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cancer cell death. Meanwhile, 1-phenyl-2-decanoylamino-
3-morpholino-1-propanol (PDMP), the inhibitor of gluco-
sylceramide synthetase as well as the sphingosine kinase 
1 inhibitors (SKI-II and SKI-IV), facilitated bortezomib-
induced ceramide production and subsequent cell apop-
tosis. Further, bortezomib-induced pro-apoptotic c-Jun 
N-terminal kinase (JNK) activation was also associated 
with ceramide production. JNK activation by bortezomib 
was suppressed by F-B1, but was enhanced by SKI-II and 
PDMP in pancreatic cancer cells. Finally, C6-ceramide, 
SKI-II, and PDMP dramatically enhanced bortezomib-
induced cytotoxicity in primary cultured pancreatic cancer 
cells.
Conclusions  We found that bortezomib-induced apopto-
sis was associated with ceramide production in primary and 
transformed pancreatic cancer cells.

Keywords  Bortezomib · Ceramide · Apoptosis ·  
JNK and pancreatic cancer

Abbreviations
JNK	� C-Jun N-terminal kinase
SphK1	� Sphingosine kinase 1
F-B1	� Fumonisin B1
PDMP	� 1-Phenyl-2-decanoylamino-3-morpholino- 

1-propanol

Introduction

The pancreatic cancer has one of the worst prognoses 
among all malignancies [1, 2]. It is typically diagnosed at 
an advanced stage, and surgery can no longer remove the 
entire tumor [1]. The current standard therapies for this 
devastating disease include radiation and gemcitabine [3]. 
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However, pancreatic cancers are among the most intrinsi-
cally resistant tumors to both radiation and chemothera-
peutic drugs [4]. Hence, the search for novel and efficient 
agents against pancreatic cancer is necessary and extremely 
important [5, 6].

Bortezomib (PS-341, Velcade), a potent and selective 
inhibitor of the proteasome inhibitor, has displayed broad 
antitumor activities [7, 8]. Bortezomib was approved by 
the United States Food and Drug Administration (FDA) for 
the treatment for refractory or relapsed multiple myeloma 
(MM) [7–9]. Meanwhile, this drug is currently undergoing 
clinical and preclinical evaluations in the treatment for pan-
creatic cancers and many other tumors. As a matter of fact, 
bortezomib has shown significant efficiency against pan-
creatic cancer cells [10]. However, the underlying mecha-
nisms of such an effect are not fully understood.

The ubiquitin–proteasome system plays an important 
role in the cellular homeostasis. The inhibition of the 26S 
proteasome by bortezomib leads to the accumulation of 
misfolded proteins, resulting in endoplasmic reticulum 
stress to cause unfolded protein response and cell apopto-
sis [10–12]. Recent studies have proposed other signaling 
mechanisms involved in bortezomib-induced cancer cell 
apoptosis. For example, Podar et al. [13] showed that borte-
zomib induces myeloid cell leukemia-1 (Mcl-1) down-reg-
ulation in MM cells to cause cell apoptosis. In hepatocel-
lular carcinoma cells, Akt inhibition is a major molecular 
determinant of bortezomib-induced apoptosis [14]. Lau-
ricella et  al. [15] showed that bortezomib activates c-Jun 
N-terminal kinase (JNK)-dependent cell apoptosis. In the 
current study, we focused on the role of ceramide in bort-
ezomib’s anticancer ability. Ceramide is the well-known 
apoptosis mediator [16]. A number of anti-cancer agents 
enhance intracellular ceramide production to promote 
cell apoptosis [16]. We here discovered that bortezomib-
induced apoptosis is also associated with ceramide produc-
tion in primary and transformed pancreatic cancer cells.

Materials and methods

Chemical and reagents

Bortezomib was purchased from Selleck.com.cn (Shang-
hai, China). Fumonisin B1 (F-B1) and 1-phenyl-2-de-
canoylamino-3-morpholino-1-propanol (PDMP) were pur-
chased from Sigma (Shanghai, China). Sphingosine kinase 
1 (SphK1) inhibitors (SKI)-II and SKI-IV were purchased 
from Calbiochem (Shanghai, China). C6-ceramide was 
obtained from Avanti (Alabaster, AB). Antibodies used 
were obtained from the following commercial sources: 
Anti-JNK1, apoptosis signal-regulating kinase 1 (ASK1), 
rabbit and mouse horseradish peroxidase (HRP)-conjugated 

IgG antibodies were purchased from Santa Cruz biotech-
nology (Santa Cruz, CA). Anti-ceramide synthase 1 and 
Anti-glucosylceramide synthase (GCS) antibodies were 
purchased from Abcam (Shanghai, China). All other anti-
bodies used in this study were purchased form Cell Signal-
ing Tech (Denver MA).

Cell culture

The pancreatic cancer PANC-1 and MIA PaCa-2 (MIA) 
cells were maintained in RPMI-1640 medium (Invitrogen, 
Shanghai, China), supplemented with a 10 % fetal bovine 
serum (FBS, Sigma, Shanghai, China), penicillin/strepto-
mycin (1:100, Sigma, Shanghai, China), and 4 mM l-glu-
tamine (Sigma), in a CO2 incubator at 37 °C.

Primary pancreatic adenocarcinoma cells isolation 
and culture

The primary cultured pancreatic adenocarcinoma cells 
from a patient with early-stage disease were obtained at 
the time of surgery. The surgery-isolated tissue was thor-
oughly washed in phosphate buffer solution (PBS) contain-
ing 100 units/ml penicillin–streptomycin and 2  mM DTT 
(wash buffer), the tissue was then minced by scalpel into 
small pieces, and was maintained into DMEM containing 
100 units/ml penicillin–streptomycin. Pancreatic cancer 
cell pellets were thoroughly washed and then repelleted at 
400 g for 5 min. Single-cell suspensions were achieved by 
re-suspending cells in 0.15 % (w/v) collagenase dissolved 
in DMEM and incubating the suspension at 37 °C and 5 % 
CO2 for 1 h; individual cell was pelleted and rinsed twice 
with DMEM before re-suspending the cell pellets in cell 
culture medium (DMEM, 20  % FBS, 2  mM glutamine, 
1  mM pyruvate, 10  mM HEPES, 100 units/ml penicillin/
streptomycin, 0.1  mg/ml gentamicin, 0.2 units/ml insulin, 
0.1  mg/ml hydrocortisone, and 2  g/liter fungizone). The 
study was approved by the institutional review board of 
all authors’ institution, and written informed consent was 
obtained from the patient.

Trypan blue staining of “dead” cells

The number of dead tumor cells (trypan blue positive) after 
indicated treatment was counted, and the death percentage 
(%) was calculated by the number of the trypan blue posi-
tive cells divided by the total cell number.

Cell viability detection

The pancreatic cancer cell viability was measured by the 
3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bro-
mide (MTT) assay [17].
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Cell apoptosis quantification by Histone DNA‑ELISA

The Cell Apoptosis ELISA Detection Kit (Roche, Palo 
Alto, CA) was used to detect pancreatic cancer cell apopto-
sis after the indicated treatment according to the manufac-
turer’s protocol [17].

Flow cytometry detecting Annexin V positive (“apoptotic”)
cells

The pancreatic cancer cell apoptosis was also determined 
by the Annexin V In Situ Cell Apoptosis Detection Kit 
(Beyotime, Shanghai, China) according to the manufactur-
er’s instructions. Pancreatic cancer cells were also stained 
with propidium iodide (PI, Molecular Probes). Annexin 
V+ cells (the apoptotic cells) were recorded through a flow 
cytometry (BD Bioscience).

Western blotting and data quantification

The cells were washed with ice-cold PBS before lysed with 
the lysis buffer (Beyotime, Shanghai, China). The lysates 
were separated by the 10  % SDS-polyacrylamide gel and 
were electro-transferred onto polyvinylidene fluoride (PVDF) 
membranes (Millipore, USA). The membranes were blocked 
with 10 % milk in PBS plus Tween-20 (0.5 %) (TBST), incu-
bated overnight at 4 °C with the primary antibody, and then 
incubated with HRP-conjugated secondary antibody. The 
detection was performed by Supersignal West Pico Enhanced 
Chemiluminescent (ECL, Pierce, Rockville, IL). The blot 
intensity was quantified by Image J software. The intensity of 
each phosphorylated band was normalized to the intensity of 
non-phosphorylated kinase band (the loading control).

Immunoprecipitation (IP)

After the indicated treatment, PANC-1 cell lysates (800 μg) 
in 1  mL IP lysis buffer (Beyotime, Shanghai, China) were 
precleared with 20  μl of protein A/G-agarose (Sigma) for 
30 min. After centrifugation for 10 min at 4 °C in a microcen-
trifuge, the supernatants were rotated overnight with 2 μg of 
indicated primary antibody (anti-JNK1, Santa Cruz). Samples 
were then centrifuged for 5 min at 4 °C in a micro-centrifuge 
to remove nonspecific aggregates that formed overnight. 
Protein A/G-agarose (35 μl) was then added to the superna-
tants for 3 h at 4 °C. Pellets were washed six times with PBS, 
resuspended in the lysis buffer, and then assayed in Western 
blots detecting phospho- and total ASK1 and JNK1.

Enzymatic measurement of ceramide levels

The intracellular ceramide level was measured as previ-
ously reported [18] and was valued as fmol by nmol of 

phospholipid. The ceramide level in the treatment group 
was expressed as the percentage change in the untreated 
control group. Each measurement was done in triplicate.

Sphingosine kinase activity assay

As previously reported [18], pancreatic cancer cells were 
collected and lysed by the same lysis buffer for Western 
blotting. After centrifuging at 13,000 × g for 60 min, pro-
teins (100  μg) in supernatant were then incubated with 
25  μM D-erythrosphingosine dissolved in 0.1  % Triton 
X-100, 2 mM ATP, and [γ−32P] ATP (3.7 × 105 Bq dissolved 
in 20 mM MgCl2) for 30 min at 37  °C in a final volume 
of 200 μl. The reaction was stopped by adding 20  μl of 
HCl (1 N ), followed by 800  μl of chloroform/methanol/
HCl (100:200:1, v/v). After vigorous vortexing, 250  μl 
of chloroform and 250 μl of KCl (2 M) were added, and 
phases were separated by centrifugation. The organic 
layer was dried and resuspended in chloroform/methanol/
HCl (100:100:0.2, v/v). Lipids were resolved on silica 
TLC plates in 1-butanol/acetic acid/water (3:1:1, v/v). The 
labeled sphingosine-1-phosphate (S1P) spots were visual-
ized by autoradiography and quantified by scraping and 
counting in a scintillation counter. The sphingosine kinase 
activity was valued as pmol/h/g protein and was expressed 
as the percentage of the untreated control. Each measure-
ment was done in triplicate.

Statistical analyses

The data were expressed as mean  ±  standard deviation 
(SD). Data were collected using three set of independent 
experiments. Statistical differences were analyzed by one-
way ANOVA followed by multiple comparisons performed 
with post hoc Bonferroni test (SPSS version 16). Values of 
p < 0.05 were considered statistically significant. The sig-
nificance of any differences between two groups was tested 
using paired-samples t test when appropriated.

Results

C6‑ceramide enhances bortezomib‑induced cytotoxicity 
in cultured pancreatic cancer cells

Here, we wanted to know the potential role of ceramide in 
bortezomib-induced cytotoxicity and to see whether cera-
mide manipulating could affect pancreatic cancer cells’ 
response to bortezomib. As shown in Fig. 1, in PANC-1 and 
MIA pancreatic cancer cells, C6-ceramide and bortezomib 
alone only induced moderate cell viability loss (Fig. 1a, e), 
cell death (Fig. 1b), and apoptosis (Fig. 1c, d and f). How-
ever, a combination of the two induced the dramatically 
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increased cell death and apoptosis (Fig.  1). For exam-
ple, bortezomib and C6-ceramide combination induced 
57.34 ± 7.56 % of cell apoptosis (Annexin V positive cells) 
in PANC-1 cells, while bortezomib or C6-ceramide alone 
only induced 32.65 ± 2.65 or 17.41 ± 1.53 % of cell apop-
tosis, respectively (Fig. 1c).

Bortezomib induces ceramide production through de novo 
synthesis pathway, enhanced by PDMP

Next, we tested whether ceramide was involved in bort-
ezomib-induced cytotoxicity in PANC-1 cells. Results in 
Fig.  2a showed that bortezomib increased cellular cera-
mide production in PANC-1 cells. F-B1, the ceramide 
de novo synthase inhibitor [19], suppressed ceramide 
production by bortezomib. Subsequently, bortezomib-
induced cell viability loss (Fig.  2b, e) and apoptosis 
(Fig. 2c, e) were inhibited by F-B1, indicating that bort-
ezomib induced pro-apoptotic ceramide production 
through the de novo synthesis pathway. On the other hand, 
the GCS inhibitor, PDMP, [20] facilitated bortezomib-
induced ceramide production (Fig. 2a). Correspondingly, 
bortezomib-induced cytotoxicity (Fig. 2b, d) and apopto-
sis (Fig.  2c, e) were also enhanced by PDMP. Together, 
these results suggested that bortezomib-induced apoptosis 

in pancreatic cancer cells might be associated with cera-
mide production.

Bortezomib‑induced ceramide production and cytotoxicity 
in pancreatic cancer cells are enhanced by SphK1 
inhibitors

Sphingosine kinase 1 is an oncogenic sphingolipid-metab-
olizing enzyme that catalyzes the formation of the mito-
genic second messenger S1P, while consuming pro-apop-
totic ceramide. Thus, blockage of S1P formation provides 
a pro-apoptotic outcome through preventing ceramide 
metabolism [21]. We have shown that bortezomib induced 
ceramide-dependent apoptosis in pancreatic cancer cells. 
Results in Fig. 3a, b showed that bortezomib alone had no 
significant effect on SphK1 activity. Interestingly, SKI-II 
and SKI-V, two SphK1 inhibitors (see Fig. 3a), facilitated 
bortezomib-induced ceramide production (Fig.  3b) and 
cytotoxicity (Fig. 3c–e). As compared to pancreatic cancer 
cells treated with bortezomib or SphK1 inhibitor alone, the 
cells stimulated with both agents displayed a profound cell 
viability loss (Fig. 3c, e) and a significantly increased cell 
apoptosis (Fig.  3d). We also tested whether above agents 
could affect the response of bortezomib in primary cultured 
pancreatic cancer cells. Results in Fig. 3f, g demonstrated 
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Fig. 1   C6-ceramide enhances bortezomib-induced cytotoxicity in 
cultured pancreatic cancer cells. PANC-1 and MIA pancreatic cancer 
cells were treated with vehicle (V, 0.1 % DMSO), or with bortezomib 
(100 nM) in the presence or absence of C6-ceramide (10 μg/ml) for 
48 h, cell viability was analyzed by MTT assay (a and e), trypan blue 

was used to stain the “dead” cells (b), cell apoptosis was examined by 
Annexin V FACS sorting (c) and Histone DNA-ELISA assay (d and 
f). Experiments in this figure were repeated three times. *p  <  0.05 
versus the bortezomib treatment group, #p < 0.05 versus the C6-cer-
amide treatment group
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that bortezomib-induced cell viability loss (Fig. 3f) and cell 
death (Fig.  3g) were dramatically enhanced by C6-cera-
mide, the SphK1 inhibitor SKI-II, and PDMP, suggesting 
that ceramide is also involved in bortezomib-induced cyto-
toxicity in primary pancreatic cancer cells. Note that the 
expressions of SphK1, GCS, and ceramide synthase were 
not affected by bortezomib in both PANC-1 (Fig. 3h) and 
MIA (Fig. 3i) cells.

Bortezomib‑induced JNK activation is associated 
with ceramide production

The earlier studies have shown that bortezomib-induced 
cancer cell apoptosis is associated with the ASK1-JNK 
activation [15, 22]. However, how JNK is activated by 
bortezomib is not fully addressed. ASK1/JNK is known to 
play a role in ceramide-mediated cell apoptosis [23, 24]. In 
PANC-1 cells, we also observed a significant ASK1/JNK 
activation by bortezomib (Fig.  4a). Immunoprecipitation 
(IP) results in Fig.  4b showed that bortezomib induced 
ASK1/JNK complex formation in PANC-1 cells. More 
importantly, bortezomib-induced JNK activation was sig-
nificantly inhibited by F-B1, but was enhanced by PDMP 
and SKI-II (Fig.  4c). These results suggested that bort-
ezomib-induced pro-apoptotic ASK1/JNK activation in 

pancreatic cancer cells might also be associated with cer-
amide production. Results in Fig. 4d, e demonstrated that 
JNK inhibitor SP 600125 significantly reduced bortezomib 
or bortezomib+C6-ceramide-induced PANC-1 cell viabil-
ity loss and apoptosis, which again confirmed that JNK 
activation by bortezomib was pro-apoptotic.

Discussion

In the current study, we found that bortezomib induced pro-
apoptotic ceramide production probably through de novo 
synthesis pathway in cultured pancreatic cancer cells. The 
ceramide de novo synthase inhibitor F-B1 suppressed bort-
ezomib-induced ceramide production and apoptosis. On 
the other hand, exogenously added C6-ceramide facilitated 
bortezomib-induced pancreatic cancer apoptosis. Mean-
while, the GCS inhibitor PDMP and the SphK1 inhibitors 
facilitated bortezomib-induced ceramide production and 
cancer cell apoptosis (Fig.  4g). For the mechanism study, 
we observed that bortezomib-induced ceramide produc-
tion was important for pro-apoptotic ASK1/JNK activa-
tion. ASK1/JNK activation by bortezomib was suppressed 
by F-B1, but was increased by SKI-II and PDMP in pan-
creatic cancer cells (Fig.  4g). Finally, in primary cultured 
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synthesis pathway, enhanced by PDMP. PANC-1 and MIA cells were 
treated with vehicle (V, 0.1 % DMSO), or with bortezomib (100 nM) 
in the presence or absence of fumonisin B1 (F-B1, 20 μM) or 1-phe-
nyl-2-decanoylamino-3-morpholino-1-propanol (PDMP, 20  μM), 

cells were further cultured for indicated time points, cellular ceramide 
level was analyzed as described (a), cell viability and apoptosis were 
examined by MTT assay (b and d) and Annexin V FACS sorting (c 
and e), respectively. Experiments in this figure were repeated three 
times. *p < 0.05
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pancreatic cancer cells, bortezomib-induced cell death was 
enhanced by C6-ceramide, SKI-II, and PDMP.

As a potent and selective 26S proteasome inhibitor, bort-
ezomib has displayed significant cytotoxicity in a variety 
of tumor cells in phase I clinical trials [25], and it recently 
received FDA approval for the treatment for advanced MMs 
[26]. Despite the recent research successes of bortezomib 
as an anti-pancreatic cancer agent [10, 27–29], the underly-
ing mechanisms of such an effect remain to be character-
ized. Here, we proposed that bortezomib treatment results 

in the ceramide production, leading to JNK activation and 
cancer cell apoptosis.

Ceramide can be formed through the de novo synthesis 
pathway which starts with the condensation of serine and 
palmitoyl-CoA catalyzed by serine palmitoyl transferase 
(SPT) to generate 3-keto-dihydrosphingosine [30, 31]; the 
latter is subsequently reduced to form dihydrosphingo-
sine (sphinganine). Ceramide synthase then acts on dihy-
drosphingosine (or sphingosine) to form ceramide [30]. In 
the current study, we found that ceramide synthase inhibitor 
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F-B1 suppressed bortezomib-induced ceramide production, 
ASK1/JNK activation, and cell apoptosis in pancreatic can-
cer cells, indicating that bortezomib-induced ceramide pro-
duction is mediated through de novo synthesis pathway.

Ceramide, once generated, can be consumed in the 
biosynthetic reactions for the synthesis of sphingomy-
elin, glucosylceramide, or ceramide 1-phosphate, with 
the help from sphingomyelin synthase, GCS, or SphK1, 
respectively [30, 31]. In the current study, our data sug-
gested that bortezomib-induced ceramide was also sub-
jected to metabolism clearance in pancreatic cancer 
cells. The SphK1 inhibitors (SKI-II and SKI-IV) and the 
GCS inhibitor (PDMP) enhanced bortezomib-induced 
ceramide production, JNK activation, and following cell 
apoptosis. Hence, we suggested that bortezomib-induced 
cancer cell apoptosis can be strengthened by preventing 

ceramide metabolism. Interestingly, the expressions of 
GCS, SphK1, and ceramide synthase were not affected by 
bortezomib.

Several known anticancer drugs and stress-inducers 
could increase cellular ceramide production through the 
de novo synthesis [30, 32, 33]. Ceramide trigger cell apop-
tosis signaling cascades by regulating multiple signaling 
molecular. Studies have shown that ceramide-dependent 
cell apoptosis is associated with JNK activation, ASK1 
works as an upstream of JNK and forms a complex with 
JNK [34, 35].The ASK1-JNK activation and consequent 
cell apoptosis are seen in a number of stress conditions 
where the cellular ceramide level is increased [18, 36, 37]. 
Here, we suggested that bortezomib-induced ceramide pro-
duction mediates pancreatic cancer cell apoptosis probably 
through activating JNK. In conclusion, we indicated that 
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Fig. 4   Bortezomib-induced JNK activation is associated with cera-
mide production. PANC-1 cells were treated with vehicle (V, 0.1 % 
DMSO) or bortezomib (100 nM) for indicated time points, phospho- 
and total ASK1 and JNK were tested by western blots, the association 
between JNK1 and ASK1 was tested by IP (b). PANC-1 cells were 
treated with vehicle (V, 0.1 % DMSO), or with bortezomib (100 nM) 
in the presence or absence of PDMP (20 μM), F-B1 (20 μM) or SKI-
II (5  μM), cells were further cultured for 6  h, phospho- and total 
ASK1 and JNK were tested by Western blots (c), the JNK phospho-
rylation was quantified (d). PANC-1 cells were treated with vehicle 
(V, 0.1  % DMSO), bortezomib (100  nM) or bortezomib (100  nM) 
plus C6-ceramide (10 μg/ml) (bortezomib + C6) in the presence or 
absence of JNK inhibitor SP 600125 (20 μM) for 48 h, cell viabil-

ity (e) and Annexin V percentage (f) were tested as described. (g) 
The proposed signaling pathways of this study: in cultured pancre-
atic cancer cells (both primary and transformed), bortezomib induces 
pro-apoptotic ceramide production through the de novo synthesis 
pathway, which is inhibited by ceramide synthase inhibitor fumoni-
sin B1 (F-B1). PDMP, the inhibitor of glucosylceramide synthetase 
(GCS) as well as the SphK1 inhibitors (SKI-II and SKI-IV), facili-
tates bortezomib-induced ceramide production and apoptosis. Borte-
zomib-induced pro-apoptotic ASK1/JNK activation in pancreatic can-
cer cells is also associated with ceramide production. Experiments in 
this figure were repeated three times. *p < 0.05, #p < 0.05 versus the 
bortezomib treatment group
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