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was employed in order to maximize clinical utilization. The 
week 8 ETS to OS model was then used to simulate clini-
cally relevant ETS thresholds for future Phase II studies 
with investigational treatments.
Conclusions  The published OS model and resultant 
simulations can be leveraged to support Phase II design 
and predict expected OS and HR (based on early observed 
TGI data obtained in Phase II or Phase III studies), thereby 
informing important mRCC development decisions, e.g., 
Go/No Go and dose regimen selection.
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Introduction

Various metrics for tumor growth inhibition (TGI) have 
been shown to predict overall survival (OS) in solid tumors 
and in multiple myeloma. These metrics include both con-
tinuous and categorical measures of change in tumor size at 
first or second post-baseline assessment, as well as model-
based descriptors of TGI (e.g., growth rate or time to tumor 
(re)growth, reviewed in Ref. [1]). These measures offer the 
potential to be used as alternative endpoints early in clini-
cal studies to support end-of-Phase II decisions and Phase 
III study design using model-based simulation approaches 
[1, 2].

In patients with metastatic renal cell carcinoma (mRCC), 
estimates of tumor growth rate were slower in patients 
treated with sunitinib compared with interferon-α (IFN-α) 
and growth rate correlated with OS [3]. Everolimus dose–
response was assessed in the Phase III RECORD-1 trial by 
means of a longitudinal exposure response model [4]. In 
this same trial, growth of non-target lesions and appearance 
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of new lesions were predictive of OS in a multivariate 
Cox model [5]. Maitland et al. [6] analyzed the longitudi-
nal tumor size data from a Phase III trial of sorafenib and 
evaluated the operational characteristics of a drug effect 
parameter estimate in randomized Phase II trials between 
sorafenib and hypothetical comparators. However, all these 
efforts lack a quantitative framework to predict OS based 
on tumor growth inhibition [1] that could further be used to 
support the design and analysis of upcoming Phase II and 
Phase III studies.

The objectives of this work were (1) to leverage his-
torical data and assess the quantitative link between TGI 
and OS based on data collected in a variety of Phase II 
and Phase III studies of temsirolimus, sunitinib or axi-
tinib and (2) to identify TGI thresholds that are predictive 
of expected OS benefit which could be used as targets to 
support early decisions (at end of Phase II or at an interim 
point of a Phase III clinical trial).

Methods

Trials and data

The data came from patients with mRCC who received 
treatments with a variety of mechanism of action includ-
ing a cytokine: IFN-α, an mTOR inhibitor: temsirolimus, 
or vascular endothelial growth factor receptors inhibitors: 

sunitinib, sorafenib or axitinib. The data were collected 
from ten Phase II or Phase III studies summarized in 
Table  1. Study protocols and results are described in the 
respective publications [7–18].

These studies have been conducted to support develop-
ment and registration of temsirolimus [7], sunitinib [8–13] 
and axitinib [14–18].

Patient characteristics

The following baseline patient characteristics were avail-
able in all studies and tested as prognostic factors: age, sex, 
race, eastern cooperative oncology group (ECOG) perfor-
mance status (PS), tumor burden (sum of longest diameters, 
number of metastatic sites, presence of lung or liver metas-
tases), disease history (time from diagnosis, prior nephrec-
tomy, line of therapy), and hemoglobin, lactate dehydroge-
nase (LDH) and corrected calcium levels.

These characteristics include the prognostic factors that 
have been well described, e.g., the ones used in the Memo-
rial Sloan–Kettering Cancer Center (MSKCC) prognos-
tic score [19]: PS, LDH, calcium, hemoglobin, and prior 
nephrectomy or the three factors recently proposed by 
Bamias et al. [20]: PS, time from diagnostic and number of 
metastatic sites.

Tumor growth inhibition metrics

Patient-level TGI metrics were obtained using parameter 
estimates derived from longitudinal tumor size models. To 
be evaluable for TGI modeling, a patient needed to have 
baseline and at least one post-baseline tumor size measure-
ment (sum of longest diameters of target lesions according 
to the RECIST criterion version 1.0 [21]). Three alternative 
TGI models previously proposed by Stein (bi-exponential 
model) [22, 23], Wang (linear growth-exponential shrink-
age model) [24] or Claret [simplified TGI (sTGI) model] 
[23] were evaluated to fit the data from each study sepa-
rately and from the pooled studies using PHOENIX NLME 
FOCE algorithm [25]. Model equations are given in Sup-
plementary Materials. The models were compared using 
Akaike [26] criterion and standard goodness-of-fit plots. 
These models were not subjected to any simulation-based 
assessment as they were not meant to be used for simu-
lation but to estimate the TGI metrics for use in the OS 
model.

The three TGI metrics were calculated based on indi-
vidual post hoc parameter estimates. Two were calculated 
using the sTGI model [23]: early tumor shrinkage (ETS), 
the ratio of tumor size (Y) at week x (x = 8, 10, 12 weeks) 
to baseline (Y0) and the time to tumor growth (TTG), which 
was dependent on the estimates of growth rate (KL), kill 
rate (KD) and resistance appearance rate (λ).

Table 1   Characteristics of the studies

a  N patients with tumor size data
b  Neval patients “evaluable” with at least one post-baseline tumor size 
measurement in addition to baseline
c  Sorafenib refractory
d  Cytokine refractory

Study Phase Line Na Nb
eval

Temsirolimus 1098 [7] III 1st, poor  
prognosis

501 496

Sunitinib 1006 [8] III 2nd, refractd 106 105

Sunitinib 1034 [9, 10] III 1st 725 709

Sunitinib 1065 [11] II 1st 289 267

Sunitinib 1072 [12] II 1st and 2nd 51 51

Sunitinib 1110 [13] NA Long-term  
extension

118 113

Axitinib 1012 [14] II 2nd refractd 52 48

Axitinib 1023 [15] II 2nd, refractc 62 50

Axitinib 1032 (AXIS) 
[16, 17]

III 2nd 714 651

Axitinib 1035 [18] II 2nd, refractd 64 62

Total 2628 2552  
(97.1 %)
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The third metric was the growth rate, G, estimated 
using the biexponential model [22]. Note TTG is negative 
when KL  >  KD, i.e., in patients with progression at first 
post-baseline visit. TTG can unequivocally be calculated 
for each and every patient based on the model parameter 
estimates. It is not a time-varying covariate and can be 
obtained independently of patient survival. Some practical 
aspects of using TTG were recently discussed [27].

Survival model development

A covariate-free parametric survival regression model 
(using the survreg function in R version 2.15.0) was 
applied to the OS data in order to identify the probability 
density function that best described the observed survival 
times. The most suitable distribution was selected among 
normal, lognormal, Weibull, logistic, log-logistic, extreme 
and exponential according to the AIC values and goodness-
of-fit plots.

Patient baseline characteristics and TGI metrics listed 
above were tested to explain variability in OS. Covariates 
effects on OS were first screened using Kaplan–Meier and 
(nonparametric) Cox regression analyses (using survfit and 
coxph functions, respectively, in R, version 2.15.0).

A “full” model was built by including all significant 
covariates from the Cox univariate analysis (p < 0.05 per the 
log-likelihood ratio test). A backward stepwise elimination 
was subsequently employed. At each elimination step, the 
relative influence of each remaining covariate on the model 
was re-evaluated by deleting it from the reduced model on 
an individual basis using a cutoff of p < 0.01. As the tumor 
size metrics were highly correlated, a separate backward 
stepwise elimination was conducted for each metric.

The model performances were evaluated using a poste-
rior predictive check (PPC). OS distributions and hazard 
ratios (HR) were simulated 1000 times for the patients, as 
in the original studies. Model parameters were sampled 
from the estimated mean values and the uncertainty in 
parameter estimates for each simulated study replication. 
Censoring was replicated by sampling patient study dura-
tion from a uniform distribution of 0–1500 days consistent 
with the observed censored OS data.

Simulations

Simulations were performed to assess the relationship 
between the expected effect size in OS, i.e., the HR of an 

week x ETSi =
Yweekx,i

Y0i

TTGi =

log(KDi)− log(KLi)

�i

investigational treatment versus standard of care (SOC) 
(assumed to be sunitinib) and the difference in the effect 
size in TGI metric (e.g., week 8 ETS). Multiple replications 
(n = 1000) of virtual Phase III studies comparing an inves-
tigational treatment (i.e., a new agent or a combination) 
to SOC were simulated using the final ETS vs OS model. 
Patient characteristics were reflective of those observed in 
the sunitinib first-line study (9, 10). The power of the Phase 
III studies (i.e., probability of HR ≤ target, e.g., 0.80) was 
also calculated conditional on the difference in week 8 
ETS. This setting would mimic the calculation of expected 
HR that could be performed as soon as when tumor size 
data become available to estimate TGI metric, and support 
interim or end-of-Phase II decisions or interim analysis of 
Phase III.

Results

Tumor size model and TGI metrics

Over the 2628 patients included in the ten clinical studies, 
2552 (97.1  %) were evaluable for tumor size modeling. 
The best fit of the data was obtained from the sTGI model, 
followed by Stein and Wang models for each of the stud-
ies and on the pooled database (Akaike criterion of 64314, 
65600, 66990 for the three models, respectively). Param-
eter estimates as well as diagnostic plots for both sTGI and 
bi-exponential models are given in supplementary material 
(Supplementary Tables 1, 2; Figures 1, 2).

Overall survival model

In the univariate Cox analysis (Supplementary Table  3), 
TTG (implemented using log(TTG)) was the most signifi-
cant TGI metric (score of 285) followed by log(G) (score of 
229) and ETS (score of 136–140). Most baseline prognostic 
factors (11 of 14 tested) were also significant. A lognormal 
distribution most appropriately characterized the OS distri-
bution, as previously observed for NSCLC [24]. Backward 
elimination of the covariates retained in the Cox univariate 
analysis led to the selection of one of the TGI metric and of 
identical baseline prognostic factors regardless of the TGI 
metric in the model: ECOG, hemoglobin, corrected cal-
cium, LDH, number of metastases and time from diagnosis. 
The OS model with log(TTG) best described the data (log 
likelihood of −9921); however, ETS models also demon-
strated good performance in the PPC. The model based on 
ETS at week 8 (log likelihood of −10017) was preferred 
and retained for further simulations as week 8 ETS has 
the potential to constitute an early biomarker of treatment 
effect and offers the ability to pre-specify the time point 
in a prospective planned interim data analysis. Parameter 
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estimates of the OS models are given in Table 2 (week 8 
ETS) or in Supplementary Table  4 (log(TTG)). Param-
eters estimates full covariance matrix for the two models 
are given in Supplementary Table 5 and 6. The final model 
was based on 2491 patients, i.e., the subset of patients will 
all baseline prognostic factors documented among the 2552 
patients with TGI data. Patients received six different treat-
ments: sunitinib (n =  886), axitinib (n =  479), sorafenib 
(n = 313), temsirolimus (n = 182), IFN-α (n = 475) and 
temsirolimus +  IFN-α (n = 156). All parameters are well 
estimated. According to these models, a poor prognosis is 
associated with ECOG performance status >0, more meta-
static sites, lung metastasis, low hemoglobin, high calcium, 
high LDH and shorter time from diagnosis, all factors 
being known prognostic factors linked to disease sever-
ity [19, 20]. Finally, the probability of survival increases 
in patients with more TGI (e.g., longer TTG, larger ETS), 
independently of the baseline prognostic factors. Depend-
ing on the goal, the two models may have distinct applica-
tions that will be discussed later.

The models were qualified by simulating survival dis-
tributions for each of the ten studies (not shown) as well 
as survival distributions stratified by tertile of predictors 
as illustrated in Fig. 1 for week 8 ETS and supplementary 
Figure 3 for TTG. In addition, the models were qualified in 
simulating survival distributions for each of the six treat-
ments investigated in the ten studies (sunitinib, axitinib, 
sorafenib, temsirolimus, interferon, temsirolimus and inter-
feron) without stratification and after stratification by low 
and high levels of the predictors (separated at the median 
of 0.892 to mitigate the smaller number of patients; sup-
plementary Figures 4, 5 for the ETS model). These assess-
ments support treatment independence of the week 8 ETS 
OS relationship. Similar results were obtained with the 

TTG model (not shown). Finally, the models were quali-
fied by simulating the HR of sunitinib versus IFN-α in 
study 1034 [10], as this study was the basis of the simu-
lations that will be presented next. Figure 2 illustrates the 
results for the week 8 ETS model where the observed HR 
of 0.88 was within the 95 % prediction interval of 0.71 to 
0.92 (median prediction of 0.82).

Simulations

The predicted distribution (95 % prediction interval) of HR 
comparing an investigational treatment to sunitinib, taken 
as the SOC, in a 600-patient study (300 per arm) as a func-
tion of difference in TGI metric (delta in week 8 ETS) is 
shown in Fig.  3. The greater the shrinkage at week 8 for 
the investigational treatment relative to sunitinib (delta in 
week 8 ETS), the lower the expected HR between the two 
treatments. A 20 % difference in week 8 ETS may result in 
an improved OS with a HR of 0.73 (median HR prediction, 
black thick line). A 300-patient per arm Phase III study 
would have an 80 % probability of technical success (PTS; 
80th percentile HR prediction, black thin line, for a 20 % 
week 8 ETS difference) to show a HR < 0.80. The two dot-
ted lines can be moved to read the expected PTS to show 
other HRs conditional of week 8 ETS difference. Alter-
native scenarios could be simulated to explore alternative 

Table 2   Parameter estimates of the week 8 ETS OS model

SE standard error, p Wald test (χ2)

+ sign favorable; − sign not favorable

Parameter Estimate (SE) p value

(Intercept) 8.07 (0.270) <0.001

Week 8 ETS −1.99 (0.135) <0.001

Hemoglobin (g/L) 0.133 (0.111) <0.001

ECOG = 1 −0.400 (0. 048) <0.001

ECOG = (2, 3) −0.163 (0.077) 0.033

Corrected calcium (mg/dL) −0.104 (0.019) <0.001

Log(# metastases) −0.209 (0.032) <0.001

Time from diagnosis (days) 8.0E-5 (1.7E-5) <0.001

Baseline LDH (U/L) −3.7E-4 (9.2E-5) <0.001

Lung metastases (yes) −0.138 (0.046) 0.002

Log(scale) −0.107 (0.020) <0.001

Fig. 1   Predictive check of the week 8 ETS OS model by tertiles of 
week 8 ETS. Solid lines Kaplan–Meyer plots by tertiles of week 8 
ETS: dark gray first tertile [0.123,0.843), medium gray second tertile 
[0.843, 0928), light gray third tertile [0.928, 2.36); areas: 95 % pre-
diction intervals by the model



571Cancer Chemother Pharmacol (2015) 76:567–573	

1 3

study designs, e.g., conditional on an observed week 8 ETS 
difference in a Phase II study, Phase III study sample size, 
PTS for alternative target product profiles (HR) given week 
8 ETS difference.

Discussion

None of the currently available treatments are consistently 
effective in advanced and/or metastatic RCC. There is now 
a range of effective targeted agents available; however, a 
number of patients may not respond, or even progress rap-
idly, and as such there is still an unmet medical need [28] 
for this disease. The use of model-based drug development 
in oncology is gaining momentum [1, 29]. A few models 
have been developed to support the development of new 
investigational treatments in mRCC [3–6], but a modeling 
and simulation framework linking short-term TGI (availa-
ble in Phase II or in interim Phase III data) and OS outcome 
is lacking. We leveraged historical data from ten Phase II 
and Phase III studies in 2552 patients with mRCC con-
ducted as part of the development of temsirolimus, suni-
tinib or axitinib. Longitudinal models for tumor size data 
over time were used to estimate TGI metrics that captured 
either short-term (week 8 ETS) or longer-term (TTG) effect 
of the various treatments [1]. Both short-term and longer-
term TGI metrics (all based on target lesions) were predic-
tive of overall survival benefit for both first- and second-
line treatments. This is not consistent with Stein et al. [5] 
where non-target lesion progression at weeks 2–14 was the 
only significant TGI metric in a multivariate Cox model. 
Appearance of new lesions was borderline significant when 
progression due to target lesions was not. This discrepancy 
may be due to the small sample size in the Stein analysis 
based on 246 patients of a single everolimus Phase III trial 
[5], while this analysis was based upon 2552 patients from 
10 trials.

Multivariate models incorporated the known baseline 
prognostic factors in RCC [19, 20] (ECOG performance sta-
tus, hemoglobin, corrected calcium, LDH levels as well as 
markers of tumor burden (number of metastases, presence 
of lung metastases) and time from diagnosis. Line of ther-
apy was not a significant predictor after adjusting for these 
prognostic factors. The TGI metrics captured drug effect 
as shown by the ability of the models to accurately predict 
sunitinib versus IFN-α HR [10]. In addition, model assess-
ment in the six different treatments that were considered in 
those ten studies (sunitinib, axitinib, sorafenib, temsiroli-
mus, IFN-α and temsirolimus +  IFN-α) with a variety of 
mechanisms of action suggested that the link between TGI 
and OS may be independent of treatment [1]. This is the first 
multivariate OS model qualified for simulations of expected 
OS and HR in mRCC. This model can be leveraged to simu-
late expected OS for new investigational treatments as well 
as the expected HR for new investigational treatments ver-
sus standard of care, by utilizing early longitudinal tumor 
size data. These models can therefore be used to support 
early clinical decisions (Phase II, interim Phase III). As an 

Fig. 2   Predictive check of the sunitinib to INF-α HR in first-line 
sunitinib study (9) using the week 8 ETS OS model. Predictive dis-
tribution with 95  % prediction intervals between dash lines versus 
observed, solid line

Fig. 3   Predictive distribution (95 % prediction interval) of HR com-
paring an investigational treatment to sunitinib in a 600-patient study 
(300 per arm) as a function of difference in tumor growth inhibition 
(delta in week 8 ETS). Gray envelope: 95  % prediction interval. 
Black lines expected median (thick), expected 80th percentile (thin), 
vertical dotted line 20 % week 8 ETS difference from sunitinib, hori-
zontal dotted line cross the vertical dotted line and the y axis at HR 
0.80 indicating that a 300-patient per arm Phase III study would have 
an 80 % probability of technical success to show a HR < 0.80
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illustration, simulations were performed to define TGI met-
ric targets that may be used to design Phase II studies. On a 
case by case basis, an early TGI metric (e.g., week 8 ETS) 
or a longer-term TGI metric (e.g., TTG [1] that requires 
more mature data but may better capture drug effects) may 
be used as a promising endpoint in Phase II studies [30, 
31]. According to the simulations based on week 8 ETS, an 
investigational treatment inducing a 20  % week 8 shrink-
age difference on top of the reference (here sunitinib) may 
result in an improved OS with a median HR of 0.73 versus 
sunitinib. A 300-patient per arm Phase III study would have 
80 % PTS to show a HR ≤ 0.80. A Phase II study may then 
be prospectively designed to show achievement of such a 
TGI threshold. The published OS model and resultant simu-
lations can be leveraged to support Phase II design and pre-
dict expected OS and HR (based on early observed TGI in 
early clinical data obtained either in Phase II or Phase III 
studies), thereby informing important mRCC development 
decisions, e.g., Go/No Go and dose regimen selection.
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