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or with fludarabine (total dose 250 mg/m2) with rabbit 
antithymocyte globulin (rATG, Protocol 2041).
Methods Individual pharmacokinetic parameters were 
fixed to post hoc Bayesian estimates, and circulating abso-
lute lymphocyte counts (ALC) were obtained during the 
3 weeks prior to graft infusion. A semi-physiological cell-
kill model with three lymphocyte transit compartments 
was applied and aptly characterized the time course of sup-
pression of circulating ALC by fludarabine administration. 
Drug- and system-specific parameters were estimated using 
a maximum likelihood expectation maximization algo-
rithm, and the final model was qualified using an internal 
visual predictive check.
Results The final model successfully characterized the 
time course and variability in ALC. Pharmacodynamic 
parameters exhibited considerable between subject varia-
bility (38.9–211 %). The HCT protocol was the only covar-
iate associated with the pharmacodynamic parameters, spe-
cifically the lymphocyte kill rate, the transit rate between 
lymphocyte compartments, and the baseline ALC.
Conclusions This model can be used to simulate the 
degree of lymphosuppression for design of future fludara-
bine-based conditioning regimens.

Keywords Fludarabine · Nucleoside analogs · 
Lymphocyte · Lymphosuppression · Population 
pharmacodynamics · Hematopoietic cell transplantation · 
Adoptive immunotherapy

Introduction

Fludarabine monophosphate (fludarabine) is a purine 
nucleoside analog used for first-line treatment of chronic 
lymphocytic leukemia (CLL), with lymphosuppression as 

Abstract 
Purpose Quantitative relationships between 9-β-d-
arabinofuranosyl-2-fluoroadenine (F-ara-A) concentra-
tions and lymphosuppression have not been reported, but 
would be useful for regimen design. A population phar-
macokinetic/pharmacodynamic model was constructed in 
this study using data from 41 hematopoietic cell transplant 
(HCT) recipients conditioned with busulfan in combina-
tion with fludarabine (total dose 120 mg/m2, Protocol 1519) 
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a frequent adverse event. Because of its ability to cause 
lymphosuppression, fludarabine has become an essential 
part of many myeloablative and reduced-intensity condi-
tioning regimens administered prior to hematopoietic cell 
transplantation (HCT) [1]. For myeloablative condition-
ing, there is considerable interest in combining busulfan 
with fludarabine (BU/FLU), instead of cyclophosphamide 
(BU/CY), with the intent to improve clinical outcomes for 
myeloablative HCT recipients. Although initial case series 
were positive [2, 3], a recent prospective randomized trial 
found worse event-free, disease-free, and overall survival 
with BU/FLU compared with the BU/CY regimen [4].

Considerable interpatient variability in clinical outcomes 
occurs with the current method of dosing fludarabine based 
on body surface area (BSA). After administration, nucle-
otidases rapidly dephosphorylate fludarabine to 9-β-D-
arabinofuranosyl-2-fluoroadenine, which is often abbrevi-
ated as F-ara-A [5–7]. Subsequently, F-ara-A is transported 
into the cell and sequentially phosphorylated to its active 
metabolite, fludarabine triphosphate (F-ara-ATP) [6]. 
Unfortunately, quantification of F-ara-ATP in T-lympho-
cytes from pharmacokinetic samples obtained from HCT 
recipients administered fludarabine-based conditioning has 
not been feasible to date [8]. Preliminary studies suggest 
that the relationship between drug effects and the F-ara-A 
area under the curve (AUC) differs between conditioning 
regimens [9, 10]. We recently developed a F-ara-A popula-
tion pharmacokinetic model and limited sampling schedule 
to evaluate F-ara-A pharmacodynamics in HCT recipients 
receiving fludarabine and total body irradiation (TBI) in 
the ambulatory clinic [11]. Furthermore, we have demon-
strated that there is considerable interpatient variability in 
the accumulation rate of the active metabolite, F-ara-ATP, 
in CD4+ and CD8+ lymphocytes [12]. In this work, we 
created a population pharmacokinetic/pharmacodynamic 
model of F-ara-A, linking F-ara-A plasma concentrations 
to suppression of circulating lymphocytes in HCT recipi-
ents receiving one of the two BU/FLU conditioning regi-
mens [9, 13].

Materials and methods

Patient population

All patients were diagnosed with hematological disor-
ders and had adequate renal function (i.e., serum creati-
nine <1.5 mg/dL and creatinine clearance or radioisotope 
glomerular filtration rate >60 mL/min/1.73 m2) and liver 
function (i.e., total bilirubin <1.5 mg/dL and alanine ami-
notransferase <300 units/L). Body weight and BSA were 
used to calculate doses based on institutional guidelines. 
Patients received similar antiemetics, antibiotics, and 

antifungals per Fred Hutchinson Cancer Research Center 
(FHCRC) Standard Practice Guidelines; corticosteroids 
were not used as antiemetics with fludarabine. Institutional 
Review Board (IRB) approval was obtained prior to study 
conduct, and all patients or patient guardians gave informed 
consent before their participation in the study. Retrospec-
tive analysis of these data was IRB approved.

All patients received myeloablative conditioning with 
targeted busulfan, in which the busulfan concentration at 
steady state (Css) was targeted to 800–1,000 ng/mL using 
pharmacokinetic sampling and modeling, and fludarabine. 
Fludarabine was infused through a central venous access 
catheter over 30 min. Fludarabine doses were based on 
BSA and were not changed based on the time course of 
pharmacological biomarkers (e.g., lymphocyte counts).

Patients were enrolled in one of the two different treat-
ment protocols, which are described in Table 1. Notably, 
Protocol 1519 consisted of fludarabine 30 mg/m2/day for 
4 days (days −9 to −6), followed by targeted oral busulfan 
on days −5 to −2, and no rabbit antithymocyte globulin 
(rATG, Thymoglobulin®, Genzyme Corporation) [9]. The 
conditioning regimen used in Protocol 2041 consisted of 
fludarabine 50 mg/m2/day for 5 days (days −6 to −2), tar-
geted daily intravenous (IV) busulfan on days −5 to −2, 
and rATG IV at doses of 0.5 mg/kg (actual weight) on day 
−3, 2.5 mg/kg on day −2, and 3 mg/kg on day −1 for a 
total dose of 6 mg/kg [13]. The first fludarabine dose was 
administered in the ambulatory clinic; patients were sub-
sequently admitted to allow targeting of IV busulfan doses 
based on individual pharmacokinetics. The busulfan phar-
macokinetic results have been published separately [14] 
and demonstrated similar success in achieving the target 
busulfan Css of 800–1,000 ng/mL with oral busulfan and 
IV busulfan.

F-ara-A pharmacokinetic sampling and quantification

Blood sampling, F-ara-A quantification, noncompartmen-
tal, and population pharmacokinetic modeling have been 
previously described [9, 11]. Briefly, in Protocol 1519, 
blood samples were scheduled to be drawn immediately 
before and at the end of the 30 min infusion (0.5 h), and 
1, 4, 8, 12, and 24 h after the start of each fludarabine 
infusion. Sampling times in the subsequent study (Pro-
tocol 2041) differ because fludarabine was administered 
in an outpatient clinic. For Protocol 2041, blood samples 
were drawn at 0.5 h, 5 min after the end of the infusion 
(0.583 h), and 1.5, 4.5, 6.5, and 24 h after the start of the 
infusion after the first fludarabine dose only (i.e., day −6) 
[13]. F-ara-A plasma concentrations were quantified using 
an LC/MS (liquid chromatography–mass spectrometry) 
assay with a dynamic range from 0.067 to 2.58 mg/L; the 
inter-day CV % was <10 % [9]. The median (range) of the 
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F-ara-A clearance was 9.1 (8–45.2) L/h/m2 [9, 11] for Pro-
tocol 1519 and 7.07 (4.40–10.76) L/h/m2 for Protocol 2041 
[13].

Absolute lymphocyte counts (ALC)

The ALC were obtained from complete blood counts drawn 
at varying time points, as specified by the attending phy-
sician. The median number of ALC blood draws per par-
ticipant was 11 (range: 6–13). The ALC were determined 
using the Sysmex SE-2100 per manufacturer instructions 
within the College of American Pathologist-accredited clin-
ical laboratory supporting patients treated upon FHCRC 
protocols. The ALC represent a mixed population of 
T-cells, B-cells, and natural killer cells.

Population pharmacokinetic/pharmacodynamic modeling

The final pharmacodynamic model is shown in Fig. 1. A 
series of transit compartments are used to represent lym-
phocyte proliferation and differentiation; F-ara-A concentra-
tions drive the removal of cells from a precursor compart-
ment, characterized by a second-order cell-kill rate constant 
(kK). F-ara-ATP inhibits cellular DNA synthesis so we logi-
cally placed kK early in the proliferation and differentiation 

cascade. The parameter kK represents the incremental 
increase in the rate of lymphocyte kill per unit due to F-ara-
A, with the lymphocyte killing rate being dependent upon 
the F-ara-A concentration. Individual F-ara-A pharma-
cokinetic profiles (Cp) were fixed according to a standard 
two-compartment model and individual post hoc Bayesian 
estimated parameters from our previous population pharma-
cokinetic modeling of F-ara-A [11]. The pharmacodynamic 
model is defined by the following differential equations:

dX1

dt
= kin −

(

kt + kK · Cp

)

· X1

Table 1  Patient Characteristics

Data presented as number or 
median (range)
a Initial doses weight-based 
until busulfan doses could be 
personalized
b rATG 0.5 mg/kg on day −3, 
2.5 mg/kg on day −2, and 3 mg/
kg on day −1
c ALC/that patient’s average 
baseline ALC
d (Baseline ALC 
before fludarabine 
administration × days to graft 
infusion) − (area under the 
curve of actual ALC)

Protocol 1519 Protocol 2041

Number of participants 27 14

Age (year) 54.4 (12.6–63.8) 51.6 (33.7–65.5)

Malignancy

 Myelodysplastic syndrome 15 3

 Acute myeloid leukemia 7 6

 Chronic myeloid leukemia 4 1

 Chronic myelomonocytic leukemia 1 1

 Myelofibrosis 0 3

HCT conditioning regimen

 Targeted busulfana

  Initial dose 1 mg/kg PO every 6 h 4 mg/kg IV daily

  Days of administration Day −5 to −2 Day −5 to −2

  Target Css (ng/mL) 800–1,000 800–1,000

 Fludarabine

  Daily dose (mg/m2) 30 50

  Days of administration Day −9 to −6 Day −6 to −2

  Total dose (mg/m2) 120 250

 rATG dose (total)b 0 6 mg/kgb

Absolute lymphocyte count (ALC/μL) data

 ALC prior to fludarabine administration 0.93/μL (0.32–5.3) 1.41/μL (0.54–3.87)

 ALC nadir prior to graft infusion 0.07/μL (0–0.53) 0/μL (0–0.18)

 Nadir as percent of baseline ALCc 6.78 % (0–53 %) 0 % (0–7.58 %)

 Area under the effect curve for ALCd 0.62 μL × h (0.11–4.44) 1.17 μL × h (0.44–3.24)

 Day of ALC nadir (Day 0 = day of graft infusion) Day −4 (−7 to 0) Day −2 (−3 to 0)

Fig. 1  Schematic of the semi-physiological pharmacodynamic model 
of F-ara-A induced lymphocyte suppression. Model and abbreviations 
are defined under Methods
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with kt as a first-order transit rate constant between lym-
phocyte cell compartments. The initial condition for each 
transit compartment was set to the estimated baseline ALC 
[Xi(0) = L0], and the ALC outcome variable was set to X3. 
A stationary baseline was assumed; hence, the zero-order 
production rate constant was fixed: kin = L0 · kt.

It is acknowledged that F-ara-A is transported into the 
cell and sequentially phosphorylated to F-ara-ATP, the 
active metabolite [6]. F-ara-ATP concentrations could not, 
however, be quantified in plasma samples obtained after 
fludarabine administration; therefore, F-ara-A concen-
trations were used as the model input. This model does 
assume a linear relationship between the cell-kill rate con-
stant (kK) and the F-ara-A concentration in lymphocytes. 
This assumption is supported by ex vivo studies showing 
a linear relationship between fludarabine-induced apoptosis 
in CD4+ and CD8+ T-lymphocytes isolated from healthy 
volunteers that were exposed to 5–25 µM of fludarabine 
(Figure 4a of Woodahl et al.) [12]. To our knowledge, the 
linearity of fludarabine-induced apoptosis in natural killer 
or B-cells has not been evaluated.

All model parameters were estimated using the maxi-
mum likelihood expectation maximization algorithm imple-
mented in ADAPT5 (Biomedical Simulations Resource, 
Los Angeles, CA). Between subject variability (BSV) of 
parameters (L0, kt, kK) was assumed to follow a lognor-
mal distribution and was modeled using a full covariance 
matrix. Residual variability was defined by an additive plus 
proportional error variance model. Model development was 
guided by the objective function (−2 × log likelihood) and 
visual inspection of goodness of fit plots (e.g., observed vs. 
population and individual predicted values) and residuals.

Subsequently, covariate relationships with post hoc 
pharmacodynamic parameters were evaluated with a non-
parametric t-test (nominal variable) or regression (con-
tinuous variables). Covariates included: treatment proto-
col, which determined the cumulative fludarabine dose, 
and rATG administration (i.e., fludarabine 120 mg/m2 for 
Protocol 1519 and fludarabine 250 mg/m2 with rATG for 
Protocol 2041), BSA, weight (actual or adjusted ideal body 
weight), age, gender, albumin, calculated creatinine clear-
ance, and blood urea nitrogen. The final pharmacodynamic 
model was qualified internally using a visual predictive 
check [15]. We simulated data for 1,000 subjects using the 
final population model; the median and 5th and 95th per-
centiles of the predicted data were plotted with the original 
data.

dX2

dt
= kt · (X1 − X2)

dX3

dt
= kt · (X2 − X3)

Results

The patient characteristics are listed in Table 1. Substantial 
lymphosuppression was seen in all patients (Table 1), with 
a lower ALC nadir in those patients conditioned on Proto-
col 2041, which had a total fludarabine dose of 250 mg/m2 
and rATG. The ALC nadir usually occurred 3 days after the 
start of fludarabine administration, confirming a substantial 
delay in the pharmacological response relative to drug con-
centrations (Fig. 2). The semi-physiological pharmacody-
namic model (Fig. 1) was used to describe the ALC-time 
profiles after fludarabine administration. Residual unknown 
variability (RV) was estimated with an additive and propor-
tional error model where variance = (σ1 + σ2 × ALC)2 
with σ1 (intercept) = 0.0137 (SE = 23.6 %) and σ2 
(slope) = 0.350 (SE = 0.923 %).

As shown in Fig. 3, the model described the observed 
ALC–time data well, and the visual predictive check diag-
nostic plots show no major systematic bias. The estimated 

Fig. 2  Time course of lymphosuppression after HCT conditioning 
with Protocol 1519 (a) or Protocol 2041 (b). Full description of each 
conditioning regimen is listed in Table 1. Infusion of donor graft cells 
occurred on Day 0
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pharmacodynamic parameters are presented in Table 2. The 
median half-life of kt, or the half-life of lymphocyte prolif-
eration and differentiation, was 15.7 h (i.e., 0.693/0.0441, 
Table 2). As expected, the intensity of HCT conditioning 

regimen influenced the pharmacodynamic parameters, with 
Protocol 2041 participants exhibiting a more rapid transit 
between lymphocyte compartments (kt) and greater lym-
phocyte kill (kK) than those patients conditioned on Pro-
tocol 1519 (Fig. 4, box (interquartile range) and whisker 
(entire range) plot). The parameter kK represents the incre-
mental increase in the rate of lymphocyte kill per unit due 
to F-ara-A. To show the impact of greater F-ara-A concen-
trations upon kK, we calculated its corresponding half-life 
for low versus high F-ara-A concentrations based on the 
maximum concentration (Cmax) from these two popula-
tions [11]. Specifically, the low Cmax value of F-ara-A, 
0.4 mg/L after 30 mg/m2 (Figure 1 in Salinger et al.), and 
the high Cmax of F-ara-A, 2.6 mg/L after 50 mg/m2 (Fig-
ure 2 in Salinger et al.), correspond to half-lives for kK of 
3.4 and 0.5 min which shows that greater F-ara-A concen-
trations lead to a more rapid incremental increase in lym-
phocyte kill. Inspection of pharmacodynamic parameters 
with respect to demographic or biochemistry measurements 
revealed no obvious associations or relationships. There-
fore, treatment protocol was the only covariate associated 
with the difference in pharmacodynamic parameters. The 
time interval between the last fludarabine dose and donor 
graft infusion also differed between the protocols and influ-
enced the recipient lymphocyte count at the time of donor 
graft infusion (Fig. 2).  

Discussion

We sought to create a population pharmacodynamic model 
characterizing the interpatient variability in lymphosup-
pression after fludarabine administration. A semi-physi-
ological model for ALC, originally used to characterize 
chemotherapy-induced neutropenia by Friberg et al. [16], 
adequately described the lymphosuppression in HCT recip-
ients conditioned with one of two fludarabine-based regi-
mens. The BSV of the pharmacodynamic parameters varied 
from 38.9 to 211 % (Table 2). As expected, the interpatient 
variability is overall greater than the previously reported 

Fig. 3  Visual predictive checks of lymphosuppression after HCT 
conditioning with Protocol 1519 (a) or Protocol 2041 (b). Black 
and red lines represent the median (solid) and 5th and 95th percen-
tile (dashed) of the observed and simulated data, respectively. Start 
of simulations standardized to 72 h before fludarabine administration, 
showing the scheduled times of fludarabine (F), targeted busulfan 
(TBU), rATG (rA), rest and graft administration

Table 2  Estimated 
pharmacodynamic model 
parameters

Structural model parameter values Between subject variability  
(BSV, as % CV, on diagonal)  
and correlation (as pearson 
r, off diagonal)

Parameter Designation Parameter estimate 
(RSE %)

Lo kt kK

Baseline ALC Lo 0.954/μL (10.8 %) 59 %

Rate constant—transit of  
lymphocytes through proliferation  
and differentiation

kt 0.0441/h (7.39 %) 0.23 38.9 %

Rate constant—increased lymphocyte 
kill per unit of F-ara-A concentration

kK 30.2/h × (L/mg) 
(41.7 %)

0.42 0.26 211 %
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BSV of the pharmacokinetic parameters (i.e., 35.1–46.1 %) 
[11]. As shown in Fig. 2a, b, there is considerable variabil-
ity in the ALC at varying time points around fludarabine 
administration. The final population model successfully 
characterized this variability.

Lymphosuppression due to fludarabine has long been of 
interest [17]. Fludarabine specifically targets lymphocytes, 
affecting both resting and dividing lymphocytes [18–20]. 
After administration, fludarabine is dephosphorylated to 
F-ara-A, which is subsequently transported intracellularly 
and phosphorylated to the active metabolite, F-ara-ATP. 
F-ara-ATP inhibits cellular DNA synthesis by two different 

mechanisms: (1) Direct termination of DNA strand elon-
gation after the triphosphate of each drug is incorporated 
into DNA and (2) indirect inhibition of DNA synthesis by 
lowering cellular dNTPs through ribonucleotide reductase 
inhibition [21]. Ex vivo exposure of human CD4+ and 
CD8+ cells to pharmacologically relevant fludarabine con-
centrations does not result in apoptosis after 4 h, although 
the percentage of viable cells does decline from 24 to 48 h 
[12]. Thus, the time delay between the first fludarabine 
dose and lymphosuppression (Fig. 2) is not unexpected 
and was accurately characterized by the modified Friberg 
model. To date, it is not feasible to quantify F-ara-ATP con-
centrations from plasma samples obtained from HCT recip-
ients after fludarabine administration [8]. Therefore, our 
group pursued two avenues of research to improve fludara-
bine-based conditioning: 1) creating this pharmacokinetic/
dynamic model and 2) developing a novel phenotypic 
method to assess ex vivo F-ara-ATP accumulation rate 
in CD4+, CD8+ [12] or natural killer [22] cells. Regard-
ing the latter approach, F-ara-ATP accumulation in natural 
killer cells could only be assessed in healthy volunteers 
because of difficulties with obtaining sufficient numbers of 
these cells. Fortunately, this barrier did not exist with CD4+ 
and CD8+ cells, and the accumulation rate of F-ara-ATP 
could be evaluated. In CD4+ and CD8+ cells, F-ara-ATP 
accumulation rate is linear over the F-ara-A concentration 
range of 1.25–10 µM. This range is pharmacologically rel-
evant for the fludarabine doses administered to this cohort 
(i.e., fludarabine 30 or 50 mg/m2/day, Table 1). The F-ara-
ATP accumulation rates were only available for twelve of 
the fourteen participants in Protocol 2041 [13] and were 
therefore not included in this population pharmacokinetic/
dynamic analysis.

Nonlinear mixed effects modeling is increasingly used 
in the preclinical and clinical development of anticancer 
drugs, and the semi-mechanistic model of Friberg et al. 
[16]. has been successfully used to describe the rela-
tionship between the pharmacokinetics and hematologi-
cal toxicities for several drugs [23, 24]. Only recently, 
however, has population pharmacokinetic modeling been 
applied to the optimization of HCT conditioning regi-
mens [25, 26]. To our knowledge, this is the first model 
characterizing the relationship of F-ara-A concentrations 
with lymphosuppression. This model was created from 
two separate cohorts of HCT recipients conditioned with 
the myeloablative conditioning regimen of BU/FLU. The 
patients treated on both protocols had the same intensity 
of busulfan conditioning (i.e., target Css of 800–1,000 ng/
mL), though preclinical data indicate that busulfan has 
minimal effect upon lymphocytes [27, 28]. Protocol 2041 
patients, however, received higher daily and total fludara-
bine doses along with rATG. Thus, it is reassuring that 
the model indicated differences in the pharmacodynamic 

Fig. 4  Pharmacodynamic parameters by HCT conditioning regimen. 
Individual post hoc parameter estimates, shown as box (interquartile 
range) and whisker (entire range) plot with p values from nonpara-
metric t-test. L0 (/µL), baseline lymphocyte count; kt (/h), transit rate 
between the lymphocyte cell compartments; kK (/h × (L/mg)), rate of 
lymphocyte cell kill
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parameters (i.e., Lo, kt, and kK) between the two proto-
cols (Fig. 4). This is expected, as Protocol 1519 had a 
lower fludarabine dose (120 mg/m2) and did not include 
rATG, while Protocol 2041 had a higher fludarabine dose 
(250 mg/m2) and included rATG. Greater lymphosup-
pression is anticipated with the higher fludarabine dose, 
and the addition of rATG. ATG is responsible for numer-
ous effects on the immune system: T-cell inhibition and 
depletion through complement dependent cell lysis in the 
blood and apoptosis in the peripheral lymphoid tissues; 
modulation of molecules involved in leukocyte–endothe-
lium interactions; induction of apoptosis in B-cell line-
ages; and interference with dendritic cells [29]. In the 
setting of allogeneic HCT, the inclusion of ATG in the 
conditioning regimen depletes recipient T-cells and is 
considered an in vivo form of T-cell depletion [30] that 
lowers the risk of GVHD [31]. Thus, the population 
model adequately characterized the lymphosuppression, 
as the treatment protocol (i.e., fludarabine 120 mg/m2 in 
Protocol 1519 or fludarabine 250 mg/m2 with rATG in 
Protocol 2041) was the only covariate associated with 
the pharmacodynamic parameters (Fig. 3). None of the 
demographic or biochemical covariates evaluated was 
associated with the pharmacodynamic parameters. There-
fore, further research is required to identify additional 
sources of interpatient heterogeneity in lymphosuppres-
sion, and our integrated pharmacokinetic/pharmacody-
namic model will facilitate the evaluation of potential 
covariate relationships.

Due to its lymphosuppressive properties, fludarabine is 
increasingly used as part of HCT conditioning regimens 
[1]. Phase I studies of fludarabine revealed that toxicity 
to fludarabine monotherapy is not predicted by BSA-
based dosing [32]. Although BSA is a covariate of F-ara-
A pharmacokinetics, fludarabine dosing based on BSA 
still results in considerable interpatient variability in the 
degree of lymphosuppression among patients receiving 
the same conditioning regimen (Fig. 2). The mean F-ara-
A AUC was not associated with the time to neutrophil 
and platelet engraftment or day +75 T-cell chimerism in 
Protocol 1519 [9]. There was limited power for a phar-
macodynamics analysis in Protocol 2041, which stopped 
accrual after meeting protocol stopping guidelines for 
nonrelapse mortality. However, F-ara-A AUC was the 
most promising biomarker for nonrelapse mortality, with 
a hazard ratio of 5.2 (95 % confidence interval of 0.6-46, 
p = 0.10) [13]. There are no clear biomarkers for predict-
ing which patients will exhibit severe lymphosuppression. 
The majority of the research has focused upon recovery of 
the lymphocyte subpopulations after graft infusion, where 
ALC is predictive of various clinical outcomes [33–38]. In 
the context of nonmyeloablative HCT conditioning, mixed 
chimerism develops in the patient following infusion of 

the donor cells. Mixed chimerism is a state in which the 
recipient—termed host—and donor hematological cells 
coexist in the blood of the recipient. The extended per-
sistence of mixed chimerism in antigen-presenting cells 
should contribute to stronger alloreactions, which may 
increase the risk of graft rejection (i.e., host vs. graft reac-
tion) or of graft versus host disease. Preclinical models 
suggest that a pro-inflammatory environment can occur 
after the immunocompetent residual cells of the HCT 
recipient interact with subsets of the donor cells (e.g., 
naïve donor CD4+) [39]. The importance of host circulat-
ing lymphocytes at the time of graft infusion (i.e., day 0) 
has not been clearly examined in nonmyeloablative HCT 
recipients. There has been increasing attention paid to 
the variability inherent in the pretransplant host immune 
state, [40] as shown by the large range of baseline lym-
phocytes. Investigators from the National Cancer Institute 
have developed a novel strategy of minimizing this vari-
ability using targeted lymphocyte depletion (TLD) of the 
host lymphocytes to facilitate early full donor chimerism 
in patients receiving reduced-intensity conditioning [40], 
which is more intensive than nonmyeloablative condition-
ing. With TLD, the variability in host immune status is 
reduced by repetitive doses of disease-specific chemother-
apy to deplete circulating host T-cells with minimal mye-
losuppression [41]. The number of chemotherapy cycles 
administered is based upon reaching a target lymphocyte 
number [40]. We hypothesize that using pharmacokinetic/
dynamic modeling of lymphosuppression after fludara-
bine administration could be used with or instead of TLD. 
For fludarabine, however, this issue cannot be evaluated 
in preclinical HCT models because human lymphocytes 
are more sensitive to the cytotoxicity of fludarabine than 
those from mice, rats, or dogs [42]. We hypothesize that 
the interpatient variability in the suppression of circulat-
ing lymphocytes by F-ara-A is a critical element of non-
myeloablative HCT, the success of which is based on 
achieving a delicate balance between donor and recipient 
immune systems. Further development and validation, our 
population model in patients conditioned with fludara-
bine-based conditioning is needed.

In conclusion, an integrated population-based model 
of fludarabine plasma concentrations and the associated 
degree of myelosuppression, as quantified by ALC, was 
successfully constructed. The final model captured the 
central tendencies and inter-subject variability well; there 
were, however, no clinical covariates associated with the 
pharmacodynamic parameters. With additional develop-
ment, the model may ultimately provide an approach 
toward individualized fludarabine dosing regimens in HCT 
conditioning and methodological grounds to investigate 
whether dosing fludarabine on the basis of pharmacological 
biomarkers can improve clinical outcomes.
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