muscle and the consequential 
repercussions on physiological function are being increas-
ingly documented [23, 28, 33, 65] and have established that 
mitochondrial dysfunction and heightened ROS produc-
tion are key players. However, skeletal myopathy is a com-
mon side effect of chemotherapy exposure across all drug 
classes, and thus, if it has a mitochondrial origin, the initial 
defect seems not to be intrinsically associated with a par-
ticular mode of drug action, i.e. DNA damage versus inhi-
bition of DNA replication. Indeed, our preliminary data in 

Fig. 1  Effects of chemotherapeutic agents on mitochondria and the 
promotion of skeletal muscle wasting. (A) The metabolism of anthra-
cycline chemotherapies occurs at Complex I of the electron transport 
chain (ETC) within the mitochondria. The anthracycline molecule is 
reduced by Complex I, removing vital electrons from the ETC and 
transforming the anthracycline into its oxidative semiquinone, which 
reduces molecular oxygen to superoxide. This final reduction process 
returns the anthracycline to its non-semiquinone state. (B) Chemo-
therapy-induced nuclear DNA (nDNA) damage stimulates PARP-1 
activity, which consumes NAD+ (a vital mitochondrial substrate) 
to repair the nDNA damage. In doing so, the NAD+ pool is rapidly 
depleted. This loss of NAD+ negatively effects ATP production as 
well as negatively impacting various metabolic pathways includ-
ing glycolysis and TCA cycle. (C) While the precise mechanism of 
oxaliplatin toxicity is unknown, likely mechanisms are intercalation 
of the platinum derivative into the mtDNA and the ETC complexes, 
and depletion of the mitochondrial Cu2+ pool. (D) mtDNA encodes 

for multiple components of the ETC and as such damage to the 
mtDNA through chemotherapy treatment and increased ROS levels 
perpetuates a positive-feedback loop of damage and dysfunction to 
the mtDNA and cellular components of the mitochondria. (E) mtROS 
can oxidise the mitochondrial membranes and damage the proteins of 
the ETC resulting in electron leak and an increase in mtROS produc-
tion. As ROS levels increase within the cell, they upregulate atrophic 
pathways leading to muscle cell degradation, necrosis due to oxida-
tive damage, autophagy and macroautophagy. (F) As a result of ROS-
induced (and possibly chemotherapy-induced) mitochondrial dys-
function and mtDNA damage, mitophagic pathways are stimulated in 
order to curb the number of dysfunctional and mutated mitochondria 
within the total mitochondrial pool. As dysfunctional mitochondria 
are destroyed, the capacity of the mitochondrial pool to produce ATP 
is reduced resulting in depletion of the cellular ATP pool and thus 
induction of various autophagic, necrotic and apoptotic pathways
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a myotube culture model indicate that both increased mito-
chondrial ROS production and reduced mitochondrial pool 
viability are consequences of treatment with chemothera-
pies from various drug classes including the anti-metabolite 
(5-fluorouracil) and topoisomerase inhibitor (irinotecan) 
families [22]; however, we did not observe functional defi-
cits in myotubular mitochondrial function following expo-
sure to these drugs as per doxorubicin and oxaliplatin. This 
highlights that there are both similarities and differences in 
the precise effects different chemotherapy agents have at 
the mitochondrial level and warrants further investigation. 
Indeed, since doxorubicin is the only chemotherapy agent 
that has been even moderately characterised in the litera-
ture with respect to the skeletal muscular system, there is 
an immediate need for the investigation of all chemothera-
peutic agents in current clinical use and whether their toxic 
effects induce similar levels of myopathy, such that appro-
priate therapies can be devised to address them.

Consequences of mitochondrial dysfunction 
and ROS production on skeletal muscle mass

A number of recent studies investigating the molecular 
origin of skeletal muscle atrophy in various diseases/con-
ditions have concluded that atrophy is almost always pre-
ceded in the first instance by increased levels of mtROS 

[66–70]. In a 2015 review, Sena et al. [71] outlined that 
mtROS production is a tightly regulated cell signalling 
pathway that, when excessive, induces mitochondrial and 
cellular protein damage thus leading to autologous mito-
chondrial destruction. Termed as mitophagy, this type of 
targeted autophagy is promoted in an attempt to attenu-
ate elevated mtROS production by stressed mitochondria, 
which would otherwise inevitably induce oxidative dam-
age, cellular energy depletion, and apoptotic/necrotic cell 
death. Attaix and Taillandier [72] have demonstrated that 
skeletal muscle mitophagy, regardless of cause, is a potent 
inducer of skeletal muscle wasting. Thus our hypothesis 
that chemotherapeutic agents (irrespective of the chemi-
cal class from which they derive) promote skeletal mus-
cle atrophy and wasting via a mtROS/mutation-dependent 
mechanism seems pertinent—especially since we have 
demonstrated elevated mtROS levels following exposure 
to chemotherapy agents from a variety of drug classes [22, 
73]. Indeed, Gilliam et al. [33] have shown that chemother-
apy (doxorubicin) treatment causes an immediate increase 
(16 h post-treatment) in the established upstream muscu-
lar atrophy regulators, E3 ubiquitin ligase and Atrogin-1/
MAFbx, in cardiomyocytes via a mtROS-dependent path-
way. Although there is a lack of recent data on the effect 
mitochondrial dysfunction has on skeletal muscle atrophy, 
two studies have implicated ROS molecules in the induc-
tion of the FoxO family of transcription factors, which have 

Fig. 2  Hypothetical model of chemotherapy-induced myopathy 
in skeletal muscle. a Chemotherapy is delivered to skeletal muscle 
which detrimentally effects nuclear DNA and potentially mtDNA. 
b Chemotherapy induces mitochondrial dysfunction resulting in 
increased mtROS production leading to damage of the skeletal mus-

cle. c Damage sustained to the nuclear DNA is exemplified during 
mitosis causing a failure of satellite cell replication, and therefore, 
of regeneration mechanisms. d Long-term chemotherapy treatment 
results in progressive skeletal muscle damage and dysfunction due to 
blunted repair mechanisms
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been shown to upregulate Atrogin-1/MAFbx atrophic sig-
nals [74, 75] (for detailed review see Bonaldo and Sandri 
[76]).

In addition to direct modulation of atrophic signal-
ling pathways, mtROS have the capability to oxidatively 
modify protein structures [71, 77]. As chemotherapeutic 
agents demonstrably increase mtROS production [22], it 
is rational to link the subsequent increase in mtROS con-
centration with the modification of mitochondrial as well as 
other cellular proteins. A study by Kurihara et al. [78] has 
linked excessive ROS production with dysfunctional mito-
chondrial respiratory proteins which perpetuated a positive-
feedback cycle of increased mtROS production, respiratory 
chain defects, mtDNA deletion, and ultimately mitophagy. 
As mitochondrial dysfunction increases, cellular energy 
depletion occurs which, as demonstrated by Neel et al. 
[79], leads to macroautophagy within the skeletal muscle 
in an attempt to increase substrate availability to oxidative 
phosphorylation and restore energy homeostasis—albeit 
a futile effort in the event of respiratory chain inhibition 
and/or defects/dysfunction. As conclusively established by 
Argilés et al. [13], negative alterations in energy balance act 
as a potent stimulus of muscle atrophy. Furthermore, Mac-
carrone et al. [80] have implicated increased ROS levels 
with the propagation of lipoxygenases which induce struc-
tural defects within the cell leading to necrosis-induced cell 
death, with others [81] associating ROS-induced necrosis 
with organelle or plasma membrane modification. With 
these findings reinforcing a number of previous studies 
[69, 82, 83], targeting mitochondrial dysfunction to reduce 
mtROS production is a logical intervention point through 
which to attenuate the initiation of muscular atrophy, mac-
roautophagy, necrosis, and apoptosis signalling pathways, 
all of which have been strongly associated with chemother-
apy treatment [4, 37, 84, 85].

Clinical manifestations of chemotherapy‑induced 
myopathy

Chemotherapy-induced skeletal myopathy is thought to 
manifest clinically as a variety of symptoms which include 
varying indices of muscle pain and weakness [86], exer-
cise intolerance [87] and intense and persistent fatigue. 
Incidentally, these are common symptoms associated with 
various metabolic diseases with mitochondrial aetiology. 
Emerging data also describe various metabolic syndrome-
like co-morbidities in testicular cancer patients following 
cisplatin-based chemotherapy treatment, in which acute 
insulin resistance, hyperlipidemia, and abdominal visceral 
and subcutaneous adiposity are observed [88]. Collectively, 
these symptomologies highlight a probable mitochon-
drial aetiology, with the systemic effects resulting from an 

insufficiency to effectively utilise energy substrates such as 
glucose (leading to insulin resistance) and fats (leading to 
hyperlipidemia and adiposity), and the skeletal muscle-spe-
cific effects resulting from a failure of intracellular energy 
synthesis and homeostasis regulation.

At the myocellular level, skeletal muscle fatigue—which 
has been traditionally researched following intense and/
or prolonged exercise [89, 90]—is associated with signifi-
cant alterations in the intracellular and extracellular ionic 
environment, concentration and functional ratios of intra-
cellular metabolites, calcium sensitivity of the contractile 
apparatus, and the production of ROS [91–93]. Indeed, 
these perturbations result in pain, weakness, and exercise 
intolerance. Fatigue is a complex phenomenon that is influ-
enced by a plethora of factors, both physical and psycho-
logical. True skeletal muscle fatigue has been defined as 
any decline in performance associated with muscle activ-
ity and is strongly influenced by perturbations in neural and 
myocellular function [5, 94]. In the first instance, skeletal 
muscle mass and function is strongly regulated by both the 
central and peripheral nervous system, and as such, chem-
otherapy-induced neuropathy would strongly promote skel-
etal myopathy [84]. Interestingly, chemotherapy-induced 
peripheral neuropathy is also associated with mitochon-
drial dysfunction and induces escalating myopathy and 
weakness as dosages increase [95]. In the second instance, 
skeletal muscle mass and function is strongly regulated by 
loading, thus central and/or psychological fatigue alongside 
extensive hospitalisation for anti-cancer treatment would 
promote disuse deconditioning and atrophy [96, 97]. In the 
third instance, muscle mass is positively correlated with 
nutritional status, and thus chemotherapy-induced dys-
regulation of gastrointestinal function and appetite along-
side promotion of nutrient malabsorption (i.e. via vomiting 
and/or diarrhoea) [98] would reduce the nutritional status 
and promote skeletal muscle wasting. This highlights the 
multifactorial nature of chemotherapy-induced skeletal 
myopathy. While there is limited research to date that has 
examined the mechanisms through which non-anthracy-
cline chemotherapeutic agents might induce skeletal mus-
cle fatigue, there is mounting literature demonstrating that 
symptoms persist long after chemotherapy exposure, and as 
such, the fatiguing effects of chemotherapeutic agents are 
unlike that of the reversible phenomenon observed during 
exercise.

A study conducted by Ness et al. [15] examined skeletal 
muscle function in chemotherapy-treated childhood can-
cer survivors, confirming that patients experience signifi-
cant limitations to physical performance and are restricted 
from participation in daily activities several years following 
treatment. Post-chemotherapy-treated children also have a 
significantly reduced maximal exercise capacity [8, 9, 15, 
60], reduced fat-free [8] and skeletal muscle mass [15], and 
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significant skeletal muscle weakness [8, 9, 15, 99]. Impor-
tantly Järvelä et al. [8] have established that the skeletal 
muscle dysfunction observed in childhood cancer survi-
vors is not secondary to impaired cardiac muscle function, 
as the same results are observed in the absence of detect-
able cardiac dysfunction and in comparison with age-, gen-
der-, and physical activity-matched controls [60]. Thus, 
chemotherapy-induced exercise intolerance, weakness, and 
fatigue seem intrinsically rooted in physiological malad-
aptations at the skeletal muscle level. A number of other 
groups have shown strong associations between skeletal 
muscle impairment and atrophy induction, which is thought 
to be preceded by mitochondrial dysfunction and mtROS 
production [10, 65–70].

Without a doubt, the chronic, long-term side effects of 
chemotherapy treatment on the skeletal muscular system 
seem most profound when chemotherapy is administered 
during childhood [8–10, 15, 60, 99]. Hyperplastic skeletal 
muscle growth and therefore, mitotic activity, is prolific 
during foetal and neonatal growth and ceases during early 
childhood in which the total fibre number is set [100, 101]. 
During this time, there would be a much higher propensity 
for chemotherapy-induced DNA damage and mutations to 
be quickly incorporated into the somatic skeletal muscle 
genome and induce repercussions on skeletal muscle struc-
ture and function that persist for life. For those chemother-
apies that act to stop mitosis altogether, the result would be 
a systemic reduction in skeletal muscle fibre number that 
is unlikely to ever be entirely recovered. However, chem-
otherapy-induced myopathy and metabolic syndrome-like 
co-morbidities are also well reported in the adult popula-
tion [87, 102, 103], highlighting that the damaging and 
atrophic side effects elicited by chemotherapy treatment 
are not merely segregated to cell cycle manipulation, but 
also directly affect mitochondrial function and energy pro-
duction, skeletal muscle physiology and ultimately, the 
regulation of muscle mass. Thus chemotherapy-induced 
myopathy is likely a two-tiered phenomenon in which skel-
etal muscle damage and necrotic/apoptotic cell death is 
propagated, and the capacity for repair of that damage—
especially during energy homeostasis dysregulation—is 
severely impaired (as summarised in Fig. 2).

Future direction and significance

Chemotherapy-induced mtROS production and DNA dam-
age has been implicated in mitochondrial dysfunction, 
energy homeostasis dysregulation, mitophagy, and subse-
quently skeletal muscle atrophy and wasting. As a result, 
cancer survivors are prone to low muscle mass, poor func-
tion and heightened fatigue. Thus therapeutic interven-
tions to ameliorate these unwanted side effects are greatly 

needed. We propose that the precise mechanisms through 
which chemotherapeutic agents induce mitochondrial and 
skeletal muscle toxicity and wasting be carefully character-
ised—particularly for those that are in current widespread 
clinical use—in the first instance. Further, while no single 
treatment has been identified to clearly ameliorate chem-
otherapy-induced mitochondrial dysfunction, a number of 
treatments have been used to treat other myopathies with 
similar symptomatology and which are specifically under-
scored by mitophagy [104, 105]. Thus targeting the mito-
chondria with either established or novel mitochondrial 
targeted therapeutics (MTT) could provide a therapeutic 
avenue through which to provide the skeletal musculature 
with protection against chemotherapy-induced toxicity. 
This is indeed a promising pharmacotherapeutic direction 
for future research.

Conclusions

The clinical repercussions of chemotherapy-induced skel-
etal muscle toxicity range from reduced participation in 
activities of daily living, chronic fatigue, exercise intol-
erance, depression and treatment discontinuation, to an 
increased risk of morbidity and mortality from myopathy-
related disease [5, 94]. We have presented compelling evi-
dence to suggest that the mitochondria are an etiological 
pharmacotoxic target of chemotherapy treatment which 
induces various co-morbidities that are overwhelmingly 
manifested in the skeletal muscular system. Given the per-
sistent and severe nature of these co-morbidities, we stress 
the importance for a concerted research effort to develop 
appropriate (co-)/therapeutics to address the deleterious 
effects of chemotherapy-based anti-cancer therapy on the 
mitochondria to mitigate impacts on the skeletal muscular 
system.
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